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Summary

This thesis is concerned with the development of methodology for nonstandard Se-
quential Monte Carlo algorithms. It is very important in practice to be able to sample
from a target probability distribution which can be evaluated only up to a normalising
constant and does not have a standard form. Scientific disciplines in which this problem
arises include; statistics, engineering, bioinformatics, finance and computer vision. In
many cases using standard sampling techniques such as inversion or rejection to sam-
ple from a target distribution is not possible or proves too much of a computational
burden. This has led to the development in recent years of much more advanced al-
gorithms which allow one to obtain the required samples from the target distribution.
In batch settings one typically utilises some variant of the well regarded Metropolis-
Hasting algorithm. However, in on-line settings in which data is arriving sequentially,
often Metropolis-Hastings is no longer a viable alternative and as a result, Sequential
Monte Carlo techniques have been developed to tackle these problems. Sequential Monte
Carlo utilises the idea of Importance Sampling to perform the task of sampling in on-line
scenarios. It is a technique which uses a collection of particles or samples to represent
the inferred posterior distribution and updates the particles as more observations are
received. The algorithms developed using Sequential Monte Carlo sampling have enjoyed
wide-spread use in tracking and computer vision due to the fact that they provide a nat-
ural means of sampling a state distribution of a target sequentially in time. It was not
until recently that Sequential Monte Carlo approaches have started to be applied in more
traditional statistical problems which would typically be handled by batch algorithms.

It is the focus of this thesis to develop a methodology that will allow one to ob-
tain samples from a sequence of distributions which are all defined on the same fixed
dimensional space. This is a non-standard idea, since standard Sequential Monte Carlo
algorithms deal with situations in which the space on which the sequence of target poste-
riors are defined upon, grows with each iteration, as a product space. Therefore, one may

view the work in this thesis as a means of turning problems, which would typically be
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solved using classical batch algorithms, into a sequential problem in which the solution
utilises qualities of the Sequential Monte Carlo framework. The advantage of such an
approach is detailed throughout the thesis and guidelines as to when this methodology
will be a viable alternative to Metropolis-Hastings have been presented. Finally several
detailed examples have been provided to demonstrate how effectively the new Sequential

Monte Carlo methodology performs relative to several standard algorithms.
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Notation

E()
p(),p(l)

p(d.)

N (;m,0?)
Ga (;p,v)
ZG (o, B)
U(;a,b)
P(5A)
exp (.5 p)
]

AT

"

A;

expectation operator
probability density, conditional probability density
probability distribution
Normal distribution with mean m and variance o2
Gamma distribution with parameters p and v
Inverse Gamma distribution with parameters a and (3
Uniform distribution over [a, 0]
Poisson distribution parameter A
FExponential distribution with parameter u
integer part
transpose of matrix A
matrix at previous iteration or neighbouring time step
matrix with 5 column changed
forward transition kernel giving probability
of moving from 7’ to z (at time t)
backward transition kernel giving probability
of moving from 7’ to z (at time t)
vector or sequence of k¥ random variables at time ¢
path history of k random variables from time 1 to time ¢
time ¢ have model order k; and Xy, is interpreted as
the vector or sequence of k; random variables at time ¢
Xk, a:kt 18 the vector of random variables, at time ¢,
located temporally in a window of time [t — A, {]
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vector (Xi.4 1, Xat1:), basically all the parameters
except the a'?
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Chapter 1

