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Abstract

This dissertation investigates the well-known financial puzzle of the

currency carry trade, which is yet to be satisfactorily explained. It is

one of the most robust financial puzzles in international finance and

has attracted the attention of academics and practitioners alike for

the past 25 years.

The currency carry trade is the investment strategy that involves sell-

ing low interest rate currencies in order to purchase higher interest rate

currencies, thus profiting from the interest rate differentials. Assum-

ing foreign exchange risk is uninhibited and the markets have rational

risk-neutral investors, then one would not expect profits from such

strategies. That is uncovered interest rate parity (UIP); the parity

condition in which exposure to foreign exchange risk, with unantic-

ipated changes in exchange rates, should result in an outcome that

changes in the exchange rate should offset the potential to profit from

such interest rate differentials. The two primary assumptions required

for interest rate parity are related to capital mobility and perfect sub-

stitutability of domestic and foreign assets. Given foreign exchange

market equilibrium, the interest rate parity condition implies that

the expected return on domestic assets will equal the exchange rate-

adjusted expected return on foreign currency assets. However, it has

been shown empirically, that investors can actually earn arbitrage

profits by borrowing in a country with a lower interest rate, exchang-

ing for foreign currency, and investing in a foreign country with a

higher interest rate, whilst allowing for any losses (or gains) from

exchanging back to their domestic currency at maturity. Therefore

trading strategies that aim to exploit the interest rate differentials

can be profitable on average.



This research comprises of a comprehensive review of the literature

surrounding the forward premium puzzle, a mathematical background

to copulas and a review of their various uses in the literature to model

dependence, followed by an investigation of the forward premium puz-

zle via analysis of the multivariate tail dependence in currency carry

trades. A dataset of daily closes on spot and one month forward con-

tracts for 20 currencies from 2000 to 2013 was used to investigate

the behaviour of carry portfolios, formed by sorting on the forward

premium (a proxy to the interest rate differential to US dollar). A rig-

orous statistical modelling approach is proposed, which captures the

specific statistical features of both the individual currency log-return

distributions as well as the joint features, such as the dependence

structures prevailing between the exchange rates. The individual cur-

rency returns were transformed to standard uniform margins after fit-

ting appropriately heavy tailed marginal models, namely log-normal

and log generalised gamma models. To analyse the tail dependence

present in the carry portfolios - mixture copula models, consisting of

weighted Clayton, Frank and Gumbel components, were fitted on a

rolling daily basis to the previous six months of transformed log re-

turns. Extracting and interpreting the multivariate tail dependence

present in the rolling daily baskets provided significant evidence that

the average excess returns earned from the carry trade strategy can

be attributed to compensation for not only individual currency tail

risk, but also exposure to significant risk of large portfolio losses due

to joint adverse movements.

The main contribution of this dissertation is therefore to provide a

rationale for the unintuitive excess returns seen empirically in the cur-

rency carry trade via the presence of multivariate tail dependence and

therefore increased portfolio crash risk. This is a novel and promising

approach. A further contribution of this research is the identification

of significant periods of carry portfolio construction and unwinding

through the analysis of multivariate tail dependence in mixture cop-

ula models.





The research contained in this dissertation has been presented at the peer re-

viewed IMA Conference on Mathematics in Finance (8th - 9th April 2013, Edin-

burgh Conference Centre, Heriot-Watt University), as a poster at the Mathemat-

ics of Financial Risk Management Workshop (28th March 2013, Isaac Newton

Institute for Mathematical Sciences, Cambridge) and will be presented at the

forthcoming “Risk Management Reloaded” conference at the Technical Univer-

sity of Munich (9th - 13th September 2013). This research also forms the base of

an extended paper to be presented at the Computational and Financial Econo-

metrics (CFE) 2013 conference in December.
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Chapter 1

Introduction

This chapter presents an overview of the dissertation. The motivation for re-

searching the currency carry trade puzzle is presented, as well as a discussion of

previous related work. Subsequently, this chapter describes the objective of this

research, i.e. to investigate multivariate tail dependence in currency carry port-

folios.

1.1 Motivation

The main motivation of this dissertation is to investigate the well-known forward

premium puzzle and the associated currency carry trade. The currency carry

trade is the investment strategy that involves selling low interest rate currencies

in order to purchase higher interest rate currencies, thus profiting from the interest

rate differentials. Assuming foreign exchange risk is uninhibited and the markets

have rational risk-neutral investors, then one would not expect profits from such

strategies. That is uncovered interest rate parity (UIP); the parity condition in

which exposure to foreign exchange risk, with unanticipated changes in exchange

rates, should result in an outcome that changes in the exchange rate should offset

the potential to profit from such interest rate differentials. The two primary

assumptions required for interest rate parity are related to capital mobility and

perfect substitutability of domestic and foreign assets. Given foreign exchange

market equilibrium, the interest rate parity condition implies that the expected

1



return on domestic assets will equal the exchange rate-adjusted expected return

on foreign currency assets. However, it has been shown empirically, that investors

can actually earn arbitrage profits by borrowing in a country with a lower interest

rate, exchanging for foreign currency, and investing in a foreign country with a

higher interest rate, whilst allowing for any losses (or gains) from exchanging

back to their domestic currency at maturity. Therefore trading strategies that

aim to exploit the interest rate differentials can be profitable on average.

The intention of this dissertation is therefore to reinterpret the currency carry

trade puzzle in light of heavy tailed marginal models coupled with multivariate

tail dependence features. To achieve this analysis of the multivariate extreme tail

dependence several parametric models are developed and detailed model compar-

ison is performed.

This research thus demonstrates that tail dependencies among specific sets of

currencies provide other justifications to the carry trade excess return and also

allows one to detect construction and unwinding periods of such carry portfolios.

1.2 Related Work

The currency carry trade is one of the most robust financial puzzles in inter-

national finance and has attracted the attention of academics and practitioners

alike for the past 25 years. Numerous empirical studies [Engel, 1996; Fama, 1984;

Hansen and Hodrick, 1980; Lustig and Verdelhan, 2007] have previously demon-

strated the excess returns resulting from carry trade strategies.

Such a confounding puzzle has understandably resulted in a vast and var-

ied literature, in which a number of theories have been proposed to justify the

phenomenon.

Fama [1984] initially proposed a time varying risk premium within the forward

rate relative to the associated spot rate - concluding that, under rational markets,

most of the variation in forward rates was due to the variation in risk premium.

Weitzman [2007] demonstrates through a Bayesian approach that the uncer-

tainty about the variance of the future growth rates combined with a thin-tailed

prior distribution would generate the fat-tailed distribution required to solve the

forward premium puzzle. This could be compared to the argument retained by
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Menkhoff et al. [2012] who demonstrate that high interest rate currencies tend

to be negatively related to the innovations in global FX volatility, which is con-

sidered as a proxy for unexpected changes in the FX market volatility. Menkhoff

et al. [2012] show that sorting currencies by their beta with global FX volatility

innovations yields portfolios with large differences in returns, and also similar

portfolios to those obtained when sorting by forward discount. Another risk

factor shown to be significant, although to a much lesser degree, is liquidity risk.

Burnside et al. [2007] presents an alternative model to a pure risk factor

model, in which “adverse selection problems between market makers and traders

rationalizes a negative covariance between the forward premium and changes in

exchange rates”. Here, the authors suggest that the foreign exchange market

should not be considered as a Walrasian market and that market makers face a

worse adverse selection problem when an agent wants to trade against a public

information signal, i.e. to place a contrarian bet as an informed trader.

Another hypothesis, proposed by Farhi and Gabaix [2008], consists of justify-

ing this puzzle through the inclusion of a mean reverting risk premium. According

to their model a risky country, which is more sensitive to economic extreme events,

represents a high risk of currency depreciation and has thus to propose, in order

to compensate this risk, a higher interest rate. Then, when the risk premium

reverts to the mean, their exchange rate appreciates while they still have a high

interest rate which thus replicates the forward rate premium puzzle.

The causality relation between the interest rate differential and the currency

shocks can be presented the other way around as detailed in Brunnermeier and

Pedersen [2009]. In this paper, the authors assume that the currency carry trade

mechanically attracts investors and more specifically speculators who accordingly

increase the probability of a market crash. Tail events among currencies would

thus be caused by speculators’ need to unwind their positions when they get

closer to funding constraints.

This recurrent statement of a relation between tail events and forward rate

premium [Brunnermeier et al., 2008; Farhi and Gabaix, 2008] has led to the pro-

posal in this dissertation of a rigorous measure and estimation of the tail thickness

at the level of the marginal distribution associated to each exchange rate. More-
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over, the question of the link between the currency’s marginal distribution and

the associated interest rate differential leads to the consideration more globally

of the joint dependence structures between the individual marginal cdf tails with

respect to their respective interest rate differential.

The approach adopted in this dissertation is a statistical framework with a

high degree of sophistication, however its fundamental reasoning and justifica-

tion is indeed analogous in nature to the ideas considered when investigating

the “equity risk premium puzzle” coined by Mehra and Prescott [1985] in the

late 80’s. The equity risk premium puzzle effectively refers to the fact that de-

mand for government bonds which have lower returns than stocks still exists and

generally remains high. This poses a puzzle for economists to explain why the

magnitude of the disparity between the returns on each of these asset classes,

stocks versus bonds, known as the equity risk premium, is so great and therefore

implies an implausibly high level of investor risk aversion. In the seminal paper

written by Rietz [1988], the author proposes to explain the “equity risk premium

puzzle” [Mehra and Prescott, 1985] by taking into consideration the low but still

significant probability of a joint catastrophic event.

Analogously in this dissertation, an exploration is presented of the highly

leveraged arbitrage opportunities in currency carry trades that arise due to vi-

olation of the UIP. However, it is conjectured that if the assessment of the risk

associated with such trading strategies was modified to adequately take into ac-

count the potential for joint catastrophic risk events accounting for the non-trivial

probabilities of joint adverse movements in currency exchange rates, then such

strategies may not seem so profitable relative to the risk borne by the investor.

A rigorous probabilistic model is proposed in order to quantify this phenomenon

and potentially detect when liquidity in FX markets may dry up. This probabilis-

tic measure of dependence can then be very useful for risk management of such

portfolios but also for making more tractable the valuation of structured prod-

ucts or other derivatives indexed on this specific strategy. To be more specific,

the principal contribution of this dissertation is indeed to model the dependen-

cies between exchange rates using a flexible family of mixture copulae comprised

of Archimedean members. This probabilistic approach allows the joint distribu-

tion of the vectors of random variables, in this case vectors of exchange rates

4



log-returns in each basket of currencies, to be expressed as functions of each

marginal distribution and the copula function itself.

Whereas in the literature mentioned earlier, the tail thickness resulting from

the carry trade has been either treated individually for each exchange rate or

through the measurement of distribution moments that may not be adapted to

a proper estimation of the tail dependencies. In this dissertation, it is proposed

instead to build, on a daily basis, a set of portfolios of currencies with regards to

the interest rate differentials of each currency with the US dollar. Using a mixture

of copula functions, a measure of the tail dependencies within each portfolio is

extracted and finally the results are interpreted. Among the outcomes of this

study, it is demonstrated that during the crisis periods, the high interest rate

currencies tend to display very significant upper tail dependence. Accordingly, it

can thus be concluded that the appealing high return profile of a carry portfolio is

not only compensating the tail thickness of each individual component probability

distribution but also the fact that they tend to occur simultaneously and lead to

a portfolio particularly sensitive to the risk of drawdown. Furthermore, it is also

shown that high interest rate currency portfolios can display periods during which

the tail dependence gets inverted demonstrating when periods of construction of

the aforementioned carry positions are being undertaken by investors.

1.3 Investigating Multivariate Tail Dependence

in Currency Carry Trade Portfolios via Cop-

ula Models

This dissertation includes an investigation of the forward premium puzzle via

analysis of the multivariate tail dependence in currency carry trades. A dataset

of daily closes on spot and one month forward contracts for 20 currencies from

2000 to 2013 was used to investigate the behaviour of carry portfolios, formed by

sorting on the forward premium (a proxy to the interest rate differential to US

dollar). A rigorous statistical modelling approach is proposed, which captures the

specific statistical features of both the individual currency log-return distributions
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as well as the joint features, such as the dependence structures prevailing between

the exchange rates with regards to their rates differential. The individual currency

returns were transformed to standard uniform margins after fitting appropriately

heavy tailed marginal models, namely log-normal and log generalised gamma

models. To analyse the tail dependence present in the carry portfolios - mixture

copula models, consisting of weighted Clayton, Frank and Gumbel components,

were fitted on a rolling daily basis to the previous six months of transformed

log returns. Extracting and interpreting the multivariate tail dependence present

in the rolling daily baskets provided significant evidence that the average excess

returns earned from the carry trade strategy can be attributed to compensation

for not only individual currency tail risk, but also exposure to significant risk of

large portfolio losses due to joint adverse movements.

1.4 Dissertation Structure

This dissertation is structured as follows. A mathematical background and liter-

ature review for the field of copula modelling is provided in chapter 2. Chapter 3

presents the theory of the forward premium puzzle and reviews the literature sur-

rounding the puzzle and the associated currency carry trade. Chapter 4 presents

the investigation of the forward premium puzzle using real world data. An analy-

sis of multivariate tail dependence in currency carry portfolios is presented, along

with a detailed discussion of the results. Finally, conclusions and future research

are given in chapter 5 .
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Chapter 2

Copula Literature Review

In this chapter, the origins and mathematical background of copulae are reviewed,

before discussing the development of copula modelling in the fields of financial

mathematics and insurance. Classical measures of dependence are detailed, fol-

lowed by the concept of tail dependence. Some key copula families are then pre-

sented.

2.1 Origins

The explosion of interest in copula modelling over the past few decades can largely

be attributed to their flexibility and usefulness in a wide range of practical ap-

plications, particularly in the world of finance and insurance, see Genest et al.

[2009].

The first mathematical use of the word copula can be traced back to Abel

Sklar’s theorem in 1959, Sklar [1959], in which one-dimensional distribution func-

tions are joined together by a copula function to form multivariate distribution

functions. However, the roots of copula theory can in fact be traced back fur-

ther to Hoeffding’s work on ‘standardised distributions’ on the square [−1
2
, 1

2
]2

in the 1940s, Hoeffding [1994a,b]. A more detailed history of the origins and

development of copula theory can be found in the introduction of the excellent

monograph Nelsen [2006]. Personal recollections by the founders of the field can

be found in Schweizer [1991] and Sklar [1996].
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So, why are we interested in copulae? As Fisher notes in his article in the

Encyclopedia of Statistical Sciences, Fisher [1997], “Copulas [are] of interest to

statisticians for two main reasons:

1. as a way of studying scale-free measures of dependence.

