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Abstract

Optimal execution concerns the minimal cost realization of a trading strategy.

Within this thesis the execution domain is reviewed and several seminal exe-

cution models presented, before considering the problem as a Markov decision

process. To fully de�ne the execution domain the concept of a trading strategy

is de�ned and a number of popular pricing models outlined, with particular em-

phasis given to market impact - the component of the pricing model related to

the execution problem. Implementation shortfall, one of the key measurement

metrics, is detailed leading to the de�nition of a commonly utilized optimality

criteria. The existing analytical and dynamic programming solutions presented

initiated signi�cant interest in this research area which has since been signi�-

cantly extended. The novelty introduced involves developing a Markov model,

in which the models have been constructed to explore the execution problem

from a di�erent perspective. The Markov decision process model drives the

problem from signals generated through price movement changes, depending on

the inventory position. The partially observed (not observed) Markov decision

process model sets the problem up for scenario analysis, that is the study of the

cause-e�ect relationship for a trading action. The hidden (not hidden) Markov

model formulation uses particle �ltering to identify belief states in a noisy en-

vironment. Each of the models is novel and exposes many interesting areas for

further and future research
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Nomenclature

1{.} Indicator variable

α Q-Learning rate.

βp Order of power law function for permanent impact.

βt Order of power law function for temporary impact.

γ Q-Learning discount term.

ι Recovery time of Limit Order Book.

κ Inverse urgency, represents half life or the desired time scale for liquida-

tion

λ Trader utility.

P Standard probability measure on S.

µ Drift, represents actions of informed traders on stock price.

ω Temporary impact parameter.

π Policy, for action selection.

Ψ(.) Permanent market impact function.

ψ(.) Temporary market impact function.

ρ Memory parameter for information term.

σ Represents volatility. The actions of the uninformed traders.

τ Time duration of individual time interval from k to k+1.

Θ Resilience parameter of Limit Order Book.

θ Impact parameter.

S̃ Weighted average price received per asset, on individual execution.

ς E�ect of Information parameter.

∗ Indicates optimal solution.

ak Action selection at time index k.
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bk Belief state vector at time index k.

c(.) Cost function.

g(S) Volume of asset available at price level S in Limit Order Book.

Ik Market information term at time index k. Autoregressive lag 1.

L, lk Leaves, residual trade volume left for execution, at start then at each

time index.

M Mid or centerprice of asset.

m Spread, di�erence between S+ and S−.

N Number of intervals that T is divided into.

nk Trade package, an individual trade list entry executed at time point k.

pk Total value of trade execution at time index k.

r(.) Reward function.

S Asset price.

S+ Best ask price of asset.

S− Best bid price of asset.

T Time limit for execution of trade strategy.

u Input vector, used in dynamic programming formulation.

V (.) Value function, summarizes reward or cost.

vk Trade rate, the velocity of trading at time index k.

W A standard Brownian motion.

x State vector.

yk Observation vector at time index k.

k Time point index.
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1 Introduction

Optimal execution characterizes the minimal cost realization of an investment

decision in a �nancial market. An investment decision concerns the change in

portfolio position of an investor through the acquisition or liquidation of listed

assets. This process would appear on �rst impression to be a simple task of

buying or selling an asset at a given price. However for an investor wishing to

buy (sell) a given volume at a particular price there must exist a counterparty

(or number of counterparties) that wishes to sell (buy) the same volume. In a

listed �nancial market the buyers and sellers post orders for the assets that they

wish to acquire or liquidate, quoting prices and corresponding order quantities,

the order prices and volumes continually change like the eb and �ow at the point

of change of the tide as investors jokey for position. The availability of order

volume is referred to as market liquidity. For our investor wishing to buy (sell)

at a particular price there must be enough counter liquidity at the speci�ed

price. If there is insu�cient counter liquidity then the investor must choose

to either transact at a worse price where there is su�cient counter liquidity or

over a period of time in the hope that market dynamics attract more counter

liquidity at an acceptable price. On completion of the given transaction the

performance of the trade execution may then be measured and benchmarked.

Measurement can be a simple process of taking the initial price at the start of the

transaction, referred to as the arrival price, multiplied by the total volume that

was exchanged, and comparing this against the weighted average price received

multiplied by the volume exchanged over the duration of the transaction. The

di�erence between the theoretical bench mark price and the actual price received

is the Implementation Shortfall [31].

For �nancial institutions the importance of understanding the optimal exe-

cution problem and the mechanisms that can be utilized to minimize cost cannot

be emphasized enough. This is especially relevant in today's market in which

there is a proliferation of algorithmic trading systems, that is software appli-

cations that have trading decision logic encoded, which are increasingly being

used in the execution of investment decisions. The area of algorithmic trading

itself is very broad, it encompasses the benchmark execution algorithms often

referred to as structural algorithms. These execution algorithms have been de-

veloped by sell-side brokers concerned with minimizing cost for buy-side clients.

It also encompasses the more sophisticated situational algorithms that have

been developed for proprietary trading desks to take advantage of arbitrage op-
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portunities. It is the structural execution algorithms that we will be concerned

with within this thesis. In the United States at the start of 2010, 65%-75%

of message volume resulted from algorithmic trading, in the United Kingdom

over 40% of trading activity resulted from algorithmic trading and in Australia

10% was attributed to algorithmic trading activity [10]. Going forward it is

believed that the competition in the structural execution algorithm space will

only increase, requiring a greater understanding of the optimal execution prob-

lem and an understanding of the options available to minimize execution cost

for a competitor.

This thesis is concerned with the optimal execution problem, the motiva-

tion is the provision of execution strategies that minimize the associated exe-

cution cost, as measured by the slippage away from a theoretical bench mark

price, that is the deviation from the benchmark price actuated by the trans-

action. The approach taken is to consider optimal execution strategies in the

context of Markov models. Markov models are stochastic models with particular

conditional independence properties. The Markov property de�nes a model in

which the dependence structure is on the present, not the past. Markov Mod-

els encompass Markov Chains, Markov Decision Processes (MDP)'s, Hidden

Markov Models (HMM)'s and Partially Observable Markov Decision Processes

(POMDP)'s. This study of execution strategies is relatively new. Since the

initial paper by Perold [31], de�ning execution cost, and the initial seminal pa-

per by Bertismas and Lo[14], utilizing aspects of dynamic programming, it has

predominately been through the works of Almgren [3][4][9][5][8][7][6][2] that the

optimal execution problem has been explored. Although there has been a more

recent proliferation in the number of papers published in this area to the extent

of the authors knowledge this is the �rst time that the area has been studied in

the context of Markov Decision Processes, Partially Observed Markov Decision

Processes and Hidden Markov Models.

Minimization of execution cost through optimal execution provides an advan-

tage to brokers concerned with agency trading, allowing them to quote lower fees

for agency trades to prospective clients, and for principal trading institutions

allowing them to maximize their return on investment through simple reduc-

tion in cost. The minimization of the execution cost associated with a change

in position can provide a unique competitive advantage for a �nancial institu-

tion. Optimal execution strategies are a jealously guarded area of intellectual

property covertly developed and religiously protected by �nancial institutions.

This thesis is divided into several sections. Section 2 reviews the execution
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domain, section 3 reviews several existing approaches to the optimal execution

problem followed by section 4 which covers Markov models and their applications

to trade execution, and section 5 provides the conclusion and a discussion of

future work.

Section 2 covers the Execution Domain. It sets the scene by covering the

background to the optimal execution problem and de�ning the concept of trad-

ing strategy mathematically. A trading strategy is the realization of an invest-

ment decision through the execution of buy/sell orders over a period of time.

The placement of orders over time de�nes a trading trajectory that projects

a move from one capital position to another. This provides the basis for our

optimization, as the ultimate objective is to �nd the trading trajectory with a

cost/reward that is minimal/maximal according to some optimization criteria.

Pricing models used by the various authors are presented, with particular

emphasis on market impact, a component of the pricing model that is speci�c

to trade execution. Market impact is de�ned to be the e�ect on the price of an

asset resulting from the execution of a trade on the market. To fully understand

market impact, we brie�y look at the microstructure of the limit order book

and the e�ects that a trade has on price momentum. Predominately the pricing

models are Bachelier type algebraic random walks, as considered by Bertismas

and Lo [14], all of the Almgren models without drift [3][4][9][5][8][7][2] and with

drift [6], and Obizhaeva and Wang [30]. Some of these models univariate and

some multivariate. Some are discrete [14][4], and some continuous [30][2]. With

the trading strategy and pricing law of motion de�ned we are in a position to

consider optimality, the utility criteria that is used to �nd an optimal policy

in the MDP setting. The key optimality criteria is based around minimization

of expected cost, or mean-variance cost. The cost term in optimal execution

modelling is referred to as implementation shortfall.

Section 3 reviews some existing approaches to the optimal execution prob-

lem. It builds directly on the aspect of the execution domain introduced in

Section 2. Although there are numerous papers published in the area we focus

on the seminal works of Bertismas and Lo 1998 [14], R. Almgren and N. Chriss

[4], R. Almgren and J. Lorenz [7], and R. Almgren [2]. This section starts

by introducing dynamic programming [12] drawing heavily from the works of

[19] introducing the Bellman equation, for the discrete formulations, and the

Hamilton-Jacobi-Bellman (HJB) equation for the continuous case. Two dynamic

programming solutions are provided, and two analytical solutions presented, the

solutions are presented chronologically as each solutions draws from and builds
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on the earlier solution. The �rst dynamic programming solution is a minimiza-

tion of expected cost, for a statically de�ned trading strategies [14]. The second

solution is analytic, it addresses mean-variance optimization for static trading

strategies [4], this is followed by an analytical solution for the dynamic trading

optimization case [7]. The �nal solution outlined is a dynamic programming

solution using the HJB equation for a multi-dimensional problem [2], which is

simpli�ed by using a single variation parameter to the single dimensional case.

These solutions are provided to allow insight into the optimal execution problem

to be gleaned.

Section 4 on Markov Models follows Littman's categorization [27]. Splitting

Markov Models into categories pertaining to controllability, and observability.

Controllability refers to the ability of an external actor to in�uence state transi-

tion. Observability, to whether an actor is able to see the model state space. The

categories are divided such that Markov Chains are de�ned as non-controllable,

non-observable Markov Models, MDP's as controllable, observable. POMDP as

controllable, non-observable, and HMM's as non-controllable, non-observable.

We provide background to each model, introducing Q-learning, an area of re-

inforcement learning that allows a system to optimize itself based on reward

and punishment signals, in which we implement trading models for each of the

Markov Model categories. We provided sample trading solutions for the MDP,

POMDP, and HMM formulations, the models are built using a Geometric Ran-

dom Walk as the pricing model. This approach is used as we model over a large

number of steps and wish to avoid a negative stock price. Arithmetic Ran-

dom Walk pricing models are used in the existing Section 3 formulations due

to their analytic tractability. With our numerical approach the more practical

Geometric Random Walk pricing models are used instead.
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2 Execution Domain

This chapter introduces the various facets of the optimal execution problem; the

trading strategy, the pricing model and the conditions for de�ning optimality.

A trading strategy is the de�nition of a trade schedule, the decomposition of

a large order into smaller packages which are submitted to the market over a

period of time. The de�nition of an e�cient trading strategy is important as

a cost will be incurred during the execution of the trade package list which is

dependent on the distribution of the order volume across the trade list. That

is the volume may be weighted to trade more heavily at the start of the trans-

action, to reduce risk, weighted evenly across the transaction, or weighted to

trade more heavily towards the end of the transaction to possibly maximize

return. Alternatively the rate of trading may be varied to suit changing market

conditions, distributing the volume of trades over the execution period dynam-

ically, and adapting the trading rate online over the execution period. The

pricing model de�nes the price of an asset across the transaction duration. It

is central to the understanding of cost, as an asset price may not only vary as

a result of random market conditions and serial information, but as a result

of the trading strategy as assets are acquired or liquidated in accordance with

market supply/demand dynamics. The pricing models used include a market

impact term, which accounts for the e�ect of the executed volume on the asset

price. Market impact is key to the optimal execution problem. This chapters

sections introduce the pricing term, market impact, and summarizes some ex-

isting formulations used in the literature which shall be built upon within later

chapters. It is also instructive to understand how various authors perceive what

is signi�cant to the execution problem. Implementation Shortfall [31] is then

introduced, it is one of the de�ning elements of optimal execution. Historically

it has been used to conceptualize the problem. Implementation shortfall leads

us directly into the de�nition of optimal execution. The optimality condition is

an important concept as it directly relates to the value functions used in later

chapters to solve the execution problem in an MDP setting.