Bayesian Analysis and Models

1.1 Introduction

This chapter provides a review of the fundamental ideas required for Bayesian analy-
sis. There are two well studied approaches to performing probabilistic inference in the
analysis of data, namely the frequentist approach and the Bayesian approach. In the
classical frequentist approach one takes the view that probabilities may be seen as rel-
ative frequencies of occurrence of random variables. This approach is often associated
with the work of J. Neyman and E. Pearson who described the logic of statistical hy-
pothesis testing. Other key figures include J. Venn, R. A. Fisher, and R. von Mises. The
second approach known as the Bayesian paradigm takes a different view. In a Bayesian
analysis the distinction between random variables and model parameters is artificial, and
all quantities may have a probability distribution associated with them, this probability
represents a degree of plausibility. Basically, "Bayesians" condition on the observed data
and use a probability distribution over the hypotheses. It is beyond the scope of this
thesis to enter into the well documented debate over the merits of either method, instead
the author suggests that the interested reader can find a more in-depth philosophical

discussion on the details of each approach in [15], and the many papers of J. Berger.
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1.2 Bayesian Inference

The premise of the work presented in this thesis revolves around a statistical analysis built
on Bayesian methodology. The Bayesian approach to data analysis is a widely accepted
means by which one may carry out modern statistical data analysis. Bayesian analysis
is so named as it centres around Bayes’ rule shown below in equation (1.1). It should
be noted that, when one uses x and y this may be understood to represent both a single
variable or a multi-dimensional vector of random variables, respectively observations.
The following terminology is used; p(z|y) is known as the posterior probability, p(y|z) is
the likelihood, p(z) is the prior probability and p(y) is the evidence.

ploly) — EUERE) (1.1
p(ylz) p(z)

[o(lz)p () dz

The Bayesian approach [12] involves estimation of unknown "states" from a set of
observations. Generally, one has prior knowledge of the system being modelled which
can be formulated, in a Bayesian framework, as a prior distribution. Then using the
mathematical model that one has to approximate the physical phenomena being observed,
one may obtain the likelihood which relates the prior knowledge to the observations. This
is then used to construct the posterior distribution for the "state" of the system given
the observation sequence obtained.

In this Bayesian framework the unknown parameters are treated as random variables
and their prior distribution is updated via Bayes theorem to provide the posterior dis-
tribution which is conditioned on the set of observations. Then all inference that is of
interest is carried out with the aim being to obtain estimates of the posterior probability
of a state given the observations. It is also important to mention that much literature
has been devoted to understanding how one can sensibly assign prior probability distri-
butions and what they mean in different contexts. There is a multitude of references

available on this topic and the author recommends; [19], [15],[48],[75].
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Bayesian Parameter Estimation

As stated, the focus of Bayesian analysis revolves around the posterior distribution.
However, when one wants to perform parameter estimation, the value of the unknown
parameter vector x can be estimated in several ways. The two most common methods
used to obtain a parameter estimate from the posterior distribution of interest are the
Maximum A Posteriori (MAP) criterion and the Minimum Mean Square Error (MMSE)
or minimum variance estimator [79).

The MAP estimate depends on the likelihood function weighted by the prior proba-

bility and is given as follows,

Tppap = 0L l’l’lep (:U’y) :

The MMSE estimate is given by,

Toinisy = / zp (zly) dz.

Bayesian Model Selection

There are three broad approaches to understanding model selection which are labelled,
according to [15], [44] as the Mopen, Meompietea and the M. jpseq modelling perspectives.
The M 504 approach takes the view that the class of models under consideration con-
tains the true model. The M ompietea View corresponds to the case where although a
formulated belief model is known, due to intractability of analysis other models are con-
sidered. The M., approach takes the view that none of the models under consideration
completely captures the intricate relationship between the inputs and the outputs, [34]
page 24. Hence, the Mcompietea and Mper, approaches places prior probabilities on each
model which reflect the relative degree of belief in each model, for the class of models
being considered. All of these approaches lend themselves to a Bayesian analysis. A

key aspect of Bayesian model selection is that one can improve the quality of the model
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selected through the introduction of prior quantitative or qualitative knowledge. This
is achieved by assigning prior distributions to the model parameters and then updating
these parameters in light of the observations. Bayesian model selection involves the selec-
tion of the model, usually from a finite set of possible models denoted {M;}, which most
accurately represents the observations, according to some criterion of interest. Hence
Bayesian model selection can be considered as the process of determining the most plau-
sible model for the data given the set of possible models to choose from. The Bayesian

model selection approach is,

p (y|M;) p (M)

p(y)
fp (y|z, M;) p (x| M;) p (M;) dx

> [ p Wiz, My) p (x[M;) p (M;) d

p (Mily)