2. as a starting point for constructing families of bivariate distributions, some-

times with a view to simulation.”

The most natural place to begin this literature review is with Sklar’s intro-

duction of the copula function in his famous theorem, Sklar [1959].

A copula is specified according to the following definition.

Definition 1. Copula

A d-dimensional copula is a multivariate cumulative distribution function C with

uniform [0, 1] margins. i.e. C : [0, 1]d → [0, 1].

One of the main attractions for practitioners for the use of copula models is

the separation of a multivariate distribution into its marginal distributions and

the dependence structure between the margins. Sklar’s theorem (2.1) provides the

foundation to the study of copulae by proving that any multivariate distribution

with continuous margins has a unique copula representation.

Sklar’s Theorem (1959)

Consider a d-dimensional cdf H with marginals F1, . . . , Fd. There exists a copula

C, s.t.

H(x1, ..., xd) = C(F1(x1), . . . , Fd(xd)) (2.1)

for all xi ∈ (−∞,∞), i ∈ 1, . . . , d. Furthermore, if Fi is continuous for all

i = 1, . . . , d then C is unique; otherwise C is uniquely determined only on RanF1×
· · · ×RanFd, where RanFi denotes the range of the cdf Fi.

An intuitive pictorial representation of the transformation of marginal dis-

tributions to standard uniform margins can be seen in Figure 2.1, as shown in

Meucci [2011]. Here, it can be seen that using the individual empirical CDFs,
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Figure 2.1: Transforming marginal distributions into standard uniform
[0,1] margins. (Source: Meucci [2011])

an arbitrary data sample can be transformed to have approximately standard

uniform margins.

Copula models therefore provide a mechanism to model the marginal be-

haviour of each currency and then separately to focus on developing hypotheses

regarding the possible dependence structures between the log returns of the for-

ward exchange rates of the currencies in the portfolios which can be tested through

parameterization of a model via a copula and then a process of model selection.

There already exists an extensive literature on copulae, with publications

gathering pace over recent years. Excellent textbooks on the topic include Aglio

et al. [1991]; Joe [1997]; Nelsen [2006]. A number of gentle introductions to the

world of copulae are available, such as Bouyé et al. [2000]; Embrechts et al. [2003];

Frees and Valdez [1998]; Genest and Favre [2007]; Meucci [2011]; Schmidt [2006].
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2.2 Impact of Copula Modelling on Financial

Mathematics

The explosion of interest in copulae, beginning in the eighties, was in most part

due to advances in quantitative risk management methodology in the financial

and insurance world. The creation of more complex derivative products and new

guidelines on regulation (see Chapter 1 of Embrechts et al. [2005]) contributed

heavily to the need for risk management developments.

A Notable paper from this era is Embrechts et al. [2002], in which the authors

argue for copula approaches over linear correlation for the modelling of depen-

dency for risk management. In particular, the authors point out the pitfalls

of using linear correlation in the non-Gaussian world of finance and insurance.

Hence, beyond elliptical multivariate models we have the following fallacies:

� Fallacy 1 : Marginal distributions and correlation determine the joint dis-

tribution.

� Fallacy 2 : Given marginal distributions F1 and F2 for X and Y , all linear

correlations between -1 and 1 can be attained through suitable specification

of the joint distribution.

� Fallacy 3 : The worst case VaR (quantile) for a linear portfolio X+Y occurs

when ρ(X, Y ) is maximal, i.e. X and Y are comonotonic.

Another hugely important paper, on the topic of credit portfolio default mod-

elling, is Li [1999], in which Li proposes the use of copulae to specify the joint

distribution of survival times (time until default of a financial instrument) with

given marginal distributions (credit curves - giving all the marginal conditional

default probabilities over a number of years). However, Li presents the Gaus-

sian copula as the industry standard approach of the time (see Gupton et al.

[1997]). It was the use and abuse of this Gaussian copula by the credit rating

agencies (Moody’s, Standard & Poor’s and Finch) and the derivatives depart-

ments of investment banks that allowed the CDS (Credit Default Swap) market

to balloon out to $62 trillion in 2007 from $920 billion in 2001. The CDO (Col-

lateralised Debt Obligation) market saw a similar explosion, from $275 billion

10



in 2000 to $4.7 trillion by 2006. Li’s formula came under much criticism at the

time, notably Salmon [2012], for causing the collapse of the global economy. A

more detailed analysis of the development and use of the Gaussian copula in this

context is given in MacKenzie and Spears [2012], showing the unjustified blame

placed on Li. Donnelly and Embrechts [2010] examines the (well-known) short-

comings of the Gaussian copula - explaining the overly simplistic nature of the

model for credit derivatives. The authors present a clear analysis of the chal-

lenges of applying mathematical models to the constantly changing real world of

finance.

The paper of Schönbucher and Schubert [2001] allows for a much more general

specification of the dependency between default events than previous works. The

modelling framework introduced here is a continuous-time dynamic model, with

defaults and default probabilities evolving consistently within the model. The

Clayton and Gumbel copulae are proposed to model the default dependency,

allowing for more realistic default contagion.

On the topic of portfolio allocation, Patton [2004] explores asymmetries in the

dependence structure of stocks across different market conditions. Patton notes

that “stock returns appear to be more dependent during market downturns than

during market upturns”, hence violating the assumption of elliptically distributed

asset returns. Dependence models that allow for, but do not impose, greater de-

pendence during bear markets than bull markets are considered. The author

finds substantial evidence that skewness and asymmetric dependence are impor-

tant considerations in portfolio allocation. In particular, the portfolios based on

the more flexible copula dependence models outperform both the equally weighted

portfolio and the portfolio based on the bivariate normal model.

Hong et al. [2007] introduces a test for asymmetric dependence and then goes

on to propose a Bayesian framework for modelling asymmetry via a mixture

model of normal and Clayton copulae. The authors conclude that “incorporating

assets’ asymmetric characteristics can add substantial economic value in portfolio

decisions.”

During this period of time there was a huge rise in the application of copula

models across many fields, such as hydrology - Genest and Favre [2007], climate
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research - Schoelzel et al. [2008] and neuroscience - Onken et al. [2009] to name

but a few.

Amidst all of this new found excitement for copulae there were some outspo-

ken critics. Most notably was Mikosch [2006a], who cited a concern that copulae

were being viewed as the solution to all problems in stochastic dependence mod-

elling, whereas in his view “copulas do not contribute to a better understanding

of multivariate extremes”. There were numerous responses from leaders in the

copula field to Mikosch’s attack, such as de Haan [2006]; Embrechts [2006]; Genest

and Rémillard [2006]; Joe [2006]; Lindner [2006]; Peng [2006] and Segers [2006] -

leading to a rejoinder by Mikosch, see Mikosch [2006b]. Embrechts [2009] sums

up the responses best in his personal review of copulae shortly after:

“Copulas form a most useful concept for a lot of applied modeling,

they do not yield, however, a panacea for the construction of useful

and well-understood multivariate dfs, and much less for multivariate

stochastic processes. But none of the copula experts makes these

claims.”

It is useful at this point to discuss the pros and cons of the copula modelling

framework.

PROS:

� Separating out the modelling of the marginals and the dependence structure

allows for more flexibility in the complete multivariate model.

� The dependence structure as summarized by a copula is invariant under

increasing and continuous transformations of the marginals.

� The tail characteristics within the dependence structure can be explic-

itly modelled using well-known and interpretable parametric models, e.g.

Archimedean copulae.

� High dimensional copulae can be reduced to the composition of lower di-

mensional building block copulae, e.g. pair-copula constructions, to create

extremely flexible models of complex dependence structures.
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CONS:

� Which copula to choose? Sometimes it is not easy to say which parametric

copula fits a dataset best, since some copulae may provide a better fit near

the center and others near the tails. However, by focusing on models with

suitable characteristics for the application at hand and using goodness-of-fit

tests, e.g. AIC, BIC or CIC, one can overcome this issue.

� As with any statistical model, ignorance on the behalf of practitioners can

lead to dangerous oversimplification and reliance on inappropriate models.

Thus, when applying these models in practice it is of the utmost importance

to carefully consider the assumptions one is making. The key focus in this re-

search is on combining suitable marginal models, i.e. with the capacity to mode

skewness and tail-heaviness flexibly, with a model of the dependence structure

that captures the upper and lower multivariate tail characteristics asymmetrically.

In the context investigated in this dissertation, i.e. currency carry

trade portfolios, the application of copula models is a novel approach

to describe the rationale of the forward premium puzzle.

2.3 Classical Measures of Dependence

Measuring the dependence between random variables has long been of interest to

statisticians and practitioners alike. A history of the development of dependency

measures can be found in Mari and Kotz [2001]. It is important to note that,

in general, the dependence structure between two random variables can only

be captured in full by their joint probability distribution, and thus any scalar

quantity extracted from this structure must be viewed as such. Scarsini [1984]

gives the following intuitive definition of dependence:

“Dependence is a matter of association between X and Y along any

measurable function, i.e. the more X and Y tend to cluster around

the graph of a function, either y = f(x) or x = g(y), the more they

are dependent.”
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2.3.1 Linear Correlation

The most well-known measure of dependence, Pearson’s Product Moment Cor-

relation Coefficient, was developed by Karl Pearson, see Pearson [1896], building

on Sir Francis Galton’s approach using the median and semi-interquartile range,

see Galton [1889].

Pearson’s correlation coefficient is a measure of how well the two random

variables can be described by a linear function and is defined as follows:

Definition 2. Pearson’s Correlation Coefficient

ρ :=
Cov[X, Y ]√
V ar[X]V ar[Y ]

(2.2)

Hence perfect linear dependence gives ρ = +1 or ρ = −1. The major weakness

of linear correlation is its non-invariance under non-linear monotonic transforma-

tions of the random variables.

2.3.2 Rank Correlation

Rank correlation measures the relationship between the rankings of variables, i.e

after assigning the labels “first”, “second”, “third”, etc. to different observations

of a particular variable. The coefficient lies in the interval [1, 1], where +1

indicates the agreement between the two rankings is perfect, i.e. the same; -1

indicates the disagreement between the two rankings is perfect, i.e. one ranking

is the reverse of the other; 0 indicates the rankings are completely independent.

Due to this scale-invariance, rank correlations thus provide an approach for fitting

copulae to data.

The choice of dependence measure is influenced by the type of dependence one

seeks to capture, such as lower left quadrant, upper right quadrant etc. However,

in non-trivial multivariate distributions it isn’t possible to capture all of the pos-

sible combinations of dependence patterns within a single dependence measure.
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2.3.2.1 Spearman’s Rho

Charles Spearman introduced the nonparametric measure of dependence, Spear-

man’s rank correlation coefficient, in Spearman [1904]. This measure assesses how

well the dependence between two random variables can be described by a mono-

tonic function. As such it is equivalent to the Pearson’s correlation coefficient

between the ranked variables, defined as follows:

Definition 3. Spearman’s rank correlation coefficient

ρ :=

∑
i (xi − x̄)(yi − ȳ)√∑
i (xi − x̄)2(yi − ȳ)2

(2.3)

where xi, yi are the ranks.

Spearman’s rank correlation can be directly derived from the copula describing

the dependence between random variables X1 and X2:

ρ(X1, X2) := 12

∫ 1

0

∫ 1

0

(C (u1, u2)− u1u2) du1du2 (2.4)

2.3.2.2 Kendall’s Tau

Maurice Kendall developed the τ rank correlation coefficient in Kendall [1938],

although Gustav Fechner proposed a similar measure in the context of time series

in 1897, see Kruskal [1958].

Let (X1, Y1) and (X2, Y2) be two independent pairs of random variables from

a joint distribution function F, then Kendall’s rank correlation is given by

Definition 4. Kendall’s Tau

τ := P [(X1 −X2) (Y1 − Y2) > 0]− P [(X1 −X2) (Y1 − Y2) < 0] (2.5)

Similarly, Kendall’s rank correlation can be directly derived from the copula

describing the dependence between random variables X1 and X2:

τ := 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1 (2.6)
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The exact non-linear transformations between the copula parameter ρ and

Kendall’s rank correlation τ for the Clayton, Frank and Gumbel copulae can be

seen in Table 2.1.

Table 2.1: Kendall’s tau and tail dependence coefficients.

Family τ λL λU

Clayton ρ
ρ+2

2−
1
ρ 0

Frank 1 + 4D1
1

(ρ)−1
ρ

0 0

Gumbel (ρ−1)
ρ

0 2− 2
1
ρ

Figures 2.2 and 2.3 illustrate the non-linear relationship between the Clayton

copula parameter and the Kendall’s Tau measure of dependence. Figure 2.2

shows a contour plot for a Clayton copula with ρ = 8 and thus τ = 0.8, whereas

Figure 2.3 shows a contour plot for a Clayton copula with ρ = 38 and thus

τ = 0.95. For such a large increase in the copula parameter there is a much

smaller increase in Kendall’s Tau and also the observable dependence between

the variables, as shown by the contour plots, is more similar than perhaps one

would expect.

Spearman’s ρ and Kendall’s τ share a lot of common properties, however

“Spearman’s ρ is a measure of average quadrant dependence, while Kendall’s τ is a

measure of average likelihood ratio dependence”, see Fredricks and Nelsen [2007].

In layman’s terms it can be seen that Kendall’s τ penalises rank displacements by

the distance of the displacement, whilst Spearman’s ρ penalises by the square of

the distance. Also, as Newson [2002] notes, “confidence intervals for Spearman’s

ρ are less reliable and less interpretable than confidence intervals for Kendall’s

τ -parameters”.

1D1 =
∫ ρ
0

t
exp(t)−1dt/ρ is the Debye function of order one.
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Figure 2.2: Contour plot of Clayton copula with Kendall’s τ = 0.8
and copula parameter ρ = 8.
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Figure 2.3: Contour plot of Clayton copula with Kendall’s τ = 0.95
and copula parameter ρ = 38.
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2.4 Tail Dependence

In order to examine the dependence behaviour in the extremes of multivariate

distributions we use the concept of tail dependence. The bivariate tail dependence

coefficient is defined as the conditional probability that a random variable exceeds

a certain threshold given that the other random variable in the joint distribution

has exceeded this threshold.

Definition 5. Bivariate tail dependence

For random variables X1 and X2 with cdfs Fi, i = 1, 2 and copula C. We define

the coefficient of upper tail dependence by:

λu := lim
u↗1

P
(
X2 > F−1

2 (u) |X1 > F−1
1 (u)

)
= lim

u↗1

1− 2u+ C(u, u)

1− u
(2.7)

and similarly we define the coefficient of lower tail dependence by:

λl := lim
u↘0

P
(
X2 ≤ F−1

2 (u) |X1 ≤ F−1
1 (u)

)
= lim

u↘0

C(u, u)

u
(2.8)

This concept has been recently extended to the multivariate setting by De Luca

and Rivieccio [2012]. Now one may accurately interpret the tail dependence

present between sub-vector partitions of the multivariate random vector with re-

gard to joint tail dependence behaviours. In the context of the applications I

consider in this dissertation, this allows us to examine the probability that any

subvector of the log return forward exchange rates for the basket of currencies will

exceed a certain threshold given that the log return forward exchange rates for

the remaining currencies in the basket have exceeded this threshold, in particular

thresholds that are placing an interest in the tails of the multivariate distribution.