2.1 Trade Strategy

A trading strategy is the realization of an investment decision through the ex-

ecution of buy/sell orders over a period of time. The placement of orders over

time de�nes a trading trajectory that projects a move from one capital position
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to another. The ultimate goal for optimal execution is to produce a trading

strategy that is optimal according to a speci�ed criteria. In the literature the

common optimality criteria is either to minimize the expected cost of execution,

or minimize the mean-variance of the cost, that is the expected cost of execution,

given a traders risk pro�le manifesting itself as a cost variance sensitivity.

Numerically the de�nition of a trading strategy is the execution of L units

of listed asset over a time period [0, T ], by de�nition both L and T are �xed.

Fixing a trading strategy to terminate at T however may in itself be sub-optimal,

since if there is su�cient liquidity it may be optimal to execute immediately, or

over a shortened time period in accordance with a mean variance minimization,

hence the trade residual can become zero prior to T . In the discrete setting T

is divided into N intervals indexed by k each with duration τ = T/N such that

the trading trajectory is given by{
nk : k ∈ [0, N ], n{0<k≤N} = 0,

N∑
k=0

nk = L

}

where the trade list is {nk : nk = lk−1 − lk}, lk is the residual volume or 'leaves

quantity' at time index k, L is the total volume to be executed at k = 0 ,

we also explicitly note that n{0<k≤N} = 0 as the trade package size must be

equal to the leaves quantity at time k = 0 but may then be 0 at any time point

thereafter [30]. Although the discretized model infers that a trade list package be

executed at a given time index, in actual fact it may simply be executed over the

duration τ . This is the practical reality, the trading strategy logic is decoupled

from the market sitting above an order randomization and optimization layer,

necessary to camou�age order placement to protect a trading strategy from

gamers; opportunistic traders that would front run large execution strategies

and surf a wave of risk free pro�t given the opportunity. Optimizers in turn

change the placement of the orders to better �t the market, optimizing the order

submission queues into the market by splicing orders into the limit order book,

taking into account market microstructure dynamics, e.g. pegging to best. The

continuous setting can be used to provide a simpler analytical environment in

which to solve a given problem - this is then translated into a discrete trading

model when implemented.

An additional caveat is that buy strategies are normally de�ned to only

place bids, and sell strategies to place asks, although this simpli�es the problem

mathematically, in the investment banking world if a customer wants a trading
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strategy that buys/sells or buys/sells/buys, then they can have one. Trading

strategies can additionally be de�ned as static or dynamic. Static strategies

de�ne the trading list up front, the trading list is �xed for the duration of the

order placement [0, T ]. Dynamic strategies take into account information up to

and including the time point that the size of a trade list member indexed at the

given time point is calculated [4].

2.2 Pricing Model

There are numerous pricing models and laws of motion that govern asset price

movement, which attempt to capture the dynamics of asset prices as trades are

executed against their listed volumes. These models provide the basis for the

optimization's that are presented in later sections. Predominately the models

are Bachelier type arithmetic random walks as considered by Bertismas and Lo

[14], all of the Almgren models without drift [3][4][9][5][8][7][2] and with drift

[6], and Obizhaevva and Wang[30]. The basic form of the arithmetic random

walk pricing model during execution is

Sk+1 = Sk + σWk + [µτ ] + impact (1)

where Sk is the initial period stock price, Sk+1 the stock price at interval end,

Wk is a one dimensional standard Brownian motion under P a standard prob-

ability measure on S, µ the drift and τ the interval duration. The drift term

is enclosed in square brackets as it is an optional feature used in some for-

mulations but not in others. Impact is the e�ect on the price as a result of

executing against the market. Geometric Brownian motions are considered for

such models but are less popular due to their tractability with the optimizations

considered. The bene�ts of using a geometric Brownian motion over an arith-

metic random walk are that the geometric Brownian motion remains positive,

whereas the arithmetic random walk could produce a negative stock price which

is not possible in the real world. However arithmetic Brownian motion models

are often chosen due to the short term duration of the problem, the bene�ts of

tractability outweigh the negative aspects of the model.

In general the pricing model, Equation (1), is built up from several com-

ponents the k = 0 asset price S0, a noise term σWt that is representative of

the trading activities of uninformed traders, a drift term µt that represents the

informed traders, and a price impact component (discussed in section 2.2.1).
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The activity of the uninformed traders may be implied from the volatility of the

asset price over a relatively short period. The trading activity of the informed

traders, results from the investment decisions that are made prior and during

the trading day, which are executed throughout the day. The aggregated weight

of the activities of the informed traders, trading activity causes drift in the asset

price [6]. In addition serial correlation of market information, asset price and

the correlation e�ect of pairs in the multivariate case may also be in�uential

factors in the pricing model, depending on the problem being analyzed. The

above mentioned Bachelier type model covers the evolution of the stock price S0

with regards to a Brownian motion σWk with drift µτ . The component that has

not yet been addressed is market impact, which is deserving of it's own section

as it is a feature of the pricing model that is central to trade execution.

2.2.1 Market Impact

Modern �nancial markets have evolved from the open outcry systems of yesteryear

to the low latency exchanges of today. Orders that are posted to the market

may be meant for immediate execution (Immediate or Cancel, Fill or Kill) or

for execution at a given limit price. Limit orders, as they are known, are main-

tained within a Limit Order Book (LOB) controlled by the exchange. The LOB

has two sides, a buy side and a sell side. The buy (sell) side contains the orders

posted by clients that wish to buy (sell) at a speci�ed limit price. LOB is com-

posed of all limit orders posted to the market that have not been matched. A

match occurs when the buy side and sell side order prices overlap resulting in

a trade, on execution the executed order volume is e�ectively lifted out of the

LOB.

Market impact is the instantaneous and temporal perturbation of the as-

set price caused by a trade execution. It represents a key component in the

modelling of the actual price received for an asset on a trade, which we shall

denote S̃ the weighted average price on the trade. On arrival orders are queued

per symbol (asset), commonly prioritized by price and by time of arrival, in

buy side and sell side lists, or legs. The length of the buy/sell side legs pro-

vide the depth of the order book. To fully understand price impact we must

look at the structure, the composition of price level order volume in the LOB,

elasticity of the LOB, or the tendency of the LOB to maintain its previous

composition, in which it is the limited elasticity of supply and demand which

ultimately govern the price of assets [30]. A commonly held view is that asset
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prices change mechanistically as a result of imbalances between the buy and

sell side [1]. The number of limit orders on the bid and ask side of the LOB at

any given price S is qS+(S) and qS−(S) respectively, S+ is the best ask price

and S− the best bid price, S+ > S−. During normal trading qS+(S) ≥ 0 when

S ≥ S+, qS+(S) = 0 otherwise, and qS−(S) ≥ 0 when S ≤ S−, qS−(S) = 0
otherwise. The mid/centerprice is de�ned as M = (S+ +S−)/2 and the spread

m = S+ − S− [30]. Given a reference point at one side of the spread the near

touch price is the best price at the top of the order book at the point of refer-

ence, the far touch price is the best price on the opposing side of the spread.

The order volume over a price interval S + dS is de�ned by Obizhaeva. A, and

Wang. J, to have a simple block shape [30] but may take a more complex form.

An order posted to the LOB will sweep through the price levels on the opposing

side, starting at the far touch price until its limit price is met or until its volume

has been �lled. If su�cient liquidity is available, the resulting trade execution

value is given by the following equation

S+
k+1�

S+
k

q(S)dS = pk (2)

where k is the discrete time index as previously de�ned on T , pk is the execution

value of the trade.

The resilience of the LOB is the speed of recovery, the time that it takes

to be rebuilt to its original shape or structure. The price momentum is gov-

erned by the elasticity of the LOB, the price momentum is the pressure on the

centerprice of the LOB. The centerprice is also subject to volatility σ and drift

µ. Considering the centerprice as opposed to the last traded price smooths the

saw tooth path of buy/sell trades that cross the respective spreads to match on

the opposing side through a trading day. It also allows us to focus on the price

without necessarily considering the variance in the width of the spread. Within

this framework for a buy trade the actual price received is

S̃+
k+1 = Mk +m/2 + pk/(2q). (3)

The dynamics are such that the ask price moves by

S+
k+1 = Mk +m/2 + pk/q (4)
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and a trade will shift the centerprice linearly with respect to the size of the trade,

Mk+1 = Mk + θpk, where θpk gives the permanent impact of the trade with

q ≤ θ ≤ 1/q. The convergence of the centerprice back to its Mk value is given

by subtracting the post trade ask price S+
k+1 = S+

k +pk/q, from the steady state

price S+
∞ = S+

k + θpk, which yields S+
k+1 − S+

∞ = pk(1/q − θ). Now assuming

that the order book converges exponentially in time to its original structure,

qk(S) = q1{S≥S+
k }
where S̃+

k+1 = S+
k + pkΘe−ιk. Thus a trade execution of price

pt, has an impact function of Ψ(pt) and recovery function of %(pt)

Ψ(pt) = θ

n(t)∑
k=0

ptk (5)

%(pt) =
n(t)∑
k=0

ptkΘe−ι(t−tk) (6)

the recovery time is given by ι which is a measure of the resilience of the LOB

[30]. Studies by Alfonso, Fruth and Schied in their paper 'Optimal Execu-

tion strategies in limit order books with general shape functions' extend this

framework using more complex LOB density functions to allow nonlinear im-

pact functions producing a LOB with a greater rage of equilibrium dynamics

[1].

Throughout the literature the dynamics of market impact are often sim-

pli�ed to a permanent and temporary component. Permanent impact is the

impact that persists for the duration of the trade strategy e�ecting all future

prices. Temporary impact is an impact that has dissipated by the time of the

next trade, e�ectively decaying to 0. The combination of impact functions and

the complexity of the impact functions are usually selected to produced pric-

ing models that are tractable and descriptive for a given methodology used in

producing an optimal execution strategy.

Bertsimas and Lo use a single linear permanent impact function of form

θ(L− lk), where θ is the permanent impact parameter, and (L− lk) the volume

of the trade executed up to a point k [14]. They later extend this model into

the multivariate setting, in which impact costs of assets executed within a single

portfolio may impact each other, due to correlation e�ects of price movement

between the assets [13]. Almgren [4] uses linear permanent and temporary

impact functions before moving to nonlinear permanent and temporary impact

functions. As the linear functions were not considered realistic in a real world

15



sense, in addition a further temporary impact function was also introduced

to represent the uncertainty of trade execution, with the e�ect of amplifying

variance [9]. The later work by Almgren for convenience drop the permanent

impact function altogether [7].

The structure of the Almgren nonlinear model treating market impact as a

power law function, which encompasses the linear case, yields permanent and

temporary impact functions of form

Ψ(nk/τ) = θvβ
p

(7)

ψ(nk/τ) = ωvβ
t

(8)

where v = nk/τ can be interpreted as the trading velocity. In this formulation

θ is the permanent impact parameter as previously de�ned andω the temporary

impact parameter. The order of the power law functions are given by βp for

permanent impact and βt for temporary impact. In the paper 'Direct Estimation

of Equity Market Impact', (2005), Almgren et al, �t the nonlinear model to a

real world equity data set provided by Citigroup US. Calibration of the model

is subject to the data set being cleansed, so as to only encompass substantial

proprietary trades across liquid asset to measure cost of trading. The aim was

to provide a trading model that would be used directly as the basis for a trade

scheduling algorithm, within the Citigroup Best Execution Consulting Services

(BECS) software, to allow costs to be estimated and controlled.

It is interesting to note that the Obizhaeva and Wang, impact functions

Equation (5), align with the nonlinear temporary impact functions used by

Almgren, Equation (8), in the limiting case when the time between trade packet

submission is of su�cient duration that the asset price is able to return to its

resting equilibrium [30].

2.2.2 Model Formulation

Within this section there is a brief review of some of the pricing models most

commonly used for the optimization of execution. Ultimately the pricing models

are the sums of assumptions and trade o�s used to provide a tractable model

that is mostly representative of the real world asset price trajectory across a

trading day. Once selected the chosen pricing model is used to formulate an

optimal trading strategy with exogenous interaction with the asset. Depending

on the practitioner the pricing models tend to be selected for tractability for a
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given mathematical methodology used to formulate an optimal trading strategy.