It is important to mention that one should not forget that the outcome obtained
from the above analysis results in a distribution and hence reflects a probability of each
given possible model choice; in the continuous range of models scenario one will obtain a
density. Hence one can decide to either perform subsequent evaluations using weighted
model averages or to use a point estimate such as a MAP estimate. A discussion of the
pros and cons of this method are presented lucidly in [83],[72],[71]. A very insightful
discussion of the merits of both open and closed perspectives of model selection, in terms
of Bayes factors or loss functions, is presented in [34].

It is important to mention that model selection can be computationally challenging.
Often an exhaustive search of the model space to determine the best model for a given
situation proves to be a massive computational effort and is therefore infeasible or im-
practical. For this reason many techniques have been developed to aid in the search for
the optimal model, these include Greedy searches, Leaps and bounds, EM algorithm [33],
Simulated Annealing [57] and Genetic algorithms. This thesis will also present a new
technique to perform model selection, which efficiently explores the model space to find

the optimum model.
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1.3 Definitions and Notation

This section shall be used to introduce some notation which will be used throughout the
thesis. It shall be assumed that a random variable X can be defined on a probability
space of the form (#,€,P). Where, I/ will represent the space of all outcomes which
may be either discrete or continuous and may be of multiple dimension, but will always
be real. € will represent o (/) which is the sigma algebra generated by the space I,
which is the set of all possible outcomes and P will be a probability measure on the space
E. The notation 7 (dz) shall be used to represent the law or distribution of the random
variable X, which is a probability measure given by the image measure on the space in
question. One may then assume that given the law of the random variable X, one can
define a Radon-Nikodym derivative with respect to the dominating measure dz. This is
equivalent to stating that 7 (dz) admits as a density 7 (z) with respect to dominating
measure dz. Additionally, the following notation was used throughout this thesis, where

for any probability density 7 and sequence of transition kernels { K},

TTKz‘:j (lg) £ /7?(%‘1) Hjs:l K, (ajsflaxs) dl‘iflzjfl-

In terms of notation it shall also be assumed that the un-normalised version of the
density 7 (x) is given by f(z). In all models considered in this thesis the spaces of
interest will be either discrete or continuous, open or compact subsets of Fuclidean space.
Furthermore, it shall be assumed that all distributions of interest admit densities with
respect to either the counting measure or Lebesgue measure. Having established this
notation which shall be used throughout the thesis, it is now important to highlight the

aims of the thesis and how the thesis will be structured.
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1.4 General Aim of Analysis

The general aim of the analysis contained in this thesis can be summarised as trying to
estimate a posterior distribution, given a noisy observation sequence. This estimation can
either involve receiving sequential observations and carrying out updates to the posterior
in light of the new observations, or batch scenarios in which all the observations are
available and the aim is to estimate the posterior conditional on knowledge of the batch
of noisy observations. Markovian, non-linear and non-Gaussian signals will be considered
in this thesis. Systems which are linear and (Gaussian are not of particular interest, in
the sense that they have an optimal solution known as the Kalman filter, which is well

studied and widely implemented in practice.

1.5 Structure of Thesis

To a certain extent, each chapter in this thesis may be read independently as they are
fairly self contained. However, the chapters do lead into one another, in the sense that
each chapter builds on previous chapters. The second chapter provides a literature review,
which motivates the reason for developing the new methodology forming the body of this
thesis. The third chapter develops the fundamental framework and provides guidelines
for the use of the new methodology developed in this thesis, termed Sequential Monte
Carlo Samplers (SMC Samplers). Chapter three also provides an application and then
the results of simulations obtained using SMC Samplers methodology are compared to
existing algorithms in the literature.