The interpretation of such results is then directly relevant to assessing the chance

of large adverse movements in multiple currencies which could potentially increase

the risk associated with currency carry trade strategies significantly, compared

to risk measures which only consider the marginal behaviour in each individual

currency.
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Definition 6. Multivariate tail dependence

Let X = (X1, ..., Xd)
T be a d dimensional random vector with marginal distri-

bution functions F1, ..., Fd and copula C. We define the coefficient of multivariate

upper tail dependence by:

λ1,...,h|h+1,...,d
u = lim

ν→1−
P
(
X1 > F−1(ν), . . . , Xh > F−1(ν)|Xh+1 > F−1(ν), . . . , Xd > F−1(ν)

)
= lim
ν→1−

C̄n(1− ν, . . . , 1− ν)

C̄n−h(1− ν, . . . , 1− ν)
(2.9)

where C̄ is the survival copula of C.

Similarly we define the coefficient of multivariate lower tail dependence by:

λ
1,...,h|h+1,...,d
l = lim

ν→0+
P
(
X1 < F−1(ν), . . . , Xh < F−1(ν)|Xh+1 < F−1(ν), . . . , Xd < F−1(ν)

)
= lim
ν→0+

Cn(ν, . . . , ν)

Cn−h(ν, . . . , ν)
(2.10)

Here, h is the number of variables conditioned on (from the d considered).

2.4.1 Asymptotic Independence

In the case where the extremes of marginal distributions are asymptotically inde-

pendent one would find the tail dependence coefficient to be zero. Thus applying

extreme value models based on non-zero tail dependence to these cases leads to

the over-estimation of probabilities of extreme joint events. Examining this class

of distributions at finite levels, i.e. non-asymptotic, allows for a more useful mea-

sure of extremal dependence. Coles et al. [1999] defines a new quantity χ̄ as given

by Equation 2.11.

Definition 7. χ̄ - Measure of Extremal Dependence

χ̄ :=
2 log Pr(U > u)

log Pr(U > u, V > v)
− 1 =

2 log(1− u)

log C̄(u, u)
− 1 (2.11)

where −1 < χ̄(u) ≤ 1 for all 0 ≤ u ≤ 1.

Hence, χ̄ increases with dependence strength and equals 1 for asymptotically

dependent variables. For Gaussian models of dependence the measure χ̄ is equal

19



to the correlation, providing a benchmark for interpretation in general models of

dependence. Coles et al. [1999] thus argues that using this new measure in addi-

tion to the tail dependence measure gives a more complete summary of extremal

dependence.

2.5 Decomposing Multivariate Distributions

A statistician faced with the task of modelling a multivariate distribution has a

multitude of techniques at his disposal. The simplest possible choice one could

make is to assume all of the random variables are independent and hence only

the marginals need to be modelled and combined to form the multivariate model.

Whilst simple, this approach neglects any dependence between the variables and

thus is often a very poor model.

A multivariate distribution may be decomposed in all manner of ways, for

example via conditional distributions, factor models, tree representations etc.

Barber [2012] is a good resource for exploring the possible methods of decompos-

ing multivariate distributions.

The copula modelling framework provides an intuitive method of constructing

a multivariate model by carefully considering the marginal models and then the

dependence structure between the random variables in two distinct stages. If

the dimension of the multivariate model is not too high (e.g. d = 5), then it is

reasonable to assume that one d-dimensional copula will be sufficiently flexible

to model the characteristics of the dependence structure.

In the application considered in this research a mixture of d-dimensional copu-

lae has been considered to provide a model with asymmetric tail dependence and

the capability of capturing negative dependence between the currencies. Since the

carry portfolios only contain four currencies, this mixture of 4-dimensional copu-

lae has sufficient flexibility to accurately model the overall dependence structure,

and in particular the upper and lower tails.

In cases of much higher dimensional distributions one should consider vine

copula models, since standard multivariate copulae do not accommodate different

dependency structures between pairs of variables. Vine copulae use bivariate
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copulae (not necessarily from the same parametric family) and a nested set of

trees to build up the overall dependence structure more flexibly. Clearly there

is a trade-off with the number of parameters here. Kurowicka and Joe [2011]

provides an excellent overview of this burgeoning topic. Some key papers include

[Aas et al., 2009; Bedford and Cooke, 2002; Berg and Aas, 2009].

It is worth noting that one key challenge to be tackled in copula modelling

is the construction of dynamic models that capture the time-varying nature of

dependence in the real world, such as in finance.

2.6 Copula Families

There is a vast collection of different parametric copulae in the literature, each

with associated dependence features. The monograph Nelsen [2006] provides a

detailed mathematical background of many important copulae. There are many

useful papers reviewing the different families of copulae available to the prac-

titioner, such as [Bouyé et al., 2000; Durante and Sempi, 2010; Schmidt, 2006;

Trivedi and Zimmer, 2007].

Genest and Neslehova [2007] discusses the issues associated with modelling

multivariate distributions with discrete margins, such as in count data. As dis-

cussed in Sklar’s theorem (2.1), the copula representation of a multivariate dis-

tribution is only guaranteed to be unique when the marginal distributions are

continuous. This does not present a problem in this dissertation as all of the

marginals considered for this application are continuous.

Amongst the most popular copulae are elliptical copulae and Archimedean

copulae.

2.6.1 Elliptical Copulae

In general, elliptical copulae arise naturally from their respective elliptical dis-

tributions following Sklar’s theorem. Although elliptical copulae have no closed

form, they have the property that the dependence structure is fully described by

the correlation. An elliptical distribution is defined as follows:
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Definition 8. Elliptical distribution

The density function of an elliptical distributions (if it exists) is given by:

f(x) = |Σ|−
1
2 g
[
(x− µ)TΣ−1(x− µ)

]
, x ∈ Rn (2.12)

where Σ (dispersion) is a symmetric positive semi-definite matrix, µ ∈ Rn (loca-

tion) and g (density generator) is a [0,∞)→ [0,∞) function.

2.6.1.1 Gaussian Copula

The Gaussian copula has long been favoured by practitioners due to its simplicity.

The bivariate Gaussian copula is defined as follows:

Definition 9. Bivariate Gaussian copula

CGaussian(u, v) := Φρ

(
Φ−1(u),Φ−1(v)

)
, (2.13)

where

Φρ(x, y) :=

∫ x

−∞

∫ y

−∞

1

2π
√

1− ρ2
exp

2ρst− s2 − t2

2(1− ρ2)
dsdt

and Φ denotes the standard normal cdf.

A random sample from a Gaussian copula with ρ = 0.8 can be seen in Fig-

ure 2.4. The copula density plot for the Gaussian copula with ρ = 0.3 can be seen

in Figure 2.5. It is important to note the lack of tail dependence in the Gaussian

copula, i.e. in the lower left and upper right corners of the unit square. Hence

the Gaussian copula is a very restrictive model of dependence in the real world,

since it does not allow for variables to become highly concordant in the extremes,

e.g. default contagion.

2.6.1.2 t-Copula

Student’s t-copula retains much of the simplicity of the Gaussian copula, such as

in simulation and calibration, but also allows for the modelling of tail dependence

between variables. The behaviour of the model at the four corners is quite dif-

ferent from that of the Gaussian copula, while towards the center they are more
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Figure 2.4: Scatterplot of 500 random samples from a Gaussian copula
with ρ = 0.8.
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Figure 2.5: Density plot of Gaussian copula with ρ = 0.3.
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similar, as can be seen in Figure 2.6 and more clearly in the copula density plot

in Figure 2.7 with different parameters. Hence, although having the same cor-

relation as the Gaussian copula, the extreme events are much more likely under

the t-copula. This copula has often been referred to as the “desert island copula”

by Dr. Paul Embrechts due to its excellent fit to multivariate financial return

data. However, it does not allow for asymmetry in the tails, i.e. differing upper

and lower tail dependence in a portfolio of currencies. The Student’s t-Copula is

defines as:

Definition 10. Student’s t-Copula

Ct(u1, u2; ν, ρ) :=

∫ t−1
ν (u1)

−∞

∫ t−1
ν (u2)

−∞

1

2π
√

1− ρ2

(
1 +

s2 − 2ρst+ t2

ν(1− ρ2)

)− ν+2
2

dsdt

(2.14)

where t−1
ν (ui) denotes the inverse cdf of the standard univariate t-distribution with

ν degrees of freedom.

In practice the use of a standard t copula comes under fire since it has only

a single parameter for the degrees of freedom. This may restrict the flexibility

in modelling the tail dependence structure in a multivariate case. The most

advanced solution in the literature in this regard is Luo and Shevchenko [2010],

in which the authors propose a modified grouped t-copula, “where each group

consists of one risk factor only, so that a priori grouping is not required”, i.e.

each group has only one member and an individual degrees of freedom parameter

associated with it.

2.6.2 Archimedean Copulae

Archimedean copulae are not derived from multivariate distributions, but can

be stated explicitly in a simple form. Many Archimedean copulae have been

proposed in the literature, see Nelsen [2006], with many further copulae available

as extensions and combinations of these base copulae. Archimedean copulae are

attractive to researchers and practitioners due to their directly interpretable tail

dependence features and parsimonious representations.
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Figure 2.6: Scatterplot of 500 random samples from a t-copula with
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Figure 2.7: Density plot of t-copula with ρ = 0.3, degrees of freedom
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A function ψ is said to generate an Archimedean copula if it satisfies the

properties below.

Definition 11. Archimedean Generator

An Archimedean generator is a continuous, decreasing function ψ : [0,∞]→ [0, 1]

which satisfies the following conditions:

1. ψ(0) = 1

2. ψ(∞) = limt→∞ψ(t) = 0

3. ψ is strictly decreasing on [0, inf{t : ψ(t) = 0}]

Definition 12. Archimedean Copula

A d-dimensional copula C is called Archimedean if for some generator ψ it can

be represented as:

C(u) = ψ{ψ−1(u1) + · · ·+ ψ−1(ud)} = ψ{t(u)} ∀u ∈ [0, 1]d (2.15)

where ψ−1 : [0, 1]→ [0,∞] is the inverse generator with ψ−1(0) = inf{t : ψ(t) =

0}.

Note the shorthand notation t(u) = ψ−1(u1) + · · · + ψ−1(ud) that will be used

throughout this section.

As we will see later, it is necessary to have formulas for computing the copula

densities if one seeks to fit these models using a maximum likelihood approach.

Equation 2.16 provides such a formula in a generic form for each member of the

family of Archimedean copulae.

Definition 13. Archimedean Copula Density

McNeil and Nešlehová [2009] prove that an Archimedean copula C admits a den-

sity c if and only if ψ(d−1) exists and is absolutely continuous on (0,∞). When

this condition is satisfied, the copula density c is given by

c(u) =
∂dC(u1, . . . , ud)

∂u1 . . . ∂ud
= ψ(d){t(u)}

d∏
j=1

(ψ−1)′(uj) , u ∈ (0, 1)d (2.16)
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There are many possible copula models that could be considered in the mod-

elling of the multivariate dependence features of the currency portfolios. The

intention of this analysis was to work with well known models which have well

understood tail dependence features and are relatively parsimonious with regard

to the number of parameters specifying the copula. I obtain flexible dependence

relationships by combining such components into mixture models that allow for

a range of flexible tail dependence relationships to be studied.

In particular, I will focus on the well-known class of Archimedean copulae, as

defined in (2.15), since they provide a parsimonious approach that allows for the

modelling of various tail dependence characteristics.

2.6.2.1 One-parameter Archimedean Members:

In this section I describe three of the one parameter multivariate Archimedean

family copula models which have become popular model choices and are widely

used for estimation. This is primarily due to there directly interpretable fea-

tures. I select these three component members, the Clayton, Frank and Gumbel

models, for our mixture models since they each contain differing tail dependence

characteristics.

Clayton provides lower tail dependence, as seen in the random sample in

Figure 2.8 and the copula density plot in Figure 2.9. The Gumbel copula provides

upper tail dependence, as seen in the random sample in Figure 2.12 and the copula

density plot in Figure 2.13. The Frank copula also provides dependence in the

unit cube with elliptical contours with semi-major axis oriented at either π/4 or

3π/4 depending on the sign of the copula parameter in the estimation. Therefore

the Frank model component will allow me to capture parsimoniously potential

negative dependence relationships between the currencies in the portfolio under

study, as seen in Figure 2.10 and the copula density plot in Figure 2.11.

Formulas for these copulae, as well as their respective generators, inverse

generators and the d-th derivatives of their generators (required for the density

evaluation) are given in Table 2.2. The explicit formulas for the d-th derivatives

for all of the copulae in Table 2.2 were derived in Hofert et al. [2012].
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Figure 2.8: Scatterplot of 500 random samples from a Clayton copula
with ρ = 2.
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Figure 2.9: Density plot of a Clayton copula with ρ = 2.

28



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Frank Copula, ρ = −2

u[,1]

u[
,2

]

Figure 2.10: Scatterplot of 500 random samples from a Frank copula
with ρ = −2. The variables show negative dependence here.
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Figure 2.11: Density plot of a Frank copula with ρ = 2.
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Figure 2.12: Scatterplot of 500 random samples from a Gumbel copula
with ρ = 2.
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Figure 2.13: Density plot of a Gumbel copula with ρ = 2.
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2.6.2.2 Two-parameter Archimedean Members via Outer Power Trans-

forms

In this section I also consider more flexible generalizations of the single parameter

Archimedean members discussed above. To achieve these generalizations I con-

sider the outer-power transforms of the Clayton, Frank and Gumbel members, as

discussed below which is based on a result in Feller [1971].

Definition 14. Outer power copula

The copula family generated by ψ̃(t) = ψ(t
1
β ) is called an outer power family,

where β ∈ [1,∞) and ψ ∈ Ψ∞ (the class of completely monotone Archimedean

generators).

The proof of this follows from Feller [1971], i.e. the composition of a com-

pletely monotone function with a non-negative function that has a completely

monotone derivative is again completely monotone. Such copula model trans-

forms were also studied in Nelsen [1997], where they are referred to as a beta

family associated with the inverse generator ψ−1.