It should always be remembered that the goal of any pricing model is to explain

phenomena present in real markets, however, given that there may be a great

deal of variability between assets or even within the same asset over time [14]

there is plenty of worth in these models from a theoretical sense as they allow

the optimal execution trading problem to be set, analyzed, simulated and �tted

to real market data. The models are shown in Euler discretized form, and

contrast there salient features. The Euler discretization admits a closed form

expression for the transition density of the price dynamic in the Markov models,

higher order discretization schemes such as Milstein could be considered with

additional complexity for the MDP problem.

Model 1: Bertismas and Lo 1. The �rst model presented by Bertismas and

Lo is a simple arithmetic random work with a single permanent impact term

Sk+1 = Sk + θnk+1 + σWk+1 (9)

[14] where Sk is the asset price, θ the market impact parameter with θ > 0,
nk+1 the order size at time index k + 1, σ the volatility and Wk+1 a standard

one dimensional Brownian motion. This can be considered one of the most

simplistic models for the execution problem. It serves as a good starting point

from which naive trading strategy can be obtained [14].

Model 2: Bertismas and Lo 2. The second model presented extends the

previous model with the addition of an information component, which is auto

regressive with lag 1

Sk+1 = Sk + θnk+1 + ςIk+1 + σWk+1 (10)

Ik+1 = ρIk + σ′W ′k+1 (11)

[14], where Ik is the auto regressive information term, ς the e�ect of the term on

S, ρ the memory of the process, σ′ the volatility of the information term with

W ′k+1 a standard one dimensional Brownian motion. Execution optimization

tends to be robust in the variability exhibited by the information term used

to represent market information. Almgren notes that the information term

as being largely insigni�cant in optimal execution models due to the minimal

impact [4]. However, it does introduce a latent process, a key component of a
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Hidden Markov Model.

Model 3: Bertismas and Lo 3. Bertismas and Lo also introduce a Linear

Percentage Temporary (LPT) model, which they considered more representative

of the actual market, for the evolution of an asset price as it is constructed from

a geometric Brownian motion. The impact and information components from

previous models are maintainedSk+1 = Skexp(σWk+1)(1 + θnk+1 + ςIk+1)

Ik+1 = ρIk + σ′W ′k+1

(12)

[14].

Model 4: Almgren 1. This model contains both permanent and temporary

impact components, with impact terms that are functions of trade velocitySk+1 = Sk + σWk+1 + τΨ(nk+1/τ)

S̃k+1 = Sk + ψ(nk+1/τ)
(13)

[4], nk+1/τ represents trade velocity as de�ned in section 2.2.1 for the market

impact Equations (7) and (8). Where Ψ(nk+1/τ) represents the permanent

impact and ψ(nk+1/τ) the temporary impact.

Model 5: Almgren 2. The next model excludes the e�ect of permanent

impact and includes a drift term. The drift is included to simulate the e�ects

of other informed tradersSk+1 = Sk + τµ+ σWk+1

S̃k+1 = Sk + ψ(nk+1/τ)
(14)

[6].

The model simply re�ect an asset price with a arithmetic random walk, drift

and a temporary impact term. For presenting the existing formulations a mix

of these models are used.
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2.3 Implementation Shortfall

The implementation of trading decisions may incur an implementation cost or

shortfall composed of both execution costs and opportunity costs [31]. Execution

costs are related to the actual transaction and can have both direct and indirect

components. The direct component is composed of the commissions and fees

levied on a transaction. The indirect costs are incurred from the inability of

a market to be able to fully absorb an execution at a given price level [8].

Opportunity costs are related to not transacting or queuing transactions for

execution over a given duration. Capital employed for one purpose may not be

employed for another purpose.

In general implementation shortfall is die polar, with execution cost at one

pole and opportunity cost at the other. A decrease in one cost is usually at the

expense of an increase in the other. Implementation shortfall is the measure of

the cost of transacting, it is in essence the cost of the real world realization of an

investment decision [31]. Within this paper we address only the minimization

of the indirect component of the execution cost, as the direct component is

easily determined, and we treat the opportunity cost as a subjective component

of the investment decision, hence all references to implementation shortfall or

execution cost refer only to the indirect cost of transacting.

With the above de�nition in mind it is useful to consider the implementation

shortfall as being the di�erence between a theoretical or hypothetical benchmark

best price and the actual price of execution. The theoretical price of transacting

a given volume L of a market listed asset instantaneously with best price S0 is

LS0, at the start k = 0 of the execution. Referring back to the proceeding sec-

tions 2.1 and 2.2.1, the actual price of execution may di�er from the theoretical

price as the market may not be able to absorb a transaction instantaneously

at the best price. Therefore the transaction may need to be broken up into

packages nk executed over a time duration T indexed by k yielding a volume

weighted price for each package transaction of S̃k, the trade value or price paid

for a given trade is thus pk = nkS̃k. The actual price received is the sum of

the price of each package executed at each time index
∑
nkS̃k. The di�erence

between these two prices provides us with the total cost of trading [4].

C = |LS −
∑

nkS̃k|. (15)

Within the continuous time setting the actual price received over the trans-
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action traded at an execution rate of v(t) = −dl/dt is given by
�
v(t)S̃(t)dt. The

rate of execution is negative as our starting volume at l0 = L and our ending

volume at k = T is lT = 0. This gives us the total cost of trading [7].

C = |LS −
� T

0

v(t)S̃(t)dt|. (16)

The implementation shortfall is mathematically de�ned as the cost of de-

viation from the initial price actuated by a trade execution, it is the measure

that we use in our quest for best execution, the optimal trading strategy em-

ployed to minimize execution cost [14]. To fully understand how to minimize

implementation shortfall we must introspect the components that de�ne cost,

we must de�ne the price model S̃ the trading strategy that de�nes the rate of

execution v(t) and the e�ects of the duration of the transaction T .

Discrete and continuous representations are given. In discrete formula-

tions change is modelled using recurrence relations. In continuous formulations

change is modeled using calculus, a function is modelled as an in�nitesimal mo-

mentary change at a point in time. Continuous mathematics is considered to

be more theoretically rich [16] and hence is often used in preference to discrete

mathematics due to its tractability, continuous formulations may be mapped to

discrete formulations and vice versa. When a problem is simulated or other-

wise realized in a computational context the discrete formulation must be used,

hence a problem is often solved using continuous tools then mapped to a discrete

representation for simulation.

2.4 Optimality Criteria

An optimal trading strategy is the trading list for a buy (sell) strategy that has

the minimum associated mean cost, or minimum mean-variance cost, depending

on whether trader utility λ is considered as a factor, it may be obtained by

solving the following minimizations (maximizations). For buy strategies we will

only need to minimize the total actual price paid on the transaction. For sell

strategies we maximize the actual price received see Section 2.3 for de�nition

of actual price. The following equations are for a buy strategy, they give the

minimum mean, mean-variance cost for the transaction

minnk∈[lk,0]EP(Sk)

[
N∑
k=1

S̃knk

]
=

N∑
k=1

� ∞
−∞

φ(Sk)P (Sk|Sk−1)dSk (17)
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minnk∈[lk,0]EP(Sk)

[
N∑
k=1

S̃knk

]
+ λV arP(Sk)

[
N∑
k=1

S̃knk

]
. (18)

Solutions have been achieved for various pricing models with di�ering impact

functions dependent on the various author preferences for mean cost using

stochastic dynamic programming in the form of the Bellman equation [13][30],

for mean/variance cost directly [4],[9] Hamilton-Jacobi-Bellman stochastic dy-

namic programming [2], and using Bayesian methods [6]. We will aim to provide

additional solutions using Markov Models, the topic of this thesis.

2.5 Summary

Within this section we have covered the basics of the trading environment, the

trading problem is outlined introducing the concept of trading scheduling, a

central them that sits at the core of all trading solutions. The most popular

pricing models are reviewed, with particular emphasis being given to market

impact a new term peculiar to the execution problem. Then cost and optimality

are considered, these are the driving forces which are used to determine an

optimal solution. We now move on to looking at the most signi�cant existing

solutions to the optimal execution problem.
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3 Existing Approaches

Within this chapter we review existing solutions to the optimal execution prob-

lem. This allows us to better understand the problem by exploring it from a

number of di�erent perspectives. The solutions outlined follow analytical and

dynamic programming approaches. In the analytical case solutions are provided

for static trading strategies [4], and for dynamic trading strategies [7]. In the

dynamic programming case both discrete [14] and continuous [2] solutions are

provided. It is worth �rst considering the topic of dynamic programming in

greater depth as it serves to provide some continuity into the Markov formula-

tions presented in the following chapter. The solution outlines are then provided

indexed historically, as it is interesting to see the evolution of the exploration

of the problem.

3.1 Dynamic Programming

Dynamic programming is a methodology for solving complex problems, that is

central to many of the existing formulations. The technique is based on the prin-

ciple of optimality, which breaks a problem up into a number of sub-problems

and then recursively solves them. This is achieved by backward substitution of

the end time subproblem into the previous time subproblem and then continu-

ing this process recursively until an optimal solution for the entire problem has

been constructed. The principle allows a problem to be broken up and solved

as a set of smaller less complex problems. The area was �rst introduced by

Richard Bellman in the 1950's [12].

Many of the existing optimal execution formulations are treated as optimal

control problems, reliant on state space techniques for their solutions. State

space approaches can be either time-varying or time-invariant, over a non-

in�nite time interval or over an in�nite non terminating duration [19]. In the

non-in�nite time horizon case the state space approach may be thought of as a

system with an input vector and an output vector(u, y), where u ∈ U ⊂ Rnand
y ∈ Y ⊂ Rnover T ⊂ Rn. The state of the system describes the present and fu-

ture input output pairs based on past behavior, realized through a state vector

x de�ned on the subset X ⊂ Rn, to which the trajectory is con�ned. The state

vector x is composed of the minimum set of state variables required to describe
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the system. The time varying state space equations can thus be de�ned asẋ = A(t)x+B(t)u

y = D(t)x
. (19)

The matrices A,B and D are square matrices. The state space equations de-

scribe the relationship between the input and output vector. For the initial

state problem there exists a unique solution in the form of the integral equation

x(t) = φ(t, t0)x(t0) +
� t

t0

φ(t, τ)B(τ)u(τ)dτ (20)

where φ(s, t) is the state vector transition property. The state space equations

can be seen as a control observation feedback process, in which the control

vector u = u(t), in�uences the state function x = x(t) over its trajectory. The
trajectory of x(t) is de�ned by the above integral equation. The state space

problem is de�ned as being controllable if it can be returned to the origin in a

�nite amount of time by the control function after starting from an initial state

vector position x0 at an initial time 0. That is the given integral equation has

a solution u in the class of admissible control functions. The transfer function

is h(t), where

y(t) =
� t

t0

D(t)φ(t, s)B(s)u(s)ds =
� t

t0

h(t, s)u(s)ds. (21)

To de�ne optimal control we must �rst introduce a scalar valued function

C(x, u, t) de�ned on X × U × Rn, such that the cost function is de�ned as

V (u) =
� t1

t0

C(x, u, t)dt. (22)

This becomes a Lagrange problem if x depends on u. Furthermore, the terminal

time is limited to a non-in�nite duration e.g. is considered over a subset of Rn

for the methodologies considered. The optimal control problem is then reduced

to �nding the optimal control function u? and the optimal trajectory x?, the

pairs (u?, x?) de�ne the optimal control and trajectory pair over T . This leads

us to the Bellman equation and the value function de�ned by

V (τ, x, u) = min[
� t1

t0

C(x, u, t)dt : u ∈ U(τ, y)] (23)
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where V (τ, x, u) is the optimal value obtainable by minimizing the function

subject to constraints. This may be expanded, through the use of the optimality

principle, to establish the method of dynamic programming. The optimality

principle over the optimal control trajectory pair requires for any t and τ , where

t0 ≤ t < τ < T , that

V (t, T, x(t), u(t)) = minu∈U(t,x?(t))[
� τ

t

C(x, u, s)ds+V (τ, T, x(τ), u(τ))]. (24)

The discrete from of Equation (24), is used by Bertismas and Lo [14] to minimize

expectation of cost. Considering Equation (24), taking τ = t + ε, where ε is a

small time increment, and expanding V (τ, x(τ), u(τ)) using a Taylor expansion,
allows us to formulate the Hamilton-Jacobi-Bellman (HJB) equation over t0 ≤
t ≤ T , used in Section 3.2.4.0 = dV

dt (t, x?) + [dVdx (t, x?)]f(x?, u?, t) + C(x?, u?, t)

0 = V (T, x?(T ))
(25)

V (t, T, x(t), u(t)) = minu∈U(t,x?(t))[C(x?, u, t) + [
dV

dx
(t, x?)]f(x?, u, t)]. (26)

Removing the T ⊂ Rnlimitation facilitates the in�nite time horizon approaches

considered at a future point.