The fourth chapter extends the Sequential Monte Carlo Samplers methodology to pro-
vide a new framework for trans-dimensional analysis, which is termed Trans-Dimensional
Sequential Monte Carlo (TDSMC). Again, applications are provided with comparison to
existing techniques. The fifth chapter is devoted to two detailed applications, the esti-
mation of an inhomogeneous Poisson Process rate function and secondly, basis function

regression for the General Linear Model. These applications provide the reader with
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a detailed account of how to implement the new algorithms for TDSMC in real world
problems. Simulation results which demonstrate how effective the new algorithms are in
comparison to existing techniques and algorithms are also provided. The final chapter is
conclusions.

Chapter 2: Monte Carlo Methods

This chapter will provide a literature review of Monte Carlo methods and the justi-
fication for new methods, which are not as computationally constrained as the standard
classical Monte Carlo approaches which utilise sampling techniques such as inversion sam-
pling and rejection sampling. The sampling techniques presented include, batch sampling
algorithms such as Metropolis-Hastings algorithm, the Gibbs sampler and the method-
ology of Reversible Jump Markov Chain Monte Carlo to carry out trans-dimensional
analysis. In the sequential setting the basics of Importance Sampling is presented fol-
lowed by the methodology of Sequential Monte Carlo.

Chapter 3: Sequential Monte Carlo Samplers

Initially, this chapter provides justification for developing the new SMC Samplers
methodology, whilst motivating its use in several situations which include; utilising SMC
in situations typically associated with MCMC, optimisation and moving from an easy to
sample distribution to a difficult distribution, through a sequence of intermediate distri-
butions. Guidelines are provided to aid effective implementation of SMC Samplers algo-
rithms, along with theoretical analysis to support these algorithmic guidelines. Finally,
an example is presented which deals with Bayesian variable selection. This example pro-
vides comparison to existing algorithms such as Annealed Importance Sampling, MCMC,
parallel MCMC and Simulated Annealing.

Chapter 4: Trans-Dimensional Sequential Monte Carlo

This chapter presents an extension of the ideas developed in the previous chapter.
The TDSMC algorithm is developed and motivated through analogy to RIMCMC. In
this respect it is demonstrated that TDSMC is to SMC Samplers methodology, what
RIMCMC is to MCMC methodology. Then guidelines are presented for efficient applica-

18



tion of TDSMC. Finally, a comparison between existing algorithms such as SVM, RVM
and MCMC is made through application of TDSMC to two real data sets, which are
considered bench-marks for comparison of algorithms. This application involves radial
basis function regression.

Chapter 5: Applications

This chapter is dedicated solely to developing two detailed applications of the TDSMC
algorithm. The first application involves the estimation of an inhomogenecous Poisson
Process rate function, using a simple piecewise linear function approximation. Several
examples are presented, culminating in application of the new TDSMC algorithm to the
coal mining disasters between 1851-1962 data set. This allows for a comparison between
the RIMCMC algorithm and the TDSMC algorithm, in a batch data scenario. The
second application involves basis function regression for the General Linear Model. A
generic algorithm is developed which includes developing different types of "moves" which
are very general and may be applied in a range of situations. The application presented
here involves estimation of parameters of exponential basis functions, in a scenario in
which noisy observations are arriving sequentially.

Chapter 6: Discussions, Conclusions and Future Research

A summary of the work undertaken and ideas for future research are presented.
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Chapter 2