As has been noted above, in performing the estimation of these transformed

copula models via likelihood based inference it will be of great benefit to be

capable of performing evaluation pointwise of the copula densities. In the case of

the outer power transformed models, this will require the utilization of a specific

multivariate chain rule result widely known as the Faà di Bruno’s Formula, see

Faa di Bruno [1857] and discussions in for example Constantine and Savits [1996]

and Roman [1980]. To understand how such a result is required consider the

following remark.

Remark:The generator derivatives for the outer power transforms can be cal-

culated using the base generator derivatives and the following multi-dimensional

extension to the chain rule for the outer power versions. The densities for the

outer power copulae in Table 2.2 can thus be calculated using equation 2.16.

Before stating Faà di Bruno’s Formula for differentiation of multivariate com-

posite functions via a generalized chain rule, it will be convenient notationally

31



to present such results with respect to Bell polynomials. Therefore we recall

the definition of such polynomials below, which are widely used in combinatorics

analysis, see Mihoubi [2008] for details.

Definition 15. Bell Polynomial

The Bell polynomial with arguments n and k is given by

Bn,k(x1, x2, . . . , xn−k+1) =
∑ n!

j1!j2! · · · jn−k+1!

(x1
1!

)j1 (x2
2!

)j2
· · ·
(

xn−k+1

(n− k + 1)!

)jn−k+1

(2.17)

where the sum is taken over all sequences j1, j2, jn−k+1 of non-negative integers

such that j1 + j2 + · · · = k and j1 + 2j2 + 3j3 + · · · = n.

These polynomials are then utilised to simplify the expressions for the dif-

ferentiation of multivariate composite functions in Faà di Bruno’s Formula as

detailed next.

Faà di Bruno’s Formula: Riordan [1946]

If f and g are functions with a sufficient number of derivatives, then

dn

dxn
f(g(x)) =

n∑
k=0

f (k)(g(x)) ·Bn,k

(
g′(x), g′′(x), ..., gn−k+1(x)

)
(2.18)

where Bn,k are the Bell polynomials, defined above.

2.6.2.3 Two-parameter Archimedean Members via Inner Power Trans-

forms

Definition 16. Inner power copula

The copula family generated by ψ̃(t) = ψ
1
α (t) is called an inner power family,

where α ∈ (0,∞) and ψ ∈ Ψ∞ (the class of completely monotone Archimedean

generators).

Inner power transforms produce a family of generators associated with the

base generator, e.g. the Clayton generator is the inner power transform of the

base generator ψ(t) = (1 + t)−1. The lower tail dependence of the transformed

copula is λ
1/α
L , whilst the upper tail dependence remains unchanged.
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Inner power copula model transforms were also studied in Nelsen [1997], where

they are referred to as an alpha family associated with the inverse generator ψ−1.

2.6.3 Multivariate Archimedean Copula Tail Dependence

As discussed in Section 2.4, it is important to be able to accurately interpret the

tail dependence present between sub-vector partitions of the multivariate random

vector with regard to joint tail dependence behaviours. Below I give the explicit

generalised multivariate expressions for Archimedean copulae, equations 2.19 and

2.20, derived in De Luca and Rivieccio [2012].

Definition 17. Generalized Archimedean Upper Tail Dependence

Let X = (X1, ..., Xd)
T be a d dimensional random vector with marginal distribu-

tion functions F1, ..., Fd. The coefficient of upper tail dependence is defined as:

λ1,...,h|h+1,...,d
u = lim

ν→1−
P
(
X1 > F−1(ν), ..., Xh > F−1(ν)|Xh+1 > F−1(ν), ..., Xd > F−1(ν)

)
= lim
t→0+

∑d
i=1

((
d
d−i
)
i(−1)i

[
ψ−1

′
(it)
])

∑d−h
i=1

((
d−h
d−h−i

)
i(−1)i [ψ−1′(it)]

)
(2.19)

where ψ−1′ is the derivative of the inverse generator. Here, h is the number of

variables conditioned on (from the d considered).

Definition 18. Generalized Archimedean Lower Tail Dependence

Let X = (X1, ..., Xd)
T be a d dimensional random vector with marginal distribu-

tion functions F1, ..., Fd. The coefficient of lower tail dependence is defined as:

λ
1,...,h|h+1,...,d
l = lim

ν→0+
P
(
X1 < F−1(ν), ..., Xh < F−1(ν)|Xh+1 < F−1(ν), ..., Xd < F−1(ν)

)
= lim
t→∞

d

d− h
ψ−1

′
(dt)

ψ−1′((d− h)t)
(2.20)

where ψ−1′ is the derivative of the inverse generator. Here, h is the number of

variables conditioned on (from the d considered).
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2.6.4 Mixtures of Archimedean Copulae

In order to add additional flexibility to the possible dependence features avail-

able for the currency portfolios, I decided to utilize mixtures of copula models.

The advantage of this approach is that I can consider asymmetric dependence

relationships in the upper tails and the lower tails in the multivariate model. In

addition I can perform a type of model selection purely by incorporating into

the estimation the mixture weights associated with each dependence hypothesis.

That is the data can be utilised to decide the strength of each dependence fea-

ture as interpreted directly through the estimated mixture weight attributed to

the feature encoded in the particular mixture component from the Archimedean

family.

In particular I have noted that mixture copulae can be used to model asym-

metric tail dependence, i.e. by combining the one-parameter or two-parameter

families discussed above or indeed by any combination of copulae. This is possible

since a linear convex combination of 2 copulae is itself a copula, see discussions

on this result in Nelsen [2006].

Definition 19. Mixture Copula

A mixture copula is a linear weighted combination of copulae of the form:

CM(u; Θ) =
N∑
i=1

λiCi(u; θi) (2.21)

where 0 ≤ λi ≤ 1 ∀i = 1, ..., N and
∑N

i=1 λi = 1

Thus we can combine a copula with lower tail dependence, a copula with

positive or negative dependence and a copula with upper tail dependence to

produce a more flexible copula capable of modelling the multivariate log returns

of forward exchange rates of a basket of currencies. For this reason in this analysis

I will use the Clayton-Frank-Gumbel mixture model. In addition to the C-F-G

mixture model I will also investigate a mixture of outer power versions of the

base copula Clayton, Frank and Gumbel.

Remark We note that the tail dependence of a mixture copula can be obtained as
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the linear weighted combination of the tail dependence of each component in the

mixture weighted by the appropriate mixture weight, as discussed in for example

Nelsen [2006] and Peters et al. [2012]
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Table 2.2: Archimedean copula generator functions, inverse generator functions and generator function
d-th derivatives.

Family ψ ψ−1 (−1)dψ(d)

Clayton (1 + t)−
1
ρ (s−ρ − 1)

Γ(d+ 1
ρ)

Γ( 1
ρ)

(1 + t)−(d+ 1
ρ)

OP-Clayton
(

1 + t
1
β

)− 1
ρ

(s−ρ − 1)β

∑d
k=1

*
aGdk( 1

β
)

Γ(k+ 1
ρ)

Γ( 1
ρ)

(
1+t

1
β

)−(k+ 1
ρ)(

t
1
β

)k
td

Frank −1
ρ

ln [1− e−t(1− e−ρ)] − ln e−sρ−1
e−ρ−1

1
ρ
�Li−(d−1){(1− e−ρ)e−t}

OP-Frank −1
ρ

ln

[
1− e−t

1
β

(1− e−ρ)
] [

− ln e−sρ−1
e−ρ−1

]β ∑d
k=1 a

G
dk(

1
β ) 1

ρ
Li−(k−1)

{
(1−e−ρ)e−t

1
β

}(
t

1
β

)k
td

Gumbel e−t
1
ρ

(− ln s)ρ ψρ(t)

td
�PG

d, 1
ρ

(
t

1
ρ

)

OP-Gumbel e−t
1
βρ

(− ln s)ρβ

∑d
k=1 a

G
dk(

1
β )

ψρ

(
t

1
β

)

t
k
β

PG
k, 1ρ

(
t

1
ρβ

)(
t

1
β

)k
td

Remark: The densities for the one-parameter copulae in Table 2.2 can be calculated using equation 2.16. For

details of the results contained in this table see Hofert et al. [2012].

*aGdk( 1
ρ ) = d!

k!

∑k
i=1

(
k
i

)(
i/ρ
d

)
(−1)d−i , k ∈ 1, ..., d

�Lis(z) =
∑∞
k=1

zk

ks

�PG
d, 1ρ

(
t
1
ρ

)
=
∑d
k=1 a

G
dk

(
1
ρ

)
(t

1
ρ )k
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Chapter 3

Carry Trade Literature Review

In this chapter, the forward premium puzzle is presented and then the literature

surrounding the puzzle and the associated currency carry trade is reviewed . The

novel approach of analysing both individual tail thickness and joint tail depen-

dence, as proposed in this dissertation, is discussed.

3.1 The Forward Premium Puzzle

This phenomenon introduced initially by Hansen and Hodrick [1980], Hansen and

Hodrick [1983], Fama [1984] and Engel [1984] is directly linked to the arbitrage

relation existing between the spot and the forward prices of a given currency,

namely the Covered Interest Parity. This relation states that the price of a

forward rate can be expressed according to the relationship:

F T
t = e(rt−rft )(T−t)St (3.1)

where F T
t and St denote respectively the forward and the spot prices at time

t. While rt and rft represent the local risk free rate* and the foreign risk free

rate. I denote by T the maturity of the forward contract considered. It is worth

emphasizing that under the absence of an arbitrage hypothesis, this relation is

directly resulting from the replication of the forward contract payoff using a self

*I mean by local risk free rate the interest rate prevailing in the reference country which
would be for instance the dollar for an American investor.
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financed strategy. Moreover, it has been demonstrated empirically the validity

of this arbitrage relation in the currency market [Akram et al., 2008; Juhl et al.,

2006] when we consider daily data. Then, if we take the logarithm of expression

(3.1) we thus obtain the following relation:

fTt − sT = (rt − rft )τ − (sT − st)

= (rt − rft )τ −∆sT (3.2)

where τ is the time to maturity from calendar day t given by (T − t) while fTt

and st denote respectively the log-values of the forward and the spot prices.

This expression notably represents the excess return received by an investor

who has invested one unit of local currency* in a forward contract F T
t of maturity

T at time t and has held this position until expiration to convert it back to his

reference currency with an exchange rate equal to ST . We can notice that at the

trade settlement the profit or the loss in local currency for this investor equals

the differential of interest rates on a prorata temporis basis, plus the differential

of exchange rate between t and T .

Finally, if we assume the forward price is a martingale under the risk neutral

probability [Musiela and Rutkowski, 2011] then its value equals:

EQ[ST |Ft] = F T
t (3.3)

where Ft is the filtration associated to the stochastic process St. Replacing the

expression (3.3) in the relation (3.1) leads to the formula:

EQ

[
ST
St

∣∣∣∣∣Ft
]

=
F T
t

St
= e(rt−rft )(T−t) (3.4)

Which leads then to the UIP hypothesis since according to this expression,

under the risk neutral probability the expected variation of the exchange rate St

should equal the differential of interest rates between the two countries. Thus if

an investor buys a forward contract the profit or the loss resulting at the contract

*Which corresponds in this case to the US dollar since I consider the position of an American
investor.
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maturity should accordingly be equal to zero as the exchange rate at maturity

ST should be equal to Ste
(rt−rft )(T−t) which was the price paid initially for the

forward contract under the hypothesis of absence of arbitrage opportunities.

3.2 Currency Carry Trade

Numerous empirical studies [Engel, 1996; Fama, 1984; Hansen and Hodrick, 1980;

Lustig and Verdelhan, 2007] have previously demonstrated, that investors can ac-

tually earn arbitrage profits by borrowing in a country with a lower interest rate,

exchanging for foreign currency, and investing in a foreign country with a higher

interest rate, whilst allowing for any losses (or gains) from exchanging back to

their domestic currency at maturity. Therefore, trading strategies that aim to

exploit the interest rate differentials can be profitable on average. This is notably

the case for the currency carry trade which is thus the simple investment strategy

of selling a low interest rate currency forward and then buying a high interest rate

currency forward. The idea is that the interest rate returns will outweigh any

potential adverse moves in the exchange rate. Historically the Japanese yen and

Swiss franc have been used as “funding currencies”, since they have maintained

very low interest rates for a long period. The currencies of developing nations,

such as the South African rand and Brazilian real have been typically used as

“investment currencies”. Whilst this sounds like an easy money making strategy

there is of course a downside risk. This risk comes in the form of currency crashes

in periods of global FX volatility and liquidity shortages. A prime example of

this is the sharp yen carry trade reversal in 2007.

3.3 A Review of the Literature

If the UIP relationship held then there should indeed not be any yield difference

between a risk-free investment in a reference currency and a risk-free investment in

another currency after converting it back to the reference currency. Accordingly,

the depreciation of a currency relative to another should be equal to the risk free
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interest rates differential between them. However, Hansen and Hodrick [1980],

Hansen and Hodrick [1983] and Fama [1984] among other recent articles [Lustig

and Verdelhan, 2007; Lustig et al., 2011; Menkhoff et al., 2012], demonstrate that

this relation is not observed empirically in markets data and that the “currency

carry trade” strategy discussed above can even benefit from this flaw.

Over the last few decades there have been many theories proposed for the jus-

tification of this phenomenon. Fama [1984] initially proposed a time varying risk

premium within the forward rate relative to the associated spot rate - concluding

that, under rational markets, most of the variation in forward rates was due to

the variation in risk premium.

Weitzman [2007] demonstrates through a Bayesian approach that the uncer-

tainty about the variance of the future growth rates combined with a thin-tailed

prior distribution would generate the fat-tailed distribution required to solve the

forward premium puzzle. This could be compared to the argument retained by

Menkhoff et al. [2012] who demonstrate that high interest rate currencies tend

to be negatively related to the innovations in global FX volatility, which is con-

sidered as a proxy for unexpected changes in the FX market volatility. Menkhoff

et al. [2012] show that sorting currencies by their beta with global FX volatility

innovations yields portfolios with large differences in returns, and also similar

portfolios to those obtained when sorting by forward discount. Another risk

factor shown to be significant, although to a much lesser degree, is liquidity risk.

Burnside et al. [2007] presents an alternative model to a pure risk factor

model, in which “adverse selection problems between market makers and traders

rationalizes a negative covariance between the forward premium and changes in

exchange rates”. Here, the authors suggest that the foreign exchange market

should not be considered as a Walrasian market and that market makers face a

worse adverse selection problem when an agent wants to trade against a public

information signal, i.e. to place a contrarian bet as an informed trader.

Another hypothesis, proposed by Farhi and Gabaix [2008], consists of justify-

ing this puzzle through the inclusion of a mean reverting risk premium. According

to their model a risky country, which is more sensitive to economic extreme events,

represents a high risk of currency depreciation and has thus to propose, in order

to compensate this risk, a higher interest rate. Then, when the risk premium
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reverts to the mean, their exchange rate appreciates while they still have a high

interest rate which thus replicates the forward rate premium puzzle.