3.2 Solution Outlines

3.2.1 Bertismas and Lo - Bellman Equation.

The initial Bertismas and Lo 1998 model [14] assumes the liquidation of a

single block of trades L over a period T of equally spaced increments with a

given price impact function. The investors objective is to minimize cost by

�nding the sequence of trades that minimizes the following cost equation as

given in Section 2.4

Vk(S̃k, lk) = minnk∈[lk0]EP(Sk)

[
N∑
k=1

S̃knk

]
(27)

with Vk used to represent the value function or utility, subject to the

constraints
∑N
k=1 nk = L. This can be posed as a dynamic programming

problem within the Bellman formulation [12]. Using model 1 from Section
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2.2.2 [14]

Sk+1 = Sk + θnk+1 + σWk+1 (28)

where Sk is the asset price, θ the market impact parameter with θ ≥ 0, nk the

order size at time index k, σ the volatility and Wk a standard one dimensional

Brownian motion. Noting that lk is used to represent the number of shares

that remain to be purchased e.g. lk = lk−1 − nk−1, with the boundary

conditions l1 = L, and lN+1 = 0. The discrete-time Bellman formulation yieldsVk(S̃k−1, lk) = minnk∈[lk0]EP(Sk)

[
S̃knk + Vk+1(S̃k, lk+1)

]
VN+1(S̃k, lk+1) = 0

. (29)

Solving recursively at k = N , and noting that lN+1 = 0,

VN (S̃N−1, lN ) = minnk∈[lk0]EP(SN )

[
S̃N lN

]
= (S̃N−1 + θlN )lN (30)

n∗N = lN (31)

e.g. execute all remaining volume. Continuing the recursion approach at

k = N − 1

VN−1(S̃N−2, lN−1) = minnk−1∈[lk−10]EP(SN−1)[S̃N−1nN−1 + VN (S̃N−1, lN )]

=
minnk−1∈[lk−10]EP(SN−1)[(S̃N−2 + θnN−1 + εN−1)nN−1

+VN (S̃N−2 + θnN−1 + εN−1, lN−1 − nN−1)]

= minnk−1∈[lk−10][S̃N−2lN−1 + θl2N−1 − θlN−1nN−1 + θn2
N−1]

VN−1(S̃N−2, lN−1) = lN−1(S̃N−1 +
3
4
θlN−1) (32)

n∗N−1 =
lN−1

2
(33)

where n∗N−1 is found by direct convex optimization, as the function f = S̃N−2lN−1+
θl2N−1− θlN−1nN−1 + θn2

N−1 is quadratic on nN−1, taking the derivative of the

function with respect to nN−1 and setting it to 0 yields n∗N−1. Substituting

n∗N−1 back into the function yields VN−1. This recursion may be continued,

25



leading to the result

n∗N−k =
lN−k

(k + 1)
(34)

VN−k(SN−k−1, lN−k) = lN−k(SN−i−1 +
k + 2

2(k + 1)
θlN−k). (35)

Finally at k = 1,where l1 = L

V1(S0, l1) = E1

[
N∑
k=1

S̃kn
∗
k

]
= S0L+

θL2

2
(1 +

1
N

). (36)

n∗1 =
L

N
(37)

Hence, by back substitution, the optimal trading strategy is

n∗1 = n∗2 = ... = n∗N =
L

N
(38)

This result follows from the fact that the market impact is permanent, V only

depends on trade size in any given interval, it is independent of the other in-

tervals. The execution cost is reduced by increasing the number of intervals,

however the execution cost can never reach 0. The execution cost minimization

it achieved across all intervals by minimizing the convex value function, e.g. this

minimum is achieved where the marginal costs are equal [14]. This approach is

termed the 'naive' strategy. It is not suitable for real world application, however

it is useful to benchmark against. We have presented this strategy as it clearly

shows the application of the Bellman equation to �nd an optimal solution, and

yields the naive strategy which we bench mark against using our own MDP

strategies in a later chapter.

3.2.2 Almgren and Chriss - Analytic.

The paper 'Optimal Execution of Portfolio Transaction's by Almgren and Chriss

[4], expands on earlier works introducing trader utility. Trader utility provides

a selection criteria between the trading extremes of trading everything up front

with high cost but no uncertainty, or over an extended period with minimum

cost but extreme levels of uncertainty. It is the selection point or an e�cient

frontier which traces the trading strategies with minimum expected cost for a

given level of uncertainty. The optimality criteria used within the formulation

as described in Section 2.4 is
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Vk(S̃k, nk) = argminnk∈[lK ,0]EP(Sk)

[
N∑
k=1

S̃knk

]
+ λV arP(Sk)

[
N∑
k=1

S̃knk

]
. (39)

The solution is a static trading strategy optimization, as de�ned in Section 2.1.

The model is extended to piece-wise static strategies when unanticipated market

events are occur. Recalculating the trade schedule when market conditions

change provides a rudimentary dynamic trading strategy. Using Section 2.2.2,

model 4 [4] Sk+1 = Sk + σWk+1 + τΨ(nk+1/τ)

S̃k+1 = Sk + ψ(nk+1/τ)
(40)

where Sk+1 is the asset price, nk+1 the order size at time index k + 1, σ the

volatility, Wk+1 a standard one dimensional Brownian Motion, τ the time inter-

val between decision points, permanent impact represented by Ψ(nk+1/τ), and
temporary impact by ψ(nk+1/τ), as previously speci�ed in Section 2.2.2. The

implementation shortfall [31] or the total cost of trading is given by

LS0 −
∑

nkS̃k (41)

where by substitution of Equation (40) into Equation (41) gives

∑
nkS̃k = LS0 +

N∑
K=1

(σWk + τΨ(nk/τ))lk +
N∑
k=1

nkψ(nk/τ) (42)

which yields the expected cost of trading

EP(S)(C) = −
N∑
k=1

τ lkΨ(nk/τ)−
N∑
k=1

nkψ(nk/τ) (43)

and the variance

V arP(S)(C) = σ2
N∑
k=1

τ l2k. (44)

Almgren and Chriss explore the idea of e�cient frontier the trading strategy in

which the expected cost has no lower variance and vice versa e.g. minr(EP(S)(C)+
λV arP(S)(C)) where λ is the Lagrange multiplier, in this trading context a mea-
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sure of risk aversion. This then yields when solving for the minimum impact,

V1(S0, l1) = EP(S)

[
N∑
k=1

S̃kn
∗
k

]
= S0L+

θL2

2
(1 +

1
N

) + Lψ(L/N) (45)

aligning with the solution provided by the Bertismas and Lo simple formula-

tion, but with the addition of a temporary impact term where λ = 0. The trade
schedule is nk = L/N . This is one extreme of the formulation. The second

extreme is for the minimum variance which is not handled in the Bertismas and

Lo formulation as they do not include utility in their model. The e�cient fron-

tiers are then the trajectories within these bounds traced by the minimization

of the mean variance with respect to trader utility.

3.2.3 Almgren and Lorenz - Analytic

The later works of Almgren in collaboration with Lorenz address dynamic ex-

ecution algorithms, answering the question; should a trading strategy be static

or dynamic? For example dynamic strategies were seen to adjust the trading

strategy, spending trading gains to reduce risk as information becomes available.

The paper 'Adaptive Arrival Price', [7] takes price information into account to

adapt the trading rate, introducing a negative correlation between past trading

gains and future market impact costs. This type of formulation provides an

'aggressive in the money strategy' (AIM) a strategy that would take while the

goings good as opposed to a 'passive in the money strategy' (PIM), a strategy

that would wait for further gains [24]. Using Section 2.2.2 model 5 [6] without

the drift term Sk+1 = Sk + σWk+1

S̃k+1 = Sk + ψ(nk+1/τ)
(46)

The implementation shortfall is analyzed in the continuous setting for simplicity

of analysis. The implementation shortfall is given by

C =

T�

0

S̃(t)v(t)dt− LS0 = σ

� T

0

l(t)dW (t) + ω

T�

0

v(t)2dt (47)
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where v(t) is the trading rate v(t) = nk/τ . The expected cost and variance in

cost are given by

EP (S)(C) = ω

T�

0

v(t)2dt (48)

V arP(S)(C) = σ2

T�

0

l(t)2dt. (49)

This has solution h(t, T, κ) = sinh(κ(T − t))/sinh(κT ), where κ =
√
λσ2/ω

termed the urgency parameter is related to the desired time of liquidation. The

static trajectory of which reaches l = 0 at T = 0. The dynamic component is

driven by the urgency parameter, which is recalculated at each decision point,

that can be simply the half way point T/2 or after new market information

becomes available. If the urgency parameter κ does not change then the static

strategy and dynamic strategy are equivalent this can be seen by observing

the solution for the static case and for two, three and by induction an in�nite

number of product term solutions are equivalent

h(t, T, κ) = h(s, T, κ)h(t− s, T − s, κ) = ... = h(i, T, κ)h(t− i, T − i, κ) (50)

where 0 ≤ i ≤ s ≤ t ≤ T .

3.2.4 Almgren - Hamilton-Jacobi-Bellman

'Optimal Trading in a Dynamic Market', [2], by Almgren builds on the earlier

paper 'Adaptive Arrival Price' [7], by considering the mean variance criteria,

which contain a square of an expectation requiring the use of the HJB partial

di�erential equations to provide a viable dynamic solution.

This paper considers dynamic execution under what Almgren terms 'co-

ordinated variation', where liquidity and volatility vary together σ(t)2ω(t) =
constant. Almgren argues that coordinated variation is highly relevant in the

adaptive execution of smaller cap assets. This is because the trading pro�le

of small cap assets throughout given contains periods of minimal liquidity and

periods of high volatility, times when trading is expensive and times when trad-

ing is cheap. Coordinated variation is introduced to provide an alternative to

solving the HJB equation over a multidimensional space, allowing the problem

to be reduced to a single dimension. However it is instructive from a dynamic

programming perspective to see the HJB solution. Also it should be noted that
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the parameters a, b are rede�ned locally for this model and do not follow the

notation de�nition. The trading cost is given by

C =

T�

0

l(t)dW (t) + σ2ω

T�

0

v(t)2dt (51)

where Almgren and Chris make an assumption that the amount traded is small

enough such that price changes due to market impact are small compared to

price volatility, termed the 'small impact' approximation. This allows the ex-

pectation of both terms in Equation (51) to be taken, which leads to

c(t, l, ω, σ) = minv(s),t≤s≤TE

T�

t

(λσ(s)2l(s)2 + ω(s)v(s)2)ds (52)

in which c(.) is a nondimensionalized cost (speci�c to this formulation) and

treating the coe�cients as random withξ(t) = log ω(t)
ω̂

dξ = aξdt+ bξdWL

(53)

and ζ(t) = log σ(t)
σ̂

dζ = aζdt+ bζdWV

(54)

such that ξ(t) and ζ(t) are nondimensional values that �uctuate around zero, and

aξ, bξ, aζ , bζ are coe�cients with values that depend on ξ(t) and ζ(t). WL,WV

are correlated Brownian motions independent of W where E(dWLdWV ) = ρdt.

On substitution into the dynamic programming model yields

c(t, l, ξ, ζ) = minv[λσ2l2dt+ ωv2dt+ Ec(t+ dt, x+ dx, ξ + dξ, ζ + dζ)] (55)

where the subscripts on c represent partial derivatives. In the HJB formulation

this becomes

0 = ct+λσ2l2 +minv[ωv2−vcx]+aξcξ+aζcζ+
1
2
b2ξcξξ+ρbξbζcξζ+

1
2
b2ζcζζ (56)

which has a minimum at v = cx/2ω. This model can be transformed to an

Ornstein-Uhlenbeck mean reverting process with relaxation times.
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3.3 Summary

Within this chapter we have provided a brief background to dynamic program-

ming and introduced the seminal solutions to the optimal execution problem.