The causality relation between the interest rate differential and the currency

shocks can be presented the other way around as detailed in Brunnermeier and

Pedersen [2009]. In this paper, the authors indeed assume that the currency

carry trade mechanically attracts investors and more specifically speculators who

accordingly increase the probability of a market crash. Tail events among curren-

cies would thus be caused by speculators’ need to unwind their positions when

they get closer to funding constraints.

This recurrent statement of a relation between tail events and forward rate

premium [Brunnermeier et al., 2008; Farhi and Gabaix, 2008] has led to the pro-

posal in this dissertation of a rigorous measure and estimation of the tail thickness

at the level of the marginal distribution associated to each exchange rate. More-

over, the question of the link between the currency’s marginal distribution and

the associated interest rates differential leads to the consideration more globally

of the joint dependence structures between the individual marginal cdf tails with

respect to their respective interest rate differential.

3.3.1 Research Contribution: Tail Dependence and For-

ward Premium Puzzle

The approach adopted in this dissertation is a statistical framework with a high

degree of sophistication, however its fundamental reasoning and justification is

indeed analogous in nature to the ideas considered when investigating the “eq-

uity risk premium puzzle” coined by Mehra and Prescott [1985] in the late 80’s.

The equity risk premium puzzle effectively refers to the fact that demand for

government bonds which have lower returns than stocks still exists and generally

remains high. This poses a puzzle for economists to explain why the magnitude

of the disparity between the returns on each of these asset classes, stocks versus

bonds, known as the equity risk premium, is so great and therefore implies an

implausibly high level of investor risk aversion. In the seminal paper written

by Rietz [1988], the author proposes to explain the “equity risk premium puz-
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zle” [Mehra and Prescott, 1985] by taking into consideration the low but still

significant probability of a joint catastrophic event.

Analogously in this dissertation, an exploration is presented of the highly

leveraged arbitrage opportunities in currency carry trades that arise due to vi-

olation of the UIP. However, it is conjectured that if the assessment of the risk

associated with such trading strategies was modified to adequately take into ac-

count the potential for joint catastrophic risk events accounting for the non-trivial

probabilities of joint adverse movements in currency exchange rates, then such

strategies may not seem so profitable relative to the risk borne by the investor.

A rigorous probabilistic model is proposed in order to quantify this phenomenon

and potentially detect when liquidity in FX markets may dry up. This probabilis-

tic measure of dependence can then be very useful for risk management of such

portfolios but also for making more tractable the valuation of structured prod-

ucts or other derivatives indexed on this specific strategy. To be more specific,

the principal contribution of this dissertation is indeed to model the dependen-

cies between exchange rates using a flexible family of mixture copulae comprised

of Archimedean members. This probabilistic approach allows the joint distribu-

tion of the vectors of random variables, in this case vectors of exchange rates

log-returns in each basket of currencies, to be expressed as functions of each

marginal distribution and the copula function itself.

Whereas in the literature mentioned earlier, the tail thickness resulting from

the carry trade has been either treated individually for each exchange rate or

through the measurement of distribution moments that may not be adapted to

a proper estimation of the tail dependencies. In this dissertation, it is proposed

instead to build, on a daily basis, a set of portfolios of currencies with regards to

the interest rate differentials of each currency with the US dollar. Using a mixture

of copula functions, a measure of the tail dependencies within each portfolio is

extracted and finally the results are interpreted. Among the outcomes of this

study, it is demonstrated that during the crisis periods, the high interest rate

currencies tend to display very significant upper tail dependence. Accordingly, it

can thus be concluded that the appealing high return profile of a carry portfolio is

not only compensating the tail thickness of each individual component probability
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distribution but also the fact that they tend to occur simultaneously and lead to

a portfolio particularly sensitive to the risk of drawdown. Furthermore, it is also

shown that high interest rate currency portfolios can display periods during which

the tail dependence gets inverted demonstrating when periods of construction of

the aforementioned carry positions are being undertaken by investors.
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Chapter 4

Investigating Multivariate Tail

Dependence in Currency Carry

Trade Portfolios via Copula

Models

This chapter presents the investigation of the forward premium puzzle using real

world data. Analysis of multivariate tail dependence in currency carry trade port-

folios is detailed and the results discussed.

4.1 Data Description and Portfolios Construc-

tion

In this section, I describe the set of data used for this empirical study and describe

the macro-economic specificities associated to some of the currencies I considered.

Furthermore, I present the method I retained in this dissertation to build the

portfolios that are combined later on to build a carry trade position.
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4.1.1 Data Description

I consider for this empirical analysis a set of 20 currency exchange rates relative

to the USD. I indeed considered the point of view of an American investor as

this is generally the hypothesis retained in the literature [Brunnermeier et al.,

2008; Menkhoff et al., 2012]. However the same analysis could be carried out

from any other investor standpoint as the phenomenon I will describe does not

only depend on a specific currency but more on two sets of currencies. These

sets of currencies correspond to the high interest rate currencies which are used

to obtain the highest return (named the “investment currencies”) and the low

interest rate currencies which allows for borrowing at a low cost the amount of

money necessary for this investment (named the “financing currencies”).

The time series analysed range from 04/01/2000 to 02/01/2013 and comprise

the following currencies: Euro (EUR), Turkish lira (TRY), Japanese yen (JPY),

British pound sterling (GBP), Australian dollar (AUD), Canadian dollar (CAD),

Norwegian krone (NOK), Swiss franc (CHF), Swedish krona (SEK), Mexican

peso (MXN), Polish zloty (PLN), Malaysian ringgit (MYR), Singaporean dol-

lar (SGD), Indian rupee (INR), South African rand (ZAR), New Zealand dollar

(NZD), Thai baht (THB), South Korean won (KRW), Taiwanese dollar (TWD),

Brazilian real (BRL). I have been provided, on a daily basis, with the settlement

prices for each currency exchange rate as well as the simultaneous price for the

associated 1 month forward contract. Due to differing market closing days, e.g.

national holidays, there was missing data for a couple of currencies and for a

small number of days. For missing prices, the previous day’s closing prices were

retained.

The reason why I based this analysis upon a constant maturity 1 month

forward is twofold. Firstly, I do not try in this investigation to replicate as realis-

tically as possible a currency carry trade portfolio to see if there is a recurrently

high average return. The main inconvenience of such analysis comes from the loss

of data points. As a matter of fact, to build a carry portfolio, the position has

to be held until the maturity of the forward contract which leads in this case to

retain only one point for each month. However, in this case I have at my disposal
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one point per day which makes this analysis of individual tails and their inter-

dependencies more robust. Secondly, tail behaviour of monthly data is naturally

different from the tail behaviour of daily data, one reason for this difference is

that individual currencies can display a mean reversion in the mid-term and thus

reduce the amplitude of the movement.

Among the currencies under scrutiny, some of them have displayed very large

variations in the last decade mainly for macro-economic reasons. Therefore, I

considered it insightful to mention some of the most meaningful. The Brazilian

real displays in its time series two important periods of shocks, the first in 2001

and the second in 2002. Naturally the first of them was due to the terrorist

attacks against the world trade center in September. However the Brazilian real

has been also impacted by the market’s concerns of a contagion after the rumours

of default of the Argentinian government. The second shock on the Brazilian

real in 2002 was related to the potential election of the Workers’ Party leader

Luiz Inacio Lula da Silva which prompted concern he might spark a default by

overspending to meet promises of spurring growth and employment. In 2001,

the South African rand slumped 29% after the events of September 11 and the

market’s concern of a global recession and a slump in commodity prices to which

the South African economy is particularly exposed to. As a third example of

a shock in an instrumental currency in a carry trade strategy we note the 30%

daily loss of the Turkish lira on the 22nd of February 2001. This was due to

Turkey’s decision to abandon the defense of their currency in order to reduce the

cost of financing lira-denominated debt. It is worth mentioning that I did not

remove these data points from the time series given that different events may

have impacted the other exchange rates at a different time but this analysis does

not focus only on the tail events associated to a particular currency but more on

the events impacting simultaneously a set of currencies.

4.1.2 Currency Portfolios Formation

As described earlier, the currency carry trade results from the differential of

interest rates prevailing in different countries. By borrowing a certain amount of
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money in low interest rate countries and investing it in high interest rate countries,

a recurrent profit can be generated given that the UIP condition is on average not

satisfied. In order to differentiate the “financing currencies” from the “investment

currencies”, I start by classifying each currency relative to its differential of risk

free rate with the US dollar. We note the following basic explanation of the high

rates and low rates. In general countries that are considered ‘safe’ can borrow at

a lower interest rate, which may explain why historically the US dollar or Swiss

franc interest rates were low [Gourinchas and Rey, 2007] while the Turkish lira

rates were historically high as this country is not considered as financially secure.

Moreover I demonstrated in expression (3.4) that the differential of interest

rates between two countries can be estimated through the ratio of the forward

contract price and the spot price. Accordingly, instead of considering the differ-

ential of risk free rates between the reference and the foreign countries, I build

the respective baskets of currencies with respect to the ratio of the forward and

the spot prices for each currency. On a daily basis I compute this ratio for each

currency and then build five portfolios of four currencies each. The first port-

folio gathers the four currencies with the highest positive differential of interest

rate with the US dollar. The selected currencies over the period 04/01/2000 to

02/01/2013 for the high interest rate basket are displayed in Figure 4.1. These

currencies are thus representing the “investment” currencies, through which we

invest the money to benefit from the currency carry trade. The last portfolio

will gather the four currencies with the highest negative differential (or at least

the lowest differential) of interest rate. As with the high interest rate basket, I

also display the low interest interest rate currency selections in Figure 4.2. These

currencies are thus representing the “financing” currencies, through which we

borrow the money to build the currency carry trade.

Conditionally to this classification I investigate then the joint distribution of

each group of currencies to understand the impact of the currency carry trade,

embodied by the differential of interest rates, on currencies returns. In our analy-

sis I concentrate on the high interest rate basket (investment currencies) and the

low interest rate basket (funding currencies), since typically when implementing

a carry trade strategy one would go short the low basket and go long the high

basket.
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Figure 4.1: Basket 5 (highest IR) composition.
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Figure 4.2: Basket 1 (lowest IR) composition.
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4.2 Likelihood Based Estimation of the Mixture

Copula Models

Let me begin this section with a discussion on the choices I make for the marginal

distributions for each of the currencies specified in the baskets constructed for

the high interest rate differentials and also the baskets for the low interest rate

differentials.

In modelling parametrically the marginal features of the log return forward

exchange rates, I wanted flexibility to capture a broad range of skew-kurtosis

relationships as well as potential for sub-exponential heavy tailed features. In

addition, I wished to keep the models to a selection which is efficient to perform

inference and easily interpretable. I therefore considered a first analysis utilizing

log-normal distributions for the monthly forward exchange rate returns, which

would be equivalent to specification of a Normality assumption on the distribution

for the log return forward exchange rates. This model is given by the following

parametric density, for a random variable X ∼ F (x;µ, σ), in Equation 4.1 below.

fX(x;µ, σ) =
1

x
√

2πσ2
exp

(
−(lnx− µ)2

2σ2

)
(4.1)

with the shape parameter σ2 > 0 and the log-scale parameter µ ∈ R and the

support x ∈ (0,∞).

I found when analysing the goodness-of-fit for this log-normal model on each

of the assets in the 20 currencies considered, over both 6 month and 1 year sliding

windows, that the fit of the log-normal model would be systematically rejected

as a suitable model for a couple of currencies. In the majority of cases over these

sliding windows (locally stationary time series) the log-normal model was more

than adequate. However, since some of the currencies that were rejecting this fit

were appearing regularly in the high interest rate baskets I also decided to consider

a more flexible three parameter model for the marginal distributions given by the

Log-Generalized-Gamma distribution (l.g.g.d.), see details in Lawless [1980] and

Consul and Jain [1971].

The l.g.g.d. is a parametric model based on the generalized gamma distri-

bution which is highly utilized in lifetime modelling and survival analysis. The
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density for the generalized gamma distribution and the l.g.g.d are given respec-

tively by Equations 4.2 and 4.3.

fX(x; k, α, β) =
β

Γ(k)

xβk−1

αβk
exp

(
−
(x
α

)β)
(4.2)

with parameter ranges k > 0, α > 0 and β > 0 and a support of x ∈ (0,∞). Then

the log transformed g.g.d. random variable Y = lnX is given by the density of

the l.g.g.d. as follows.

fY (y; k, u, b) =
1

bΓ(k)
exp

[
k

(
y − u
b

)
− exp

(
y − u
b

)]
(4.3)

with u = log(α), b = β−1 and the support of the l.g.g.d. distribution is y ∈ R.

This more flexible three parameter model is particularly interesting in the

context of the marginal modelling we are considering since the log-normal model

is nested within the g.g.d. family as a limiting case. In addition the g.g.d. also

includes the exponential model (β = k = 1), the Weibul distribution with (k = 1)

and the Gamma distribution with (β = 1). Next I discuss how one can perform

inference for the multivariate currency basket models using these marginal models

and the mixture copula discussed previously.

4.2.1 Two Stages: Inference For the Margins

The inference function for margins (IFM) technique introduced in Joe [2005]

provides a computationally faster method for estimating parameters than Full

Maximum Likelihood, i.e. simultaneously maximising all model parameters and

produces in many cases a more stable likelihood estimation procedure. An al-

ternative approach to copula model parameter estimation that is popular in the

literature is known as the Maximum Partial Likelihood Estimator (MPLE) de-

tailed in Genest et al. [1995].

The procedure I adopt for likelihood based estimation is the two stage esti-

mation known as Inference on the Margins which is studied with regard to the

asymptotic relative efficiency of the two-stage estimation procedure compared

with maximum likelihood estimation in Joe [2005] and in Hafner and Manner
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[2010]. It can be shown that the IFM estimator is consistent under weak reg-

ularity conditions. However, it is not fully efficient for the copula parameters.

Nevertheless, it is widely used for its ease of implementation and efficiency in

large data settings such as the models I consider in this study.

To complete this discussion on general IFM, before providing the MLE esti-

mation expressions, we first note that in this study I fit copula models to the

high interest rate (IR) basket and the low IR basket updated for each day in the

period 04/01/2000 to 02/01/2013 using log return forward exchange rates at one

month maturities for data covering both the previous 6 months and previous year

as a sliding window analysis on each trading day in this period. Next I discuss

briefly the marginal MLE estimations for the log-normal and the l.g.g.d. models.

4.2.1.1 Stage 1: Fitting the Marginal Distributions via MLE

In the first step I fit the marginal distributions to either the log-normal model or

the l.g.g.d model. In the case of the log-normal model this is achieved effortlessly

since we may utilise the well-known analytic expressions for the MLE estimates:

µ̂j =
1

N

∑
j

log (xj)

σ̂j =

√
1

N

∑
j

log (xj)
2 − µ̂2

j

(4.4)

In the case of the l.g.g.d. distribution the estimation for the three model param-

eters can be significantly more challenging due to the fact that a wide range of

model parameters, especially for k can produce similar resulting density shapes,

see discussions in Lawless [1980]. To overcome this complication and to make

the estimation efficient it is proposed to utilise a combination of profile likelihood

methods over a grid of values for k and perform profile likelihood based MLE

estimation for each value of k, then for the other two parameters b and u. The

differentiation of the profile likelihood for a given value of k produces the system
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of two equations given by

exp(µ̃) =

[
1

n

n∑
i=1

exp

(
yi

σ̃
√
k

)]σ̃√k
∑n

i=1 yi exp
(

yi
σ̃
√
k

)
∑n

i=1 exp
(

yi
σ̃
√
k

) − y − σ̃√
k

= 0

(4.5)

with n the number of observations, yi = log xi and the parameter transformations

σ̃ = b√
k

and µ̃ = u + b ln k. The second equation is solved directly via a simple

root search for the estimation of σ̃ and then substitution into the first equation

provides the estimation of µ̃. Note, for each value of k we select in the grid, we

get the pair of parameter estimates µ̃ and σ̃, which can then be plugged back into

the profile likelihood to make it purely a function of k, with the estimator for k

then selected as the one with the maximum likelihood score.

4.2.1.2 Stage 2: Fitting the Mixture Copula via MLE

In order to fit the Clayton-Frank-Gumbel model the copulae parameters (ρClayton,

ρFrank, ρGumbel) and the copulae mixture parameters (λClayton, λFrank, λGumbel) are

estimated using maximum likelihood on the data after conditioning on the se-

lected marginal distribution models and their corresponding estimated parame-

ters obtained in Stage 1. These models are utilised to transform the data using

the cdf function with the mle parameters (µ̂ and σ̂) if the log-normal model is

used or (k̂, û and b̂) if the l.g.g.d is considered.

Therefore, in this second stage of MLE estimation we aim to estimate ei-

ther the one parameter mixture of C-F-G components with parameters θ =

(ρClayton, ρFrank, ρGumbel, λClayton, λFrank, λGumbel) or the two parameter mixture

of outer power transformed mixture components OC-OF-OG components with

parameters θ = (ρClayton, ρFrank, ρGumbel, λClayton, λFrank, λGumbel, βClayton, βFrank,

βGumbel). This is achieved in each case by the conditional maximum likelihood.

To achieve this we need to maximise the log likelihood expressions for the mix-

ture copula models, which in this framework are given generically by the following
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function for which we need to find the mode,

l(θ) =

n∑
i=1

log cC−F−G(F1(Xi1; µ̂1, σ̂1), . . . , Fd(Xid; µ̂d, σ̂d)) +

n∑
i=1

d∑
j=1

log fj(Xij ; µ̂j , σ̂j) (4.6)

with respect to the parameter vector θ.

For example in the case of the Clayton-Frank-Gumbel mixture copula we need

to maximise on the log-scale the following expression.

l(θ) =
n∑
i=1

log
[
λC ∗

(
cCρC (F1 (Xi1; µ̂1, σ̂1) . . . , Fd (Xid; µ̂d, σ̂d))

)
+ λF ∗

(
cFρF (F1 (Xi1; µ̂1, σ̂1) . . . , Fd (Xid; µ̂d, σ̂d))

)
+ λG ∗

(
cGρG (F1 (Xi1; µ̂1, σ̂1) . . . , Fd (Xid; µ̂d, σ̂d))

) ] (4.7)

This optimization is achieved via a gradient descent iterative algorithm which

was found to be quite robust given the likelihood surfaces considered in these

models with the real data. To illustrate this point, at this stage it is instructive

to present some examples of the shapes of the profile likelihoods that are being

optimized over for some of the important copula model parameters in the C-F-

G mixture example for a 6 month window of data randomly selected from the

data set for both the high interest rate basket and the low interest rate basket.

Example plots of the profile likelihood for the 6-dimensional optimisation space

for two different example days can be seen in Figures 4.3 and 4.4.

4.2.2 Goodness-of-Fit Tests

In this section I briefly comment on the model selection aspects of the analysis

I undertook. As mentioned I first undertook a process of fitting the marginal

log-normal model to all of the 20 currencies considered in the analysis over a

sliding window of 6 months and 1 year. For each of these fits I then performed

a formal hypothesis test in which I postulated that the null distribution is the

log-normal model and then look for evidence in the data to reject this hypothesis

at a level of significance of 5%. To undertake this test I considered the standard
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Figure 4.3: Profile likelihood plots for C-F-G mixture model.
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Figure 4.4: Profile likelihood plots for C-F-G mixture model.
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Kolmogorov-Smirnov test. As I will present in the results I found strong evi-

dence to reject the null systematically for a few important developing countries’

marginal models, hence I also undertook estimation of the l.g.g.d. models for

all of the 20 currencies. I am particularly interested in this case in the optimal

choice of the model parameter k which as it asymptotically gets large k →∞ will

produce a log-normal model. I found as expected the estimated model fits were

significantly improved when fitting the l.g.g.d. models for the cases in which the

log-normal was rejected by the K-S test. In addition the estimated k parameter in

the periods of rejection of the log-normal hypothesis were estimated at values sig-

nificantly lower than the upper bound in the search space. I assessed the optimal

choice of marginal model between the log-normal and the l.g.g.d. models then

via a standard information criterion based on the Akaike Information Criterion

(AIC).

In terms of the selection of the copula mixture models, between the mixture

of one parameter C-F-G model versus the two parameter mixtures of OC-OF-

OG models, I again used a scoring via the AIC. We note that there are also

alternative information criterion developed for copula models to assess the joint

suitability of the copula model incorporating both the marginal and the joint cop-

ula structure which are modifications of the AIC, adjusting the penalty term for

the approach adopted in the estimation, see for example the Copula-Information-

Criterion (CIC) in Grønneberg [2010] for details. The results are presented for

this comparison in Figure 4.5 in the top panel for the high interest rate basket

and in Figure 4.5 in the lower panel for the low interest rate basket, over time

based on the 6 month sliding window.

To further analyse this comparison of optimal copula mixtures I plot the AIC

differentials for each of the currency baskets in Figure 4.6.

Figures 4.5 and 4.6 show it is not unreasonable to consider the C-F-G model

for this analysis, since the mean difference between the two AIC scores for the

models is 2.05 in favour of the C-F-G. However, we do note that the OP.C-OP.F-G

model seems to fit better during crisis periods.
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Figure 4.5: AIC comparison of C-F-G vs OP.C-OP.F-G for 6 month
blocks on high and low IR baskets.

4.3 Results and Analysis

In this section I present a detailed analysis of the estimation of the marginal

distributional models and the mixture copula models for both the high interest

rate basket and the low interest rate basket. Firstly, I investigate the properties of

the marginal distributions of the exchange rate log-returns for the 20 currencies.

I then interpret the time-varying dependence characteristics of the fitted copula

models to the high interest rate basket and the low interest rate basket across

the period 04/01/2000 to 02/01/2013. Note, all results presented below are for

the case in which I considered a 6 month sliding window, results for the 1 year

sliding window were similar in nature and so are omitted.

4.3.1 Modelling the Marginal Exchange Rate Log-Returns

In order to model the marginal exchange rate log-returns I first fit log-normal

models to each of the 20 currencies considered in the analysis, updating the fits
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Figure 4.6: AIC comparison of C-F-G vs OP.C-OP.F-G for 6 month
blocks on high and low IR baskets.

for every trading day in the period 04/01/2000 to 02/01/2013 based on the 6

months sliding window. The log-normal model was selected due to the fact it

has a positive support, represents a range of skew-kurtosis characteristics and

can display sub-exponential tail features (ie. heavy tailed features) should such

attributes be present in the data. I assessed the quality of the fits for each

currency using a standard Kolmogorov-Smirnov goodness-of-fit test, at the 5%

significance level. A summary of the results of this analysis are presented in

Table 4.1 which shows the proportion of rejections of the null hypothesis, that

the marginal distribution is log-normal for each of the currencies on a given 6

months block of trading days.

We learn from this analysis that the majority of the currencies demonstrate

reasonable marginal distribution fits under a log-normal family, however there

are a few notable exceptions. Specifically the Turkish lira, Malaysian ringgit,

Indian rupee, Thai baht, South Korean won and Taiwanese dollar demonstrated

sustained periods in the analysis in which the log-normal model would be un-
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suitable to capture the features of the time series adequately. This is significant

in this analysis since these currencies actually correspond to the currencies that

have a strong presence in the high interest rate baskets, as seen in Figure 4.1.

Therefore, they will play an important role in the multivariate analysis of the

currency carry trade. As such, it is important to accurately model the features

of each of these particular currencies’ marginal distributions, before undertaking

the multivariate mixture copula analysis, I proposed to generalize the marginal

model analysis to a more flexible three parameter family of models given by the

log generalized gamma distribution, as discussed in Section 4.2.

The log-generalised gamma distribution (l.g.g.d.) should improve the fit for all

currencies since it allows for more flexibility in the tails of the distribution and

a wider range of skew-kurtosis relationships when compared to the log-normal

model family. In addition, as we note in Section 4.2, for those currencies in

which the log-normal model was a suitable fit, then they will still obtain such

distributional characteristics since the log-normal model is a limiting case of the

l.g.g.d. as k tends to infinity. Hence, we can still incorporate the log-normal

model for the currencies that were a good fit.

The maximum likelihood parameters (µ̂, σ̂, k̂) of the fitted l.g.g.d. margins

for each of the currencies can be seen in Figures 4.7, 4.8 and 4.9. These plots

demonstrate the time varying attributes of the marginal distributions for each

currency, illustrating interesting changes in tail behaviour and skewness-kurtosis

characteristics over time, especially in heightened periods of volatility in some

of these currencies. In particular, there are three standout periods (2003, 2009

and 2012) of heightened µ and σ parameter values across most of the curren-

cies. Hence, during these periods the exchange rate log-returns may demonstrate

heavier tails, and increased volatility in the parameter estimates. In addition,

we observe that a few important currencies for the currency carry trade analysis

demonstrate sustained differences in their marginal distribution attributes rela-

tive to the other currencies. An important example of this is the µ estimates in

Figure 4.7 for the TRY, the NZD and the BRL. Similar significant differences

between these particular currencies and the rest of the currencies are observed in

the estimates of σ in Figure 4.8.

As the value of the parameter k in the l.g.g.d. gets large I expect the log-
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normal fit to be a suitable model structure for the marginal distributions. As

illustrated in the K-S test results certain currencies systematically did not have

a suitable fit with the log-normal model. Examples of this are clear when we

consider the estimates of k in Figure 4.9. Again we see systematically smaller

values for the estimate of k in the TRY and the BRL. We see clearly in Fig-

ure 4.9 the periods of time during which the currencies display non log-normal

behaviour. The most prominent example being the Turkish lira (orange), which

shows consistently low values of k. As we noted in Section 4.2, for small values

of k ≈ 1 we obtain Weibull like tail behaviour and in addition, in the cases when

σ ≈ 1 jointly with small values of k, I expect the light tailed exponential models

to be suitable. As a consequence of this analysis and comparison of AIC results

I proceeded with the joint estimation utilising the l.g.g.d. marginal models for

every currency.

A noticeable period for the Turkish lira is early in 2001 during which low values

of the parameter k clearly provides evidence of heavy tail log-returns distribution

for this specific currency. As mentioned earlier in this investigation the Turkish

government’s decision in February 2001 to stop draining reserves to bolster its

currency led the same day to a 30% devaluation of the Turkish lira relative to

the dollar.

Table 4.1: Proportion of rejections of the null hypothesis that the
sample is from a log-normal distribution, measured using a k-s test at
the 5% level.

Block length EUR TRY JPY GBP AUD CAD NOK CHF SEK MXN

6 month 0.001 0.198 0.043 0.000 0.023 0.000 0.000 0.031 0.012 0.032

Year 0.000 0.553 0.107 0.007 0.120 0.018 0.006 0.084 0.018 0.128

Block length PLN MYR SGD INR ZAR NZD THB KRW TWD BRL

6 month 0.018 0.494 0.000 0.234 0.025 0.012 0.221 0.130 0.192 0.086

Year 0.094 0.651 0.071 0.549 0.124 0.113 0.504 0.350 0.381 0.403
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4.3.2 Copula Modelling Results

I now utilised each of the l.g.g.d. marginal distribution fits for a given day’s set

of currencies in the high interest rate and low interest rate baskets to analyse

the joint multivariate features. To achieve this for each of the currencies, the

exchange rate log-return data was transformed via the l.g.g.d. marginal model’s

distribution function to uniform [0, 1] margins. Then the mixture Clayton-Frank-

Gumbel copula (denoted C-F-G ) and the outer-power versions were fitted each

day to a sliding window of 6 months and one year log-returns data for both

the high interest rate and low interest rate baskets. Below we will examine the

time-varying parameters of the maximum likelihood fits of this mixture C-F-G

copula model. Furthermore, the results for the outer-power transform cases did

not demonstrate discernible differences from the base C-F-G model and so were

excluded. This can be seen from the figures displaying the AIC for each of these

models (Figures 4.5 and 4.6).

In this analysis there are several attributes to be considered for the mixture

copula model, such as the relevant copula structures for the high and low interest

rate baskets and how these copula dependence structures may change over time.

In addition, there is the strength of the tail dependence in each currency bas-

ket and how this changes over time, especially in periods of heightened market

volatility. The first of these attributes I will consider to be a structure analysis

studying the relevant forms of dependence in the currency baskets and the second

of these attributes that I shall study will be the strength of dependence present

in the currency baskets, given the particular copula structures in the mixture.

Therefore I first consider the structural components of the multivariate cop-

ula model. To achieve this, I begin with a form of model selection in a mixture

context, in which I consider the estimated relative contributions of each of the

copula components (and their associated dependence features) to the joint rela-

tionship in the high and low interest rate currency baskets over time. This is

reflected in the estimated mixture component weights, which can be seen in Fig-

ures 4.10 and 4.11 for the high interest rate basket and low interest rate basket

respectively. The λ values show the relevance of each of the component copulae

to the data. Thus a small λ value indicates the lack of a need for that particular
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copula component in order to model the associated 6 months or one year block of

data. In contrast, for example a λ value for the Gumbel component very close to

1 indicates the block of data could be well modelled by a Gumbel copula alone.

Hence, these plots convey the time varying significance of hypotheses about the

presence of upper and lower tail dependence in each of the baskets over time.