The general theme is to provide a simpli�ed model of the problem, focusing on

the speci�c aspects of the system that warrant further exploration and then to

�nd an analytic or dynamic programming solution. The problem must often be

set up in such a way that an analytical solution can be produced. These solu-

tion techniques provide insights into the optimal execution problem, exposing

various aspects of each of the models and solution techniques, such as boundary

conditions and possible simpli�cations.

Obizhaeva and Wang 2006 see optimal strategy as consisting of an initial

discrete trade, followed by a sequence of continuous trades, this form of impulse

strategy is focused on driving the resting price of the LOB away from its point

of equilibrium and then absorbing the new liquidity attracted to the market the

strategy is concluded by a �nal terminating discrete trade when further e�ects

on the LOB are no longer of concern[30].

One common trait that can be seen through this section is that the model

must be manipulated for an analytical solution. What about more complex

models for which an analytical solution may not exist? Is there a more general

framework in which the optimal execution framework may be considered? This

question leads us directly into the next chapter on Markov models.
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4 Markov Models

Markov models, are a class of models satisfying the Markov property, which

states simply that the transition from one state to another is independent of

past behavior, that is given the past and present state, future states only depend

on the present state

p(xk+1|xk) = p(xk+1|x1:k). (57)

Markov models themselves can further be categorized as Markov Chains, Markov

Decision Processes (MDP)'s, Hidden Markov Models (HMM)'s, or Partially Ob-

servable Markov Decision Processes (POMDP)'s. Within this chapter we will

aim to provide optimal execution formulations using MDP, POMDP, and HMM

formulations.

Figure 1: Markov Models: Michael Littman's explanatory grid[27]

Figure 1, depicts the Markov model categorization that we will use to section

this chapter. The dimensions are based on control over the state transition, and

observability of the state space. Controllability refers to the input vector u in

the case of Section 3.1, Equation (19). For a controllable system u is treated as

an action formally de�ned within the Section 4.1, which allows an external agent

to e�ect change on the system. Observability concerns whether the current state

is observed or treated as latent and unobserved.

We are primarily concerned with discrete, �nite Markovian formulations,

that is the problems in which the state space and action sets are �nite, and the

decision points k are equidistant [25]. Planning problems that utilize Markov

models, attempt to provide an optimal policy, an optimal con�guration for the

model to follow. Each of the models that we are concerned with are formalized
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in the following sections of this chapter, starting with MDP's, then moving

onto POMDP's. Q-learning is then introduced as the execution models that are

developed are modeled in a reinforcement leaning context. HMM models follow

with a brief discussion of the more general Bayesian methods, before we develop

the last model that utilizes particle �ltering, estimate position within a noisy

trading environment.

4.1 Markov Decision Process (MDP)

Markov Decision Processes (MDP)'s are discrete time stochastic processes that

extend Markov Chains, with the addition of actions and rewards that govern

the evolution of the process in accordance with the Markov property. In this

thesis we consider discrete state space Markov chains, which can be discrete

or continuous time. MDP's may be of �nite or in�nite time horizon. We will

primarily be concerned with �nite time horizon and discrete state models as

we have �xed end times for our trade executions. MDP's in which the state

is observable are often referred to as completely observable Markov decision

processes COMDP's to distinguish them from POMDP's.

An MDP model can be thought of as a system with an input and an output,

that allows it to interact synchronously with the world. The input parameter

is a completely observable and certain present state, the output an action, that

both gathers information and a�ects the world [22]. The key components of

a Markov decision model, are an observable state space {Xk}k≥0 ≡ X, action

set {Ak}k≥0 ≡ A and equidistant decision time points k ∈ N+. The MDP

model contains a reward earned for a transition from one state, given an action

r(xk, ak) : xk ∈ X, ak ∈ A e.g. r(xk, ak) : X × A → R. Where the probability

of a transition from state xk to state xk+1 is p(xk+1|xx, ak) : xk+1 ∈ X,xx ∈
X, ak ∈ A e.g. p(xk+1|xk, ak) : X×A×X → T where T (.) ∈ X and T is the state

transition function and p(xk+1|xk, ak) ≥ 0 and
∑
xk+1∈X p(xk+1|xk, ak) = 1 as

discussed in [25]. The objective is to determine an action selection policy at

each decision point that optimizes the system performance. This model may be

represented as the tuple < X,A, T,R >.

The optimality criteria are constructed from the reward that is achieved for

the next N steps (in the �nite horizon case), with the objective of maximizing

the reward R or minimizing the cost C. Cost may be mapped to reward by

the following simple equality R = −C, allowing the reward maximization nota-

tion to be used on cost if desired. The optimality criteria within the optimal
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execution framework is normally constructed by minimizing expected cost but

in the literature for the MDP formulation maximization of expected reward is

normally considered

maxNE

[
N∑
k=0

rk

]
. (58)

Note, the model would contain a reward discount factor for an in�nite horizon

problem, to keep the sum �nite. Rewards received prior to the current state are

sunk, that is they are not considered and have no bearing on the optimization.

A policy {Πk}k≥0 ≡ Π de�nes the actions that may be selected given a current

state X → A. This e�ectively de�nes the behavior of the system. An optimum

policy de�nes the behavior of the system that will maximize the reward [22].

A policy may be stationary or non-stationary, in a stationary policy the state

action selection is unchanged across time, for a non-stationary policy the state

action mappings change at each decision point indexed by k. The evaluation of

a policy, and selection of an optimal policy can thus be ascertained inductively

using the following value function Vπ,k(.) iteration, for a policy at decision point

k

Vπ,k(xk) = r(xk, πk(xk)) + γ
∑

xk+1∈X
p(xk+1|xk, πk(xk))Vπ,k+1(xk+1) (59)

the reward received for a given policy at k = 0 is Vπ,0(x0). With the dis-

count factor given by γ. The value on the last step N is simply Vπ,N (xN ) =
r(xN , πN (xN )). The model evaluates the expected reward for a policy across

all possible transitions at each time point, accumulating the discounted reward

over time. In [22] the optimal policy is de�ned as the policy that maximizes

reward V ∗k+1(.), the star notation idicates an optimal solution, it is given by

π∗k(xk) = argmaxak

r(xk, ak) + γ
∑

xk+1∈X
p(xk+1|xk, ak)V ∗k+1(xk+1)

 . (60)

The value function of the optimal policy corresponds to the Bellman equation

for discounted MDP's [33], as discussed in section 3.1, it is the discrete form

representation of Equation (24) with reward instead of cost, at time index k,

using policy π for state xk.

The solution to these recursions can not in general be found in closed form,

it must therefore be approximated numerically. There are now numerous algo-
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rithms to compute an optimal policy [23][22][25]. Linear programming, policy

iteration, and value iteration are the standard methods. We have already looked

at linear programming in the existing methods chapter of this thesis in the Sec-

tion 3.2.1 Bertismas and Lo - Bellman Equation. In policy iteration a sequence

of improving policies is determined, until the optimal policy is achieved [25].

Value iteration is one of the earliest and serves as a basis for a number of

other optimal policy search algorithms. The Value iteration algorithm, starts

at decision point k = 0 and �nds the maximum reward for a state action pair,

recursively from the maximum of the value function Vπ,k(x), by looking ahead

and rolling the future value back to the present. The algorithm terminates

when the di�erence between two successive value functions is less than a given

constant value ε known as the Bellman error, Vπ,k(x)− Vπ,k+1(x) < ε.

4.1.1 Simple Value iteration MDP trading strategy

To illustrate this concept we will consider a simple trading strategy for the sale of

2 assets over a time period of 2 intervals, that is N = 2, k ∈ {0, 1, 2}, formulated
under the simple pricing model: Bertismas and Lo 1 [14] with permanent impact.

We set the initial price, S0 , price to 10 dollars and the impact parameter θ = 1

Sk+1 = Sk + θnk+1 + σWk+1.

The result of any impact is to depress the price. There are 3 states, state 1 which

contains 2 assets, state 2 which contains 1 asset and state 3 which contains 0

assets. The following restrictions to behavior are considered as illustrations of

more complex real world scenarios. They involve action 1 to sell 1 asset and

action 2 to sell 2 assets. A sale must occur at a decision point if possible and

only assets that are held can be sold and no assets can be bought. The MDP

formulation consists of state transition matrices for each action which in the

Cartesian space are represented by X ×X ×A , e.g. one matrix for each action

representing the transition probability, the system can transition to a state with

the same number or less assets. The state transition matrix is stationary for

each action, across time

a1 x1 x2 x3
x1
x2
x3

 P 1− P 0
0 P 1− P
0 P 1− P


a2 x1 x2 x3
x1
x2
x3

 P 0 1− P
0 P 1− P
0 P 1− P

 .
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To simplify for illustrative purposes we set P = 0. The reward matrices for each

state action in the Cartesian space of the form X×A. The corresponding reward
matrices de�ned by these action state transition matrices are non-stationary,

over time as the price of the asset is a�ected by the stock purchase, the reward

function is

r(xk, ak) = EP(S) [Sk+1nk] =
�
Sk+1nkp(Sk+1|Sk)dSk+1 (61)

with impossible state/action rewards being set to -99. As in this case we are

maximizing reward. The reward matrices for each time index considered are

then given by

k = 1

a1 a2
x1
x2
x3

 9 16
9 0
0 0

 k = 2

a1 a2
x1
x2
x3

 9 16
8 0
0 0

 .

Selection of the optimal policy can be achieved for the purposes of this simple

example through the use of the value iteration algorithm which uses the equation

Vπ,k(xk), in which the discount term is set to 1. The optimal policy is then the

sequence of actions that produces the minimum implementation shortfall, e.g.

in this case the maximum value for the sale. This can be calculated by hand

as it is such a simple example or put into a numerical package the resultant

policy is π∗ = a11, a12, that is the optimal policy is action 1 selected at k = 1,
and action 2 selected at k = 2. with a maximum expected market value of 17

dollars, and Implementation Shortfall of 3 dollars. This can be explicitly shown

by making explicit the value iterations under each action and showing the max

achieved wealth does correspond to π∗ = a11, a12 as follows

Va1,k=1(x1) = 9 + 1 ∗ V (x2) Va1,k=2(x2) = 8 Totalπ∗a1,a1 = 17
Va2,k=2(x2) = 0 Totalπa1,a2 = 9

Va2,k=1(x1) = 16 + 1 ∗ V (x3) Va1,k=2(x3) = 0 Totalπa2,a1 = 16
Va2,k=2(x3) = 0 Totalπa2,a2 = 16.

The value in this case is identical to the market value, if a more complex tran-

sition matrix is used or subjective rewards, that is rewards used to coerce the

system to follow a given path are considered, then the value does not necessarily

match the wealth realized. But the value tree branch that achieves the highest
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reward will still provide the optimal policy.

4.2 Partially Observable MDP (POMDP)

A partially observable Markov decision process is similar in nature to com-

pletely observable Markov decision processes except that the current state is

treated as latent and unobserved, as such it must be estimated for use in an

MDP formulation. An observation process is introduced with a distribution

conditioned on the current state or past states and the action or action se-

quence taken. The model extends MDP's by adding the observation probability

p(yk|xk, ak): yk ∈ Y, xk ∈ X, ak ∈ A. Where the observable stochastic process

is {Yk}k≥0 ≡ Y , and the latent state space stochastic process {Xk}k≥0 ≡ X

is partially observed, all other components remain the same. Thus a POMDP

model can be speci�ed by the tuple < X,A, T,R,Ω, Y > in which A, T,R main-

tain their original de�nitions as given in Section 4.1. The main objective remains

to ascertain the optimal policy, given an optimality criteria [22].

The input to the optimization procedure are the observations, the output

of the procedure the actions. The system maintains an internal belief state

that summarizes the past updating its internal belief state online using a state

estimator as in [29]. A state estimator updates the belief state based on the

previous belief state, the observation, and the action taken. It should also be

noted that the belief state process is a Markov process. The policy that governs

which action is taken within the POMDP setting depends on the belief state, not

the known state as in COMDP's. The belief state provides the POMDP with the

ability to act under uncertainty, and provides a su�cient statistic or summary

for the state of the system [33]. Given that p(bk|xk) is the belief state density,
that provides the belief of being in a given state xk ∈ X, where 0 ≤ p(bk|xk) ≤
1 and

∑
x∈X p(bk|xk) = 1. The belief state can be the entire distribution,

a summary of the distribution through a su�cient statistic or an empirical

estimate with dimension reduction of the information contained in the �lter

distribution of the latent process conditioned on the action and observations.

Within the following formulation bk summarizes y1:k, a1:k providing a summary

of the conditional �ltering distribution given in Equation (62). The new belief

state bk+1 given xk+1 can be calculated from the previous belief state bk|xk,
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given an action a, and an observation y from

bk+1 = p(xk+1|yk+1, ak+1, yk:1, ak:1) = p(xk+1|yk+1, ak+1, bk)

=
p(yk+1|xk+1, ak+1, bk)p(xk+1|ak+1, bk)p(ak+1, bk)

p(yk+1|ak+1, bk)p(ak+1, bk)

=
p(yk+1|xk+1, ak+1)

∑
xk+1∈X p(xk+1|ak+1, xk, bk)p(xk|ak+1, bk)

p(yk+1|ak+1, bk)

bk+1 =
p(yk+1|xk+1, ak+1)

∑
xk+1∈X p(xk+1|ak+1, xk)bk

p(yk+1|ak+1, bk)
. (62)

An optimal policy may then be identi�ed by mapping the belief state to an

action using

p(bk+1|ak+1, bk) =
∑
yk

p(bk+1|ak+1, bk, yk)p(yk|ak+1, bk) (63)

the value function is then

Vp(bk) =
∑
xk∈X

bkVp(xk) (64)

[22][29]. With the POMDP model de�ned, it is worth considering the options

for calculating the value function. The options are to compute the exact value

function given an exact belief state, to calculate an approximate value func-

tion given an exact belief state, to calculate an exact value function given an

approximate belief state or to compute an approximate value function for an

approximate belief state [29].

To compute the exact value function given an exact belief is computation-

ally expensive for a large state space i.e. it involves an exhaustive search over

all action state sequences. To approximate the value function given an approx-

imate belief state can be achieved by using a belief state grid approach [15].

Calculating an exact value function given an approximate belief state can be

achieved with particle �lters, this is an approach used for one of our MDP ex-

ecution model formulations outlined in Section 4.4.2. Approximating the value

function based on an approximate belief state can also be achieved by using

particle �ltering or Sequential Monte Carlo for the belief state, combined with

nearest neighbor functional approximators for representing the value function

[36]. Q-Learning, an approach that is used for representing the value function
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representation in the MDP's and POMDP's is brie�y covered now.

4.3 Q-Learning

Q learning is an area of reinforcement learning, that allows a system to optimize

itself based on reward and punishment signals. The system learns and adapts

online through trial and error. On each interaction of the system with the

outside world the system receives an input, an observation of the current state,

which allows the system to pick an action which changes the state of the system.

The result is a reward that is communicated to the system that is used to

optimize the future response, the goal is to �nd a policy that maximizes some

measure of reinforcement [23].

Model free methods of reinforcement learning can have, but do not require

the well de�ned structure of COMDP models The state may be fully observable

for COMDP models or partially observable when applied to POMDP models,

that is models where the state is not directly observable. Q learning [37] is

an approach that can be used for COMDP's or POMDP's. Considering the

non deterministic case of Q learning, Q∗(xk, ak) is the expected discounted

reinforcement of taking action ak in belief state xk

Q∗(xk, ak) = r(xk, ak) + γ
∑
x∈X

p(xk+1|xk, ak)maxak+1Q
∗(xk+1, ak+1)

where V ∗(xk) = maxak
Q∗(xk, ak), hence π∗(xk) = argmaxaQ

∗(xk, ak) is the

optimal policy. The action selection rule is then the maximum Q value obtain-

able from the current state. The update is

Q(xk, ak) = Q(xk, ak) + α(rk(xk, ak) + γmaxak+1Q(xk+1, ak+1)−Q(xk, ak))

where α is the learning rate, and γ the discount factor [23]. The learning

rate can a�ect the ability of the solution to converge locally to an optimum or

globally for a given computational budget. The learning rate can also be set via

Robbins Monro type stochastic approximation algorithms, see [35]. Q learning

is exploration insensitive hence the Q values will converge to the optimal values

no matter how the problem is explored, as long as the state action pairs are

connected often enough, that is a state is visited and an action taken from the

state enough times for the model to form a representative value of Q. There

are however computational issues with large state/action spaces, in which the
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algorithm may converge slowly, this is where approximation can improve results.

There are numerous models that have been documented throughout the

literature used to illustrate the above outlined Q-learning and Markov mod-

elling techniques in a physical setting, that have inspired the MDP execution

models that are outlined in this text. It is instructive to understand the dy-

namics of these models to gain a better understanding of the new execution

models presented. These models include 'The puck on a hill' model described in

Moore.A.W, and Atkeson.C.G, (1995) in their machine learning journal article

'The Parti-game Algorithm for Variable Resolution Reinforcement Learning in

Multidimensional State-space' [28]. This model described as the mountain car

problem by Rasmussen.C.E, and Kuss.M. in their paper 'Gaussian Processes in

Reinforcement Learning' [34], describes an object/vehicle stuck in a valley. The

objective is to park on a spot near the top of the valley, but the vehicle does

not have enough power to simply drive to the spot, it must gain momentum in

one direction then using the force of gravity combined with its own momentum,

oscillate backwards and forwards until enough momentum has been achieved to

reach the parking spot. In addition, another restriction is that the vehicle must

not overshoot the parking spot.

Another model that is a favorite within the literature is the heaven hell

problem used by [36]. Within this problem an agent is placed in one corner of

a box, of the three other corners one is heaven (the goal), the other is hell, and

the remaining corner contains a priest. The shortest path is from the agents

corner to heaven, but the agent does not know which corner is heaven and which

is hell, hence the safe course of action is to ask the priest �rst. The safest route

to heaven is to go to the corner with the priest to ask the priest which corner

heaven is, then onwards to heaven.

These scenarios and associated models are interesting from the perspective

of understanding how to set up new models for the execution context, one can

glean insight into the components of the models that drive the learning process.

The set up of the model is of course the selection of the state space equations

that de�ne the model. Noting that a fully observed state space presents an MDP

model, a partially observed state space yields a POMDP model. The state space

model is discrete when represented as an MDP otherwise it is a Markov state

space model.

For simulation the realizations of the model must map the state space to a

discretized form. This is achieved in the discrete setting by taking the discrete or

continuous state of the model and projecting it onto a state space grid, using for
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example the minimum Euclidean distance between the true state and the state

grid points to allocate to the grid points. The state space grid provides the index

into the Q table, used to provide the state to action mapping. Alternatively a

cell splitting approach can be utilized, using a nearest neighbor methodology

[11] to represent the Q table as used by Thrun.S. in the paper �Monte Carlo

POMDP's� [36] This model is described in more detail within a later section

of this chapter. The nearest neighbor approach works by �nding a K nearest

neighbor corresponding to a 'belief' state, and linearly averaging the values. If a

belief state is not found that is close enough, a new belief state is added to the Q

table [36]. Thrun.S. uses an approach that utilizes Gaussian kernels, and Monte

Carlo sampling to approximate the Kullback-Leibler (KL) divergence between

the states and the Q table belief states. This means that the Q table state space

is continuous, and can grow.

The reward or cost function is e�ectively used to drive the learning process,

it de�nes the greedy policy for the action that corresponds to a state within the

Q table. For the �nite horizon problem no discounting is necessary. For the

in�nite horizon problem then discounting is necessary along with a cuto� for

the iteration which is usually achieved with some form of Bellman error. That

is the iteration continues until there is no further bene�t. In many problems

outlined in the literature such as the puck on a hill problem, the objective is a

shortest path to the goal. The reward is thus an accumulative penalty for each

step. With a large penalty for not achieving the end result, e.g. overshooting

the parking spot in the puck on a hill problem, or going to hell in the heaven

hell problem.

4.3.1 Q-Learning MDP Execution Strategy

Drawing from the previous models that we have so far explored, we will outline

a Q-learning MDP for a sell strategy, under the pricing model: Bertismas and

Lo 3 but without the market information term. The model will be set up as

a �nite time horizon problem, with a �xed number of steps or decision points,

with a caveat that the trade execution must occur in its entirety by the last

time step. The initial model will be con�gured with an observable state space

so that it remains an MDP problem. The reward will be based on the maximum

attainable wealth for the strategy over the period of execution. In this model

the optimality criteria are expected mean cost based, it does not consider mean

variance minimization, as discussed in Section 2.4 of this document.

41



The set up of the model is as follows, the state vector xk is composed of

the leaves quantity lk, and asset price Sk, xk = {lk, Sk}. The action set is

composed of actions that can increase the velocity by 1, do nothing or decrease

the velocity by 1, A = {−1, 0, 1} hence vk+1 = vk + ak the state space is thus

de�ned as lk+1 = lk + vk+1

Sk+1 = Skexp(σWk)(1 + θvk)
(65)

with initial conditions S0 = S and l0 = L, and transition probability

p(xk+1|xk, ak).
One of the key criteria for having a functioning model is to ascertain the

correct state space representation. From a practical perspective, for Q learning

to occur successfully the state space must be well traveled, so that extensive state

space exploration occurs and an action selection policy can be de�ned. The state

space provided in the previous models are primarily set up for making decisions

at a physical position decision point. We have previously de�ned the execution

strategy position as the leaves quantity, that is for a sell strategy the number of

assets remaining that must be sold. The trading rate is the number of assets that

will be sold in a trading interval. The realization of this model is adapted for

this simulation to a reduced discretized state space xk ∈ {l̂k, Ŝk}, composed of

a leaves ratio l̂k and a asset price movement indicator Ŝk. The leaves ratio l̂k is

used to indicate the stage in the execution strategy life cycle, with 1 representing

initial period, and 0 the end period that is l̂k ∈ {1, 0.75, 0.5, 0.25, 0}. The asset
price movement indicator Ŝk represents the directional movement of the asset

price in relation to the initial price S0 and the last price Sk manifesting itself as

up/up state 4, up/down state 3, down/up state 2, or down/down state 1, that

is Ŝk ∈ {4, 3, 2, 1}. The Q table representation has an index of length 20 slots,

each index entry is a tuple containing the Q value associated with each action.

The greedy policy action selection process is driven by this association

As with the previous puck on a hill problem, or the heaven hell problem

the end goal is to achieve an end position. In the context of the sell execution

strategy this is equivalent to achieving a zero leaves position on conclusion of the

execution strategy. However the objective is not necessarily the shortest path to

the end position. The minimum cost strategy is the strategy with the minimum

Implementation Shortfall or in the context of a sell strategy this can also be

seen as the strategy that achieves the maximum wealth on conclusion. Many

of the analytical models that we have outlined impose a sell only restriction
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for sell strategies or a buy only restriction for buy strategies. In the analytic

dynamic trading strategy setting active in the money (AIM) strategies or passive

in the money (PIM) strategies simply accelerate or decelerate the trading rate

but without changing sign that is buy strategies only buy, sell strategies only

sell. Q-learning approaches are driven by the cost/reward function, hence if

actions are made available to the system then they will be explored, if the

action provides a bene�t, then the action will have an increased likelihood of

being selected by the greedy action selection policy. The greedy policy will

select the action attributed with the highest Q function value, for a given state

space grid point. As previously mentioned for a sell strategy although the cost

may be represented by the Implementation Shortfall, the reward is the wealth

achieved for the sale.

r(xk, ak) = Skvk (66)

where vk represents the number of assets sold in the interval, equivalent in

this context to nk. To con�ne the system to a given interval with a speci�ed

termination time a large penalty must be administered if the leaves quantity is

not 0 at the end time. This is a hard constraint, an approach of using a power

law increase in penalty size depending on leaves at the end time could be used

instead, in either case this is particularly important to constrain the system

to a desired area of operation. The choice of reward/cost function exposes a

number of interesting points, that is the system may learn to step out side of the

conceived bounds of the system to achieve a better reward. An example of this in

the context of this trading model is the system learning to manipulate the impact

term, increasing it to the point that the stock price turns negative to in�uence

the reward in a way that is positive to the system. A real world negative stock

price is not possible as stock is a limited liability asset hence S = (S, 0)+.
Another point is if the model is set up to represent one type of understanding,

then if the polarity of the problem reverses and the model structure changes,

the reward function will shift sign causing the reward function to become a cost

function. This would mean that the system would start learning suboptimal

actions. Consider futures commodity trading the model may shift from contango

in which the distant delivery price of a futures contract is greater than the

current spot price, to backwardization, the opposite of contango. In this case the

reward function e�ectively switches sign, hence the model would need to be able

to handle this change. For our model in a very basic setting the system learns

to speculate to buy low and sell high, whilst still having time to execute the full
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position by close of business, at the end time �xed for the given execution.