Examining these plots shows that in general the Clayton mixture weight tends

to be lower when the Gumbel mixture weight is higher. We can also see that

the Frank copula is systematically present in the mixture. In addition, we see

that in the periods of high market volatility we observe differences in the relevant

upper and lower tail dependence structural attributes when comparing the high

versus low interest rate baskets. That is, there is an asymmetric tendency for

the presence of particular copula components over time when comparing the high

and low interest rate baskets. The implications of this will be discussed in further

detail in the discussions.

In terms of the second attribute, the strength of the copula dependence, I

analyse this in several ways. Firstly through an analysis of the estimation copula

parameter components over time, then through an analysis of the transformation

of these copula parameters to rank correlations and finally through an analysis

of the multivariate strength of the mixture copula tail dependence over time.

The individual component copula parameters can be seen in Figures 4.12

and 4.13 for the high interest rate basket and low interest rate basket respec-

tively. The strength of the copula parameters in the baskets shows a large degree

of variance during the period 04/01/2000 to 02/01/2013. One interesting obser-

vation is the very large spikes in the Gumbel copula parameter observed for the

high interest rate basket from 2006 to 2007 and again in 2009. This was signifi-

cant as it also corresponds to periods in which the Gumbel copula mixture weight

was non-trivial.

The measure of concordance as captured by Kendall’s tau is decomposed in

this analysis according to each of the mixture components, scaled by the mix-

ture weights λ, and can be seen in Figure 4.14 for the high interest rate basket

and Figure 4.15 for the low interest rate basket. These plots provide a more

intuitive picture of the time-varying contributions of the individual copulae to

the dependence structure present in each of the baskets. Interestingly, we see
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Figure 4.10: λ Mixing proportions of the respective Clayton, Frank
and Gumbel copulae on the high interest rate basket, using 6 month
blocks.
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and Gumbel copulae on the low interest rate basket, using 6 month
blocks.
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copulae on the high interest rate basket, using 6 month blocks.
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copulae on the low interest rate basket, using 6 month blocks.
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the rank correlation contribution from the Frank copula indicates the presence of

negative as well as positive rank correlations. In addition, as discussed with the

mixture weights, there is perhaps some asymmetry present between the high and

low interest rate baskets over time.

Perhaps the most interesting and revealing representation of the tail depen-

dence characteristics of the currency baskets can be seen in Figures 4.16 - 4.21.

Here we can see that there are indeed periods of heightened upper and lower tail

dependence in the high interest rate basket. There is a noticeable increase in

upper tail dependence at times of global FX volatility. Specifically, during late

2007, i.e. the global financial crisis, there is a sharp peak in upper tail dependence.

Preceding this, there is an extended period of heightened lower tail dependence

from 2004 to 2007, which could tie in with the building of the leveraged carry

trade portfolio positions.

In understanding this analysis we note that Figures 4.16 and 4.17 show the

probability that one currency in the basket will have a move above/below a cer-

tain extreme threshold given that the other three currencies have had a move

beyond this threshold. Then in Figures 4.18 and 4.19 I show the probability

that two currencies in the basket will have a move above/below such an extreme

threshold given that the other two currencies have had a move beyond this thresh-

old. Finally, in Figures 4.20 and 4.21 I show the probability that three currencies

in the basket will have a move above/below a certain threshold given that the

remaining currency has had a move beyond this threshold.

To illustrate the relationship between heightened periods of significant upper

and lower tail dependence features over time and to motivate the clear asymmetry

present in the upper and lower tail dependence features between the high and

low interest rate baskets over time I consider a further analysis. In particular I

compare in Figures 4.22 and 4.23 the tail dependence plotted against the VIX

volatility index for the high interest rate basket and the low interest rate basket

respectively for the period under investigation. The VIX is a popular measure

of the implied volatility of S&P 500 index options - often referred to as the fear

index. As such it is one measure of the market’s expectations of stock market

volatility over the next 30 days. We can clearly see here that in the high interest

rate basket there are upper tail dependence peaks at times when there is increased
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Figure 4.14: Kendall’s τ for the Clayton, Frank and Gumbel copulae
on the high interest rate basket, using 6 month blocks.
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Figure 4.15: Kendall’s τ for the Clayton, Frank and Gumbel copulae
on the low interest rate basket, using 6 month blocks.
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Figure 4.16: λ1|234 : 6 month blocks on high interest rate basket.
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Figure 4.17: λ1|234 : 6 month blocks on low interest rate basket.
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Figure 4.18: λ12|34 : 6 month blocks on high interest rate basket.
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Figure 4.19: λ12|34 : 6 month blocks on low interest rate basket.
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Figure 4.20: λ123|4 : 6 month blocks on high interest rate basket.
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Figure 4.21: λ123|4 : 6 month blocks on low interest rate basket.
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stock market volatility, particularly post-crisis. However, I would not expect the

two to match exactly since the VIX is not a direct measure of global FX volatility.

We can thus conclude that investors’ risk aversion clearly plays an important

role in the tail behaviour of high interest rate currencies and more importantly

in their dependence structure. This statement can also be associated to the

globalization of financial markets and the resulting increase of the contagion risk

between countries. This conclusion corroborates some of the recent literature

results with regards to the skewness and the kurtosis features characterizing the

currency carry trade portfolios [Brunnermeier et al., 2008; Farhi and Gabaix,

2008; Menkhoff et al., 2012].

The black lines plotted in Figures 4.22 and 4.23 furthermore display the mean

tail dependence before and after August 2007 (which corresponds to the begin-

ning of the global financial crisis). The data shows a large increase in upper tail

dependence in the high interest rate basket after the crisis, as well as a smaller

decrease in lower tail dependence. Interestingly there is very little difference in

the mean tail dependence before and after the crisis for the low interest rate bas-

ket. The carry trade portfolios were particularly impacted by the sub-prime crisis

as most of these currency positions were implemented and held by financial insti-

tutions which faced sudden difficulties to finance the leverage of their positions.

Furthermore, another interesting point we can make from the analysis of these

two figures is the higher level of lower tail dependence before the financing crisis,

especially between 2004 and 2007. If we put in parallel the fact that during this

three year period the VIX index was noticeably and continuously going down we

could imagine that this increase of the lower tail dependence results from lower

risk aversion and the resulting tendency of investors to accordingly increase their

leverage on risky positions such as currency carry trades.
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Figure 4.22: Comparison of Volatility Index (VIX) with upper and
lower tail dependence of the high interest rate basket.
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Figure 4.23: Comparison of Volatility Index (VIX) with upper and
lower tail dependence of the low interest rate basket.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

This dissertation has investigated one of the most robust puzzles in international

finance, namely the currency carry trade. This market phenomenon is particu-

larly interesting from a theoretical standpoint as well as for the understanding of

financial market mechanisms. It has been demonstrated empirically that the cur-

rency markets were violating a fundamental relation in finance which connects the

currency exchange rates and the interest rates associated with two different coun-

tries. The main contribution of this dissertation has been to propose a rigorous

statistical modelling approach which captures the specific statistical features of

both the individual currency log-return distributions as well as the joint features

such as the dependence structures prevailing between all the exchange rates.

In achieving this goal, I first assessed the marginal statistical features of each of

the 20 currencies on an assumed locally stationary sliding window of six months,

over all the trading days in the period 04/01/2000 to 02/01/2013. I found that a

simple log-normal marginal distribution would not produce a suitable statistical

fit for some of the key currencies that are regularly present in the high interest rate

basket throughout this period. As detailed in the results section this was notably

the case in unstable economies such as developing countries (for instance Turkey,

Brazil or South Africa) where political stability or default risk create sudden and

violent adjustments to their currency exchange rates with other countries. We

note that these currencies are still of direct significance to currency carry trade
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strategies since according to the modern portfolio theory this intrinsic risk borne

by an investor in these currencies can be diversified and mitigated by adding to

the considered portfolio other currencies which depend themselves on different

sources of intrinsic risk. This would effectively establish a diversified portfolio of

currencies violating the UIP hypothesis and would thus provide a very attractive

average return for a very limited risk which has been the conclusion of several

recent empirical studies in the finance literature.

The conclusion of this is that we cannot exclude these currencies from the

high interest rate basket analysis, even though they may demonstrate attributes

resulting primarily from significant changes in their countries political and finan-

cial structure. As a result I needed to obtain more flexible marginal models to

capture the features of these currencies more adequately. Consequently I mod-

elled each currency exchange rate return marginally via a flexible three parameter

parametric model which offers a wide range of skew-kurtosis relationships as well

as the possibility of light exponential tails and heavier sub-exponential tail be-

haviours such as the log-normal member. The parametric family of distributions

I selected for this purpose was the log-generalized gamma distribution.

Having modelled the marginal attributes of the high and low interest rate

currency baskets over time adequately, the main emphasis was then to assess the

multivariate dependence features of the currency baskets. In particular how this

may change over time within a given basket, where I was particularly interested

in the effect of the composition of the basket over time, and the response of the

multivariate dependence features of the modelled basket and how it may respond

in periods of heightened market volatility versus more stable periods. In addition

to this within basket temporal analysis, from the perspective of undertaking a

currency carry trade strategy, we would need to consider the relative relation-

ships between the temporal dependence features of the high interest rate and low

interest rate currency baskets. I demonstrate several interesting features from

the model fits relating to asymmetries between the high and low interest rate

baskets over time, especially during periods of high volatility in global markets.

One way I ascertained such periods was through a comparison of the VIX versus

features of the multivariate dependence relationships I modelled. Importantly I

found substantial evidence to support arguments for time varying behaviours in
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the structural dependence hypotheses posed about the currency baskets, as cap-

tured by the relevant contributing copula components to the multivariate mixture

model. As well as substantial evidence for significant tail dependence features in

both the high and low interest rate baskets, which again displayed interesting

asymmetries between the high and low interest rate baskets over time.

The financial interpretation of the significance of these findings is related to

the fact that it demonstrates that historically average rewards from a currency

carry trade portfolio can be exposed to a significant risk of large losses arising

from joint adverse movements in the currencies that would typically comprise the

high and low interest rate baskets that an investor would go long and short on

when trading. Hence, I conclude that our second contribution to the literature has

been to rigorously demonstrate that such assertions relating to the profitability

of the currency carry trade are failing to appropriately take into consideration an

important component of the risk which characterizes these types of portfolios of

currencies named carry trade portfolios.

I conclude that indeed the copula theory employed in this dissertation al-

lows me to demonstrate statistically that beyond the intrinsic risk associated to

high interest rate countries (which are generally paying higher interest rates to

compensate for a higher risk) typically studied in the literature from a marginal

perspective, another source of risk plays an important role. This second source of

risk is related to the dependence structures linking these high interest rate cur-

rencies, more specifically the significant tail dependence features observed in this

model analysis. I indeed proved through a mixture of Archimedean copulae the

significant presence of tail dependence among high interest rate currencies which

could have dramatic consequences on the carry trade portfolio’s risk profile when

accounted for appropriately in risk reward analysis. As a matter of fact, the tail

dependence directly influences the diversity of the assets and thus reduces the

appealing convergence property stated by the modern portfolio theory.

In other words, this copula based probabilistic modelling approach allows me

to demonstrate that besides the intrinsic risk associated to each particular high

interest rate currency, another factor constitutes a determining source of risk

which turns out to be the level of risk aversion prevailing in the market. It was

demonstrated in this analysis that both upper and lower tail dependence features
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displayed significant association and asymmetries with each other between the

high and low interest rate baskets during periods of relative financial stability

versus periods of heightened market volatility.

These tail dependence features in the high interest rate basket were signif-

icantly increasing during crisis periods leading to an increased amount of risk

associated with utilising such currency baskets (which were no longer diversified

due to the presence of significant tail dependence features) in a carry trade. That

being said, a rational portfolio manager’s natural risk aversion tells them that

they should receive an additional remuneration in order to offset any additional

sources of risk associated to an investment. Therefore, to properly assess the

profitability of the currency carry trade, such tail dependence features should

be incorporated into the analysis of such risk-rewards when developing a trad-

ing strategy. To conclude, this investigation rigorously tempers the too often

claimed attractiveness of the currency carry trade and provides to investors a

risk management tool in order to control and monitor the risk contained in such

positions.

5.2 Future Research

The novel approach proposed in this dissertation paves the way for much further

research in this and related areas. Most directly, I am currently investigating this

puzzle using a much larger dataset (49 currencies) across a longer time period

(1983 - 2013) with the expectation of similar results, reinforcing the findings here.

Research ideas that are currently being explored or are intended to be explored

in the near future include:

1. Analysing the returns from portfolios constructed not only using interest

rate differentials, but also using stochastic ordering of individual currencies

and multivariate Spearman’s rank correlation.

2. Carrying out a regression analysis on the open interest of carry currencies

with the multivariate tail dependence present in the funding and investment

portfolios.
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3. Modelling the carry portfolios using vine copulas to assess whether models

built up of pairwise dependence blocks provides us with a better under-

standing of the tail characteristics.

4. Further exploring the outer power copula models and their relative advan-

tages/disadvantages when compared to the mixture copula model proposed

in this dissertation.

5. Creating a dynamic approach to the copula modelling framework in or-

der to capture the time-varying nature of the dependence structure being

considered.