The numerical example provided (Figure: 2) shows that the model although

simple, demonstrates potential. After an initial training period the Q-learning

table has crystallized with an optimal con�guration for a single stock trajec-

tory, on which online reinforcement learning has been conducted. The system

has learned to buy assets when the cost is low, acquiring more stock before

selling when the asset price is increased, whilst balancing this trade o� with the

transaction costs associated with the sale. Although this model is not practi-

cal as it is too simple to be applied across a range of asset trajectories it does

show that with a good understanding of the problem, a discretized state model

representing the problem can be a valuable tool.
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Figure 2: Q-learning MDP Execution Strategy

Referring to the plots in Figure 2. The initial plot, shows the steps that are

taken to solve the problem for each episode, an episode is a full execution of

the strategy across all time steps from start to end. For this and the following

simulations this is �xed at 100 decision points e.g. k ∈ [1...100]. The second

plot, shows the una�ected price, with a volatility of σ = 0.2 in this example, this

is simply the stock price with no impact from trading. The third plot, shows the

price graph with impact applied, the impact θ = 0.001 so as not to overwhelm
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the price, setting θ to be too big forces the stock price to 0 on relatively small

trade package executions. The fourth plot, shows the trading velocity starting

from 0 this initially increases positively indicating that the system is buying

assets, this then becomes negative indicating the sale of assets. The �nal plot,

shows the position of the model, that is the initial asset holdings, as they initially

increase then decrease to 0.

One of the main shortcomings of this model is that there is no representation

in the state space model of the position of the system with regards to the end

time. The model simply adapts itself to a sell bias, as it knows that it must

conclude execution by a given time hence, more often than not the strategy con-

cludes prematurely, and when bench-marked against the naive strategy under

performs as the market impact term imposes too greater cost.

4.3.2 Q-Learning POMDP Execution Strategy

Drawing from the previous MDP Execution strategy, and reintroducing the

market information term to the model: Bertismas and Lo 3, as the unobserved

component of the model, where the information series is precalculated. In ad-

dition we use the step index k as the position indicator in the state space, this

approach is similar to the clock concept used to reduce an POMDP to an MDP

with the belief distribution being implicit within the model [26]. This provides

a scenario analysis model, which allows the modelling of cause and e�ect type

relationships of trading actions on the market. The velocity, price and the step

are the observable components of the model. The position is unobserved, and

the information term hidden (we cover latent processes in more detail in the

following Hidden Markov Model section of this document). The system must

adapt to the new information term. Within this framework the model state

vector is composed of the time index, and asset price Sk, xt = {k, Sk} is set up
such that vk+1 = vk + at and lk+1 = lk + vk+1the state space is de�ned asIk+1 = ρIk + σW

′

k

Sk+1 = Skexp(σWk)(1 + θvk + γIk+1)
(67)

where W and W ′ are standard Brownian motions. The distributions that de-

scribe the model are for the unobservable state transition p(Ik+1|Ik) de�ned
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by I0 ∼ N(0, ζ) , x = 0

Ik+1 ∼ N(f(Ik), ζ) , x > 0
(68)

the observation likelihood, as we can observe the stock price, is p(Sk+1|Sk, Ik+1,ak)
de�ned by

S0 = S(.) , k = 0

Sk+1|Sk, Ik+1, ak ∼ N(h(Sk, Ik+1, a), σ) , k > 0
(69)

where h(.) is a nonlinear function. the belief state follows from the continuous

time version of Equation (62)

bk+1 ∝ p(Sk+1|Ik+1, ak)
�
p(Ik+1|ak, Ik)bkdIk. (70)

The previous MDP execution strategy was run over a single price series,

e�ectively training it for a speci�c market behavior. Running the system over

a random set of price series would e�ectively cause the system to converge on

the naive Bertismas and Lo strategy of executing equal sized packets at each

time point. In fact this is a good test of the model to check that its behavior

during initial setup is correct, and to calibrate initial parameters. It allows the

correct costs to be identi�ed, as having a extremely large overrun cost e�ectively

constrains the system to the initial decision points that is for the initial values

of k, the system avoids con�gurations that would approach k → N. To allow

the system to explore the complete space successfully, a lesser penalty must be

levied, but this does mean that in some cases the system may not execute an

order in it's entirety. The sell strategy, may not only choose to buy as part of it's

sell strategy, but may additionally complete with a non-zero residual quantity.

As the model is now based around a hidden information series the model

has been run over randomly generated price series (Figure: 3), with one �xed

information series. The �rst 2000 runs are not used when calculating perfor-

mance statistics to allow the reinforcement learning process to work and the

system to train. The wealth for both Bertismas and Lo naive strategy, and the

POMDP trading strategy are then averaged, to give the �nal result over a �nal

1000 runs. This graph is produced from the last run, run number 3000.
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Figure 3: Speculating end run, POMDP

the initial Episode plot shows the exploration of the state space, initially the

space is explored quite extensively but this narrows as the system continues to

step through trading runs across each generated price series. This una�ected

price only has a small random component σ = 0.02. The information price

series are auto-correlated with lag one, with ρ = 0.9, and γ = 0.02. This means

that the information series has a signi�cant e�ect on the una�ected price, this

can be seen in the price plot. The price plot is the actual price experienced

48



by the system, including the market impact resulting from trading activity.

The impact term θ = 0.0001, has enough of an e�ect to penalize large trading

packets but does not drive the price to 0, for realistic trading. With this setup

it can be seen for this given run the information series is weighted towards

the end, the resultant price increases from step 60. The velocity plot shows

that the system starts o� selling then starts to buy whilst the price of the

asset is low, the system then starts to sell as the price rises, however for this

particular run the trading position is not closed out by the end of the trading run.

For the last 1000 episodes, or runs for this con�guration the POMDP trading

model on average outperforms the Bertismas and Lo naive trading strategy. The

expected resultant wealth for one run of the naive strategy is 10294.15 dollars

with a standard deviation of 1481.85 dollars the expected resultant wealth for

the POMDP trading strategy is 12628.99 dollars with a standard deviation of

3547.88 dollars.
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Figure 4: Start run, POMDP

Considering now an information series that is more positive at the start

of the run (Figure: 4), it can see from the episode plot that the POMDP

trading strategy gravitates to completing trading around step 50. As can be

seen from the episode once the system has crystallized some understanding of

the information series there are no overruns. The system completes all trading

activity for each run by the half way point of the trading period. The expected

wealth calculated over the last 1000 runs of the trading strategy for the randomly
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generated price series for the naive strategy is 3064.38 dollars with a standard

deviation of 330.34 dollars, for the POMDP trading strategy it is 4419.12 dollars

with a standard deviation of 411.62 dollars.

This model exposes a number of interesting features of Q-learning, in the

�nite horizon case. Firstly that the end reward/cost can serve to severely limit

the exploration of the state space forcing a sub-optimal solution if the cost of over

running is too high. This can also be seen as a risk aversion parameter, as de�ned

previously by Almgren [4]. The risk aversion parameter previously de�ned on

the variance component for the mean-variance optimization, e�ectively skews

the trade package size loading to the start of the trading period. An additional

parameter that has the same e�ect is γ the discount factor with in the Q-learning

model. If this discount factor γ < 1, then the current rewards will have greater

e�ect than future rewards, front loading the trading behavior, this behavior is

similar in e�ect to a Implementation Shortfall strategy. If this discount factor

γ > 1 then future rewards are credited with a greater e�ect than the current

reward e�ectively end loading the strategy, which has the e�ect of turning the

strategy into a Market on Close strategy, with an e�ect of targeting an end

of period trading asset price. Within Q learning γ is primarily viewed as a

discount factor where 0 ≤ γ ≤ 1, allowing γ to range larger than 1 e�ectively

credits future rewards.

4.4 Hidden Markov Model (HMM)

The term Hidden Markov Model (HMM) stems from using hidden states with a

prior dependence structure to provide a statistical model. The concept of hidden

state di�erentiates this representation from the state space representation given

in Section 3.1 which was observable. The hidden state space can be �nite e.g.

Markov chain, or a continuous called simply a continuous state space model, we

are primarily concerned with the discrete setting. Cappe et al describe a HMM

as a Markov chain observed in noise [17]. In the discrete setting a HMM is

a bi-variate discrete time stochastic process {Xk, Yk}k≥0 where k is an integer

index, {Xk}k≥0 ≡ X is a hidden state space stochastic process often called

the latent process, and {Yk}k≥0 ≡ Y an observable stochastic process that is

coupled to {Xk}k≥0, that is Y kis a sequence of independent random variables

when conditioned on Xk. In the discrete setting xk ∈ Xk is a state vector and
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yk ∈ Yk, is an observation vector

xk+1 = f(xk, wk) (71)

yk = g(xk, w′k) (72)

where w′k and wk are white noise random sequences, and f and g are measurable

functions. Equation (71) is the latent process or state equation. Equation (72)

is the observation equation [17]. The equations characterize the state transi-

tion probability p(xk+1|xk), and the additional measurement noise probability

p(yk|xk) [18]. We have already brie�y touched on Hidden Markov Models with

the information component of Section 2.2.2 model 3 [14] that was used in the

POMDP trading model see Section 4.3.2.

HMM formulations are used in smoothing, �ltering and projection applica-

tions, we will borrow from this to enrich our previous model using particle �lters,

and particle projections to ascertain a statistical estimate of the state in a noisy

environment. But before we do this, we will brie�y introduce Bayesian meth-

ods, and how they �t within the Markov setting. While noting that we have

already solved some Bayesian recursions for the belief process in the POMDP

models, in the discrete then continuous context. HMM characteristics di�er

from there POMDP counterparts through the controllability of the operations

that change the state space. POMDP's control this process, HMM are passive,

simply subject to the outcome of a change.

4.4.1 Bayesian Methods in Markov Models

Bayesian methods provide a rigorous statistical framework for dynamic state

estimation [21], To achieve this they utilize prior knowledge, that is prior dis-

tributions on the unknown quantities and likelihood functions that map the

latent process to the observations. Inference is then possible from the posterior

distribution constructed from Bayes' theorem [20]. In essence Bayes law is the

fundamental probability law of logical inference, that often results in an optimal

solution.

For recursive Bayesian estimation, two assumptions are made. Firstly that

the state transitions are Markov that is p(xk+1|xk) = p(xk+1|x1:k), and secondly
that the observations are independent. The general framework requires that a

prior distribution density p(x0) , the marginal distribution or likelihood density

p(yk|xk), and a conditional transition distribution density p(xk+1|xk) are known

52



at least up to proportionality and can be evaluated point-wise and sampled from.

The noise terms are white noise. The estimates are obtained recursively, the

posterior distribution is then calculated using the Bayes update rule

p(xk+1|y1:k+1) = p(xk+1|yk+1, y1:k)

=
p(xk+1, yk+1, y1:k)
p(yk+1, y1:k)

=
p(yk+1, yk:1|xk+1)p(xk+1)

p(yk+1, y1:k)

=
p(yk+1|y1:k, xk+1)p(y1:k|xk+1)p(xk+1)

p(yk+1|y1:k)p(y1:k)

=
p(yk+1|y1:k, xk+1)p(xk+1|y1:k)p(y1:k)p(xk+1)

p(yk+1|y1:k)p(y1:k)p(xk+1)

p(xk+1|yk+1, y1:k) =
p(yk+1|xk+1)p(xk+1|y1:k)

p(yk+1|y1:k)
. (73)

The prior knowledge of the model is given by using the Chapman-Kolmogorov

equation

p(xk+1|y1:k) =
�
p(xk+1|xk)p(xk|y1:k)dxk (74)

where the denominator for the Bayes recursion is called the the evidence is

p(yk+1|y1:k) =
�
p(yk+1|xk+1)p(xk+1|y1:k)dxk+1 (75)

and the likelihood of the k+1 observation of y is p(yk+1|xk+1). These equations
map directly to the previously derived POMDP belief state estimation formu-

lations, in a Markov context. Analytical solutions or numerical approximations

to these equations are the basis for Bayesian recursive inference [18]. State

�ltering is the process of estimating sequentially the state of a system from a

sequence of noisy measurements, with the aim of providing an optimal latent

process trajectory with regards to a cost function [32].

The optimality criteria selected for a problem de�ne the best solution. In

Bayesian �ltering the optimality condition may be, Minimum mean-squared er-

ror (MMSE), Maximum a posterior (MAP), Maximum Likelihood (ML), Min-

imax, Minimum conditional inaccuracy, Minimum conditional KL divergence,

or Minimum free energy to name but a few [18]. The MMSE estimate may be
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computed from the following formula

x̂MMSE
k|k = E{xk|y1:k} =

�
xkp(xk|y1:k)dx1:k.

At the heart of Bayesian inference lie three problems [18], normalization, marginal-

ization and expectation. Normalization used to calculate the posterior is given

by

p(x1:k|y1:k) =
p(y1:k|x1:k)p(x1:k)�

X
p(y1:k|x1:k)p(x1:k)dxk

(76)

marginalization using

p(x1:k|y1:k) =
�
Z

p(x1:k, z1:k|y1:k)dzk (77)

and expectation from

Ep(x1:k|y1:k)[f(x1:k)] =
�
X

f(x1:k)p(x1:k|y1:k)dxk. (78)

The posterior density is not easily handled as it does not admit a su�cient

statistic with �nite and constant dimension except in the case of a limited set of

dynamic stochastic systems. Various approximation methods exist including an-

alytical methods, numerical methods, multiple mode, and sampling approaches.

Sampling methods include the unscented Kalman �lter, and particle �ltering

methods. State �ltering is a powerful approach ideal for estimating in real time,

high frequency non-stationary environments [32]. The model that is described

in Section 4.4.2, has non-linear elements, numerical approximation is used to

obtain the latent state.

A normal HMM is de�ned as having a Gaussian conditional distribution of

p(x1:k|y1:k). If it is possible to model the data with a linear Gaussian HMM,

then an exact analytical solution exists that allows the recursive calculation of

the posterior distribution [20]. This is know as the Kalman recursion, it lies at

the heart of the Kalman �lter. For nonlinear or non-Gaussian data there is no

analytic solution to allow the recursive calculation of the posterior distribution,

therefore a numerical method must be used. It is also worth noting that in

general for nonlinear, non-Gaussian and non-stationary problems there is no

exact solution to the recursion in Equation (73), hence the numerical solution

is approximate, a locally optimal solution may result from the approximation

[18].
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Approximation methods include deterministic and random grid based, or

Monte Carlo sampling approaches which are often used for analytically in-

tractable problems. They can be used to calculate the probability distribu-

tion function if it is not possible to sample directly from the required posterior

distribution. However these methods are often computationally expensive.

Sequential Monte Carlo (SMC), an alternative monte carlo simulation method

takes into account the salient statistical properties of the problem, it provides

an alterative approach that can be used to more e�ciently recursively calculate

the posterior distribution [20][21][17]. In SMC methods an empirical estimate

of a distribution, called the proposal distribution, is obtained which is used to

estimate an integrand, this estimate is then adjusted according to the close-

ness of �t to the target distribution this is termed Importance Sampling. For

recursive estimation the importance weights must be recalculated to stop the

model degenerating [20]. To summarize this approach if we wish to compute

the integral of some function Ik(φ(x1:k)), the estimate can be obtained for a set

of independently sampled variables Xi
1:k ∼ p(x1:k|y1:k) for the distribution p by

the following equation

Ik(φ(x1:k)) =
�
φ(x1:k)p(x1:k|y1:k)dx1:k ≈

N∑
i=1

W i
kφ(xi1:k) (79)

where approximation given is estimated from the empirical distribution

p̂k(x1:k) =
N∑
i=1

W i
kδXi

1:k
(x1:k), (80)

where the normalized weight function is

W i
k =

wk(Xi
1:k)∑N

j=1 wk(Xj
1:k)

(81)

and the importance weight is given by

wk(x1:k) =
p(x1:k|y1:k)
d(x1:k)

(82)

where d is the importance distribution used to sample I. It can be seen that the

approximation for Ik(φk) satis�es the Central Limit Theorem with asymptotic
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variance
1
N

�
p2(x1:k|y1:k)
d(x1:k)

(φ(x1:k)− Ik(φk(x1:k)))2dx1:k. (83)

The advantages of using an SMC approach are that the rate of convergence is

independent of the dimension of the integrand, which contrasts with numerical

integration techniques which diverges as the dimension increases. In general

as the sample size is large then from the law of large numbers the empirical

estimate of an integral almost surely converges on the analytical estimate. The

SMC approach is used in the following section 4.4.2.

4.4.2 Q-Learning POMDP Execution Strategy with particle projec-

tion

An approach for representing the belief states of POMDP's in a continuous

real-valued state spaces taken by Sebastian Thrun, in the paper Monte Carlo

POMDP's [36] is an adaptive approach which draws belief states from weighted

samples drawn from the belief distribution. These samples are then represented

with corresponding rewards in a Q setting using KL divergence to locate a

nearest neighbor or as the decision impetus for the creation of a new state

mapping. Adaptive approaches for the de�nition of the state space allow the

system to add state space grid points to the state space representation. The cell

splitting approach allows the Q table to develop in the areas that are important

to the system to allow the system to focus learning in the areas that are most

signi�cant by reducing the distance required to trigger the creation of a new

state [28].

For this particular trading formulation we will continue to use our �xed state

space de�nition, but use Thun's particle projection and particle �lter algorithms

for the non-linear, Gaussian model. The MMSE estimate of the belief and

reward set is returned from the particle projection algorithm, as we are using the

original euclidean distance for calculating the mapping to the �xed prede�ned

discrete state space. We will continue to use the pricing Section 2.2.2 model 3

[14] to de�ne the price dynamics, again removing the information term from the

model. With this formulation we will enrich the trading velocity with a Gaussian

indecision component introducing to model the possibility of not being �lled over

a given interval. The model is set up such that vk is drawn from a set of possible
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velocities. The model is de�ned as follows:lk+1 = lk + vk+1(1− ηkW
′

k)

Sk+1 = Skexp(σWk)(1 + θ(lk+1 − lk))
(84)

the distributions that describe the model are for the unobservable state transi-

tion p(Ik+1|Ik) de�ned byl0 ∼ L , x = 0

Ik+1 ∼ N(f(lk), η) , x > 0
(85)

the observation likelihood as we can observe the stock price p(Sk+1|Sk, lk+1,ak)
is de�ned by

S0 = S(.) , k = 0

Sk+1|Sk, lk+1, ak ∼ N(h(Sk, lk+1, a), σ) , k > 0
(86)

the belief state is again the continuous time version of Equation (62)

bk+1 ∝ p(Sk+1|lk+1, ak+1)
�
p(lk+1|ak+1, lk)bkdlk. (87)

Within this framework sampling is from the the belief state, an importance

weight is then assigned based on the observation. The particle weights are then

normalized. The particle and corresponding normalized weight are then entered

into a particle summary set. The expectation is then calculated which provides

the resultant expected new belief state calculated from the particle �lter. The

particle �lter function is de�ned by the following algorithm from [36]:

Algorithm 1 particle_�lter

Algorithm particle_�lter(bk,ak,yk+1)
bk+1 = ∅
do N times
draw random state xkfrom bk
sample xk+1according to p(xk+1|ak, xk)
set importance factor p(xk+1) = p(yk+1|xk+1)
add < xk+1, p(xk+1) >to bk+1

normalize all p(xk+1) ∈ bk+1so that
∑
p(xk+1) = 1

return bk+1
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Particle projection then allows a set of belief state to reward functions to be

calculated which may then be used to de�ne the Q learning process. However we

take the expectation, and update our �xed Q learning table value function with

this summarized MMSE estimate. The particle projection wraps the particle

�lter, sampling an observation [36]

Algorithm 2 particle_projection

Algorithm particle_projection(bk, ak)
Θk = ∅
do N Times
draw random state xkfrom bk
sample a next state xk+1according to p(xk+1|ak, xk)
sample observation yk+1according to p(yk+1|xk+1)
compute bk+1 =particle_�lter(bk,ak,yk+1)
add < bk+1, r(yk+1, ak) > to Θk

return Θk

The model used within this con�guration is a little less stable than the

previous models as the state space vector models the position exactly. The

outcomes of this is that a change in an action for an upstream position results

in the downstream position actions being o�set. Changes to the action mappings

that occur early on have repercussions that ripple through the remaining action

choices. The model itself is not optimal. The ability of the particle �lter to

operate within these noisy conditions however, allows us to investigate some of

the noise tolerance properties of the particle �lter.
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Figure 5: Particle Project POMDP

In running the model (�gure 5), over a generated price series, the resultant

model wealth of one run of the naive strategy calculated over the last 1000 runs

for this price series was 10413.88 dollars with a standard deviation of 329.59,

the wealth for the particle projection POMDP was 13884.13 dollars with a

standard deviation of 347.50 dollars. The position series is linear, it follows

a naive strategy trajectory, this model almost always ends prematurely, hence

provides better performance than the Bertismas and Lo naive strategy when the
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price series has a greater price at the initial time period. The model although

suboptimal, does demonstrate the possibilities of using particle �ltering within

the Q-Learning context. Possible extensions would derive online parameter

estimation algorithms based on the gradient of the �lter distribution within the

particle �lter for volatility modelling, allowing the calibration of the Q to be

optimized for the problem in hand.

4.5 Summary

This chapter has introduced at a high level the main characteristics of each of

the Markov model types as categorized by Littman [27]. A trading strategy

has then been provided for each of the outlined MDP categories to investigate

the modelling framework and analyze the optimal execution problem from a

novel perspective. It can be seen that utilizing a numerical method for solving

the optimal execution problem allows signi�cant �exibility in the representation

of the problem. Furthermore the Q-Learning approach is extremely powerful

allowing the system to calibrate itself. However to obtain a practical solution,

the correct state space representation, market signals, and value function must

be studied further.
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5 Conclusion

In conclusion the goal of exploring the problem of optimal execution for algo-

rithmic trading in the context of MDP's has been achieved. Like the ancient art

of alchemy, the execution problem has been decomposed into it's base elements,

of trading strategy, price model, market impact, and optimality criteria. Each

of these constituent components has been further explored, looking �rst at the

mechanisms that govern their behavior and then distilling these mechanisms to

the most important underlying factors and �nally representing them as sets of

equations used to model the problem throughout this work. The motivation

stated for attacking this problem of minimizing cost, has introduced us to the

concept of Implementation Shortfall, a topic of research in itself. Implemen-

tation Shortfall in the context of this thesis has been further reduced to the

indirect component of execution cost, leading us to the optimality criteria of

expected cost minimization and mean-variance cost minimization.

It has been these optimality criteria that have driven our solutions, pre-

dominately through the Bellman value function, that has provided a thread

of continuity through the linear programming solution of Bertismas and Lo,

through the HJB formulation of Almgren to the MDP value function presented

in Chapter 4. The initial solutions given were presented to allow greater in-

sight into the problem domain to be ascertained, this objective was achieved.

These naive solution has in addition provided a point of reference to contrast

the Markov execution strategies against.

Re-framing the problem in the Markov setting, using MDP's and Q-Learning

for the optimal execution problem to the authors knowledge is novel and unique.

To this end all aspects of the formulation, and representation have been a

substantial learning experience. The problem has been broken down and the

boundary conditions used to constrain the original solution to sell (buy) only

or complete execution in full discarded. If an adequate state space representa-

tion, market signals and reward feed back mechanisms are provided, the system

itself using reinforcement learning can discover the optimal trading trajectory,

calibrating itself for the task at hand.

The MDP models provided have shown that it is possible to not only provide

structural algorithms using this approach but that these models are more than

capable of being used in the sophisticated situational algorithm space. However,

the environment that each of the models has been run in has been tailored to

allow the ultimate success of the model outlined in this thesis. Actual imple-
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mentation would require further modelling and research.

Going forward, as a research area this has great potential. Identifying the

correct model state space, market signals and reward criteria, using Gaussian

nearest neighbor state space representation techniques and parameter inference

within underlying particle �lters someone somewhere will make a lot of money.
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