Finally, the concept of joint tail exposure in portfolios that has been explored

in this dissertation with regards to the currency carry trade, can also be applied

to any asset class and indeed any portfolio of assets. This presents a more so-

phisticated approach to the challenges of risk management and optimal portfolio

allocation.
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Appendix A

Archimedean Copula Derivatives

A.1 Multivariate Clayton Copula

A.1.1 CC
ρ (u)

CC
ρ (u) =

(
d∑
i=1

u−ρi − d+ 1

)− 1
ρ

, ρ > 0 (A.1)

A.1.2 ψ
(d)
ρ : d-th derivative of the Clayton generator

(−1)dψ(d)
ρ (t) =

Γ
(
d+ 1

ρ

)
Γ
(

1
ρ

) (1 + t)−(d+ 1
ρ) (A.2)

A.1.3 Clayton Copula Density
(

∂dC
∂u1...∂ud

)
cCρ (u) =

d−1∏
k=0

(ρk + 1)

(
d∏
i=1

ui

)−(1+ρ) (
1 + tCρ (u)

)(−d+ 1
ρ) (A.3)
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where

tCρ (u) =
d∑
i=1

ψ−1
C (ui)

ψ−1
C (ui) = (u−ρi − 1)

A.2 Multivariate Frank Copula

A.2.1 CF
ρ (u)

CF
ρ (u) = −1

ρ
ln

1 +

d∏
i=1

(e−ρui − 1)

(e−ρ − 1)d−1

 , ρ > 0 (A.4)

A.2.2 ψ
(d)
ρ : d-th derivative of the Frank generator

(−1)dψ(d)
ρ (t) =

1

ρ
Li−(d−1)

{
(1− e−ρ)e−t

}
, t ∈ (0,∞), d ∈ N0 (A.5)

where Lis(z) =
∞∑
k=1

zk

ks

A.2.3 Frank Copula Density
(

∂dC
∂u1...∂ud

)

cFρ (u) =

(
ρ

1− e−ρ

)d−1

Li−(d−1)

{
hFρ (u)

} e
(
−ρ

d∑
j=1

uj

)

hFρ (u)
(A.6)

where

hFρ (u) = (1− e−ρ)1−d d∏
j=1

{1− e−ρuj}
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A.3 Multivariate Gumbel Copula

A.3.1 CG
ρ (u)

CG
ρ (u) = e

−
(

d∑
i=1

(−log ui)ρ
) 1
ρ

, ρ ≥ 1 (A.7)

A.3.2 ψ
(d)
ρ : d-th derivative of the Gumbel generator

(−1)dψ(d)
ρ (t) =

ψρ(t)

td
PG
d, 1
ρ

(
t

1
ρ

)
, t ∈ (0,∞), d ∈ N (A.8)

where

PG
d, 1
ρ

(
t

1
ρ

)
=

d∑
k=1

aGdk

(
1
ρ

)
(t

1
ρ )k

aGdk(
1
ρ
) =

d!

k!

k∑
i=1

(
k

i

)( i
ρ

d

)
(−1)d−i , k ∈ 1, ..., d

A.3.3 Gumbel Copula Density
(

∂dC
∂u1...∂ud

)

cGρ (u) = ρde

(
−tρ(u)

1
ρ

) d∏
i=i

(−log ui)ρ−1

tρ(u)d
d∏
i=1

ui

PG
d, 1
ρ
(tGρ (u)

1
ρ ) (A.9)

where

PG
d, 1
ρ

(t
1
ρ ) =

d∑
k=1

aGdk(
1
ρ
)(t

1
ρ )k

aGdk(
1
ρ
) =

d!

k!

k∑
i=1

(
k

i

)( i
ρ

d

)
(−1)d−i , k ∈ 1, ..., d

tGρ (u) =
d∑
i=1

ψ−1
G (ui)

ψ−1
G (ui) = (−log ui)ρ
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A.4 Multivariate Clayton-Frank-Gumbel Mixture

Copula

A.4.1 CCFG
ρ1,ρ2,ρ3

(u)

CCFG
ρC ,ρF ,ρG

(u) = λC(CC
ρC

(u)) + λF (CF
ρF

(u)) + λG(CG
ρG

(u))

= λC ×

(
d∑
i=1

u−ρi − d+ 1

)− 1
ρ

+ λF ×−
1

ρ
ln

1 +

d∏
i=1

(e−ρui − 1)

(e−ρ − 1)d−1


+ λG × e

−
(

d∑
i=1

(−log ui)ρ
) 1
ρ

(A.10)

A.4.2 Clayton-Frank-Gumbel Mixture Copula Density

cCFGρC ,ρF ,ρG
(u) =λC(cCρC (u)) + λF (cFρF (u)) + λG(cGρG(u))

=λC ×
d−1∏
k=0

(ρk + 1)

(
d∏
i=1

ui

)−(1+ρ) (
1 + tCρ (u)

)(−d+ 1
ρ)

+ λF ×
(

ρ

1− e−ρ

)d−1

Li−(d−1)

{
hFρ (u)

} e
(
−ρ

d∑
j=1

uj

)

hFρ (u)

+ λG × ρde
(
−tρ(u)

1
ρ

) d∏
i=i

(−log ui)ρ−1

tρ(u)d
d∏
i=1

ui

PG
d, 1
ρ
(tGρ (u)

1
ρ )

(A.11)
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where

tCρ (u) =
d∑
i=1

ψ−1
C (ui)

ψ−1
C (ui) = (u−ρi − 1)

hFρ (u) = (1− e−ρ)1−d d∏
j=1

{1− e−ρuj}

PG
d, 1
ρ

(t
1
ρ ) =

d∑
k=1

aGdk(
1
ρ
)(t

1
ρ )k

aGdk(
1
ρ
) =

d!

k!

k∑
i=1

(
k

i

)( i
ρ

d

)
(−1)d−i , k ∈ 1, ..., d

tGρ (u) =
d∑
i=1

ψ−1
G (ui)

ψ−1
G (ui) = (−log ui)ρ
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Appendix B

Matlab Code

B.1 Script for Fitting Mixture Copulae to Rolling

Daily Portfolios

%% General script for fitting a candidate copula to the basket of

% the 4 currencies that have highest interest rate differential

% (proxy) for that day: using data for previous block length number

% of days, i.e. 6 months or 12 months.

% load data

load forwards;

load spots;

block length = 125; % i.e. ˜ 6 months

% calculate the IR differential proxy for every day

calc IR proxy;
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% calculate baskets

calc baskets;

% Take log−Returns for full dataset

log R forwards = log R(forwards);

%% pre−allocate storage

mu = zeros(size(log R forwards,1) − block length + 1,...

size(log R forwards,2));

sigma = zeros(size(log R forwards,1) − block length + 1,...

size(log R forwards,2));

d = zeros(size(log R forwards,1) − block length + 1,...

size(log R forwards,2));

lambda c hat = zeros(1, size(log R forwards,1) − block length + 1);

lambda f hat = zeros(1, size(log R forwards,1) − block length + 1);

lambda g hat = zeros(1, size(log R forwards,1) − block length + 1);

rho clayton hat = zeros(1, size(log R forwards,1) − block length + 1);

rho frank hat = zeros(1, size(log R forwards,1) − block length + 1);

rho gumbel hat = zeros(1, size(log R forwards,1) − block length + 1);

nll = zeros(1, size(log R forwards,1) − block length + 1);

AIC = zeros(1, size(log R forwards,1) − block length + 1);

BIC = zeros(1, size(log R forwards,1) − block length + 1);

%% end storage

% for each day
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for i = block length:size(log R forwards,1)

k = i − block length + 1;

% get data for previous block length days

datablock = log R forwards(i − block length + 1:i, :);

%% THIS CODE IS FOR THE LOGNORMAL FITS:

% fit log−normal margins to dataset block

% mu(k,:) = mean(datablock);

% sigma(k,:) = std(datablock);

%% U = the [0, 1] uniform marginals data

% U = zeros(size(datablock));

% for j = 1:size(datablock,2)

% U(:,j) = normcdf(datablock(:, j), mu(k,j), sigma(k,j));

%

% % decision −> 0 = accept null (that is logNormal)

% d(k,j) = kstest((datablock(:,j) − mu(k,j)) ./ sigma(k,j));

%

% %ecdf(log R forwards(k,j) − mu(k,j) ./ sigma(k,j))

% end

%%

% length of y vector => i.e. number of days

n = size(datablock,1);

% U = the [0, 1] uniform marginals data

U = zeros(size(datablock, 1), 4);
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j index = 1;

for j = basket high IR(i, 1:4)

[loglike, sigma tilde, mu tilde, k grid] = ...

generalised gamma(datablock(:,j));

% trim off at point when jumps to infinity

Inf cut off = find(loglike == Inf,1);

loglike = loglike(1:Inf cut off − 1);

% find max log likelihood

[MAX loglike Ind] = max(loglike);

% get mle parameters

k hat = k grid(Ind);

sigma hat = sigma tilde(Ind);

mu hat = mu tilde(Ind);

% TRANSFORM TO [0, 1] MARGINS

[w P cdf] = gengammacdf(k hat);

% get w

w evaluate = (datablock(:,j) − mu hat) ./ sigma hat;

% loop through each datapoint to find

% cdf value for w evaluate

for a = 1:n

U basket H(a, j index) =...

P cdf(find(w > w evaluate(a), 1));
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end

j index = j index + 1;

end

% truncate extremes to prevent numerical issues.

U basket H(U basket H > .9999) = .9999;

U basket H(U basket H < .0001) = .0001;

%% Fit 4−dimensional copula to this U datablock for

% highest 4 currencies (by IR differential proxy)

% mixture C−F−G copula

[lambda c hat(k), lambda f hat(k), lambda g hat(k), ...

rho clayton hat(k), rho frank hat(k), rho gumbel hat(k)...

nll(k)] = ...

vec copulafit clayton frank gumbel(U basket H);

num parameters = 6;

%% AIC & BIC

AIC(k) = (2*nll(k)) + (2*num parameters);

BIC(k) = (2*nll(k)) + (k*log(size(block length,1)));

% display progress every 1 percent

done = (100*k) / roundn((size(forwards,1) − block length), 2);

if(mod(done,1) == 0)

disp([num2str(done) '%']);
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% save workspace variables

savefile = ['NEW 6 month fit high IR run ',...

num2str(k), 'variables'];

save(savefile, 'lambda c hat', 'lambda f hat',...

'lambda g hat', 'rho clayton hat', 'rho frank hat',...

'rho gumbel hat', 'nll', 'AIC', 'BIC', 'd');

end

end % end script

B.2 Mixture Copula Fitting Function

%% Fits Clayton−Frank−Gumbel Mixture Copula to data

% that has been transformed to [0,1]margins.

% (i.e. after margins have been fitted).

% Input: (n x d) Data matrix U, with [0,1] margins.

% Outputs: Maximum likelihood estimates for:

% lambda c hat − clayton mixture component

% lambda f hat − frank mixture component

% lambda g hat − gumbel mixture component

% rho clayton hat − clayton copula parameter

% rho frank hat − clayton copula parameter

% rho gumbel hat − gumbel copula parameter

function [lambda c hat, lambda f hat, lambda g hat, ...

rho clayton hat, rho frank hat, rho gumbel hat,...

nll] = ...

vec copulafit clayton frank gumbel(U)
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%% Fit clayton−frank−gumbel mixture copula using fmincon

% initialisation of lambda, rho clayton, rho gumbel

x0 = [0.33; 0.33; 0.34; 2; 2; 2];

% bounds

lb = [0; 0; 0; eps; −10; 1];

ub = [1; 1; 1; 10; 10;10];

% Make sure three lambdas add up to 1 !!!

Aeq = [1 1 1 0 0 0];

beq = [1]; %1];

options = optimset('Display','off','Algorithm','interior−point');

% fmincon

[x, nll] = fmincon(@vec negloglike clayton frank gumbel md,...

x0,[],[],Aeq,beq,lb,ub,[],options);

lambda c hat = x(1);

lambda f hat = x(2);

lambda g hat = x(3);

rho clayton hat = x(4);

rho frank hat = x(5);

rho gumbel hat = x(6);

disp(['fmincon estimates: ' num2str(x') ]);

%%−− AUXILIARY FUNCTION TO PASS TO OPTIMISATION ALGORITHMS −−%%
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% Multivariate Clayton−Frank−Gumbel copula

% negative log likelihood function

function nll = vec negloglike clayton frank gumbel md(X)

lambda nll c = X(1);

lambda nll f = X(2);

lambda nll g = X(3);

rho c = X(4);

rho f = X(5);

rho g = X(6);

%% check frank parameter is != 0

if(rho f < 0.01 && rho f > −0.01)

rho f = 0.01;

end

nll = −sum( log( lambda nll c*(c d) +...

lambda nll f*(f d)...

+ lambda nll g*(g d) ) );

end

end

B.3 Generalised Gamma Function

function [loglike, sigma tilde, mu tilde, k grid] =...

generalised gamma(y)

% Input: y is log returns for 6 months
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% length of y vector => i.e. number of days

n = size(y,1);

% storage counter for the values returned from grid of k values

index = 1;

%% Stage 1: Grid of k values

k grid = logspace(−1,2.2);

for k = logspace(−1,2.2)

%% Stage 2: SOLVE MLE ROOT SEARCH ON LAWLESS EQUATION 7

% => TO FIND SIGMA TILDE

% set upper bound for sigma

sigma0 = 100;

% solve mle root search for sigma

%!! Careful with setting lowerbound of interval !!%

sigma tilde(index) = fzero(@lawless eqn 7,[0.1*std(y) sigma0]);

%% 3: NOW SUBSTITUTE SIGMA TILDE INTO LAWLESS EQUATION 6

mu tilde(index) = lawless eqn 6(sigma tilde(index));

%% 4: CALCULATE THE LOG−LIKELIHOOD WITH PARAMETERS

% SIGMA TILDE, MU TILDE, K

loglike(index) =...

log likelihood log generalised gamma(sigma tilde(index),...
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mu tilde(index), k);

% move storage counter +1

index = index + 1;

end

% Equation (7) from lawless paper on generalised gamma.

% Returns value of LHS of equation 7

function value = lawless eqn 7(sigma)

part 1 num = sum(y .* exp(y ./ (sigma .* sqrt(k))), 1);

part 1 denom = sum(exp(y ./ (sigma .* sqrt(k))), 1);

part 2 = mean(y);

part 3 = sigma / sqrt(k);

% Return value of LHS of eqn 7

value = (part 1 num / part 1 denom) − part 2 − part 3;

end

% Equation (6) from lawless paper on generalised gamma.

% Returns mu tilde, i.e. log of RHS.

function mu value = lawless eqn 6(sigma tilde)

%NOTE: changed to .*

mu value = log( ((1/n) .* sum( exp(y ./ (sigma tilde .*...

sqrt(k))), 1)) .ˆ (sigma tilde .* sqrt(k)));

end

% Returns log likelihood of log generalised gamma

function loglikelihood = ...
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log likelihood log generalised gamma(sigma tilde, mu tilde, k)

% define w

w = (y − mu tilde) ./ sigma tilde;

% sum of log ( pdf of w evaluated at x i 's)

loglikelihood = sum( log((kˆ(k − (1/2)) / gamma(k)) .*...

exp((sqrt(k) .*w) − (k .* exp(w ./ sqrt(k))))), 1);

end

end

B.4 Generalised Gamma CDF

% Returns cdf value for w −> with pdf given by (4) in lawless

function [w P cdf] = gengammacdf(k hat)

delta = 0.001; % step length along x−axis for cdf area calculation.

w = −1000:delta:1000;

P eval = (k hatˆ(k hat − (1/2)) / gamma(k hat)) .* ...

exp((sqrt(k hat) .*w) − (k hat .* exp(w ./ sqrt(k hat))));

Z = sum(P eval) * delta;

P = P eval .* delta;

P cdf = cumsum(P ./ Z) ;

end
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Philipp Schönbucher and Dirk Schubert. Copula-dependent defaults in intensity

models. Available at SSRN 301968, 2001. 11

Berthold Schweizer. Thirty years of copulas. In Advances in probability distribu-

tions with given marginals, pages 13–50. Springer, 1991. 7

Johan Segers. Discussion of copulas: Tales and facts, by thomas mikosch. Ex-

tremes, 9(1):51–53, 2006. 12
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