Monte Carlo Methods

2.1 Introduction

This chapter provides an overview of several methodologies which have been developed
to produce samples from a target distribution, 7 (dz). This has been the focus of a
significant amount of scientific research for the past few decades and in the context of this
thesis the general aim of the analysis can be summarised as trying to estimate a target
posterior distribution given a noisy observation sequence. In this Bayesian inference
setting the target distribution 7 (dz) takes the form of a posterior distribution p (dz|y).
The Bayesian inference approach used in this thesis requires the ability to simulate from
the posterior distribution of interest. Several techniques have been developed to obtain
samples or realisations of random variable X which is distributed according to 7 (dx).
This is a significant problem in many fields of research as the samples obtained may
have several applications as will be explained. Omne of the fundamental uses of these
samples is to help characterise the distribution, 7 (dz), through empirical estimates of
the moments and sufficient statistics. Another, very important use of samples drawn
from a distribution, which has spawned several fields of research, involves the casting of
difficult integrals which are in high dimensional spaces in the form of expectations with

respect to the distribution, 7 (dz). This plays a particularly significant role in Bayesian
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inference. Other significant uses of these samples involve; optimization and obtaining
estimates of solutions to many inference problems which are contained in the fields of
electrical engineering, communications, control, bioinformatics and finance, to mention
a few.

In the Bayesian framework presented previously, one generally requires the ability to
solve multidimensional integrals to determine things such as the model evidence, or the
marginal posterior distributions in situations such as filtering recursions or smoothing,
expectations and moments with respect to some known function and the removal of
nuisance parameters. These integrals are generally difficult and may not have tractable
closed form solutions, hence there was a strong need to develop simulation techniques to
approximate the solutions of these integrals. Classical numerical integration techniques,
such as Gaussian Quadrature and Simpsons rule, are fine in low dimensions, however
as the integrals become more complicated and higher dimensional the computational
requirements of such techniques rapidly becomes too costly for these techniques to be
viable [79]. This is especially bad for "on-line" applications in which the integrals are
solved progressively in time, as new data or observations are recorded. The success of
Monte Carlo techniques stems from the fact that unlike the classical techniques mentioned
above which require a grid of points, the Monte Carlo techniques to be discussed do
not have this dimensional constraint. That is there is no direct dependence between
computational requirements and dimension in Monte Carlo integration [37]. Obviously
as the dimension grows, the number of samples required will need to be increased, and
one can also not typically say how many samples would be required for a given problem

in a given dimension.

2.2 Monte Carlo Methods

The power of Monte Carlo techniques to solve high dimensional integrals has been utilised

extensively throughout many fields. The reason why these techniques have been so suc-
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cessful is that they are not subject to any constraints on linearity or Gaussianity and
hence prove to be very general in nature. The importance of the method lies in the fact
that one may consider difficult integrals as expectations, and thus may draw samples from
the distribution with respect to which the expectation is defined and compute an approx-
imation of the integral as a sample average. Furthermore, convergence results for several
key classes of Monte Carlo approximation techniques have been studied and are now well
understood. This allows one to optimise Monte Carlo techniques and places them on a
sound mathematical footing, which enables practitioners to be confident that the results
obtained through application are mathematically consistent, logical and reproducible.
The basic idea behind Monte Carlo methods is that any probability measure, 7, de-
fined with respect to a measurable space, (I, £), can be approximated using the following

empirical measure:

N
1
N . _
7 (dz) = N ;1 Sy (dx)

where, {X(i)}i

_,.y 18 a sequence of N iid. samples of law, 7, and one assumes 7 (dx)
admits a density with respect to Lebesgue measure denoted 7 (z).

This approximation has led to wide-spread use of Monte Carlo techniques, specifically
with respect to approximating difficult integrals. The classical approach to Monte Carlo

integration can be understood by looking at the generic problem shown below, where one

requires a solution to the integral.

E, [ (X)) = / o (2) 7 (2) da

In what is known as "Perfect Monte Carlo Sampling", one can generate samples,
(X M L xw )) , from the density, 7(z), using some technique such as rejection sampling,
inversion sampling or a technique such as Box Muller. Then these samples may be used

to obtain an empirical average, which can be used as an approximation to the solution
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of the integral in question,
N
o i
SON:NE P (X9).
i—1

Then, applying the Strong Law of Large Numbers (SLLN), it can be seen that @y
converges almost surely (m-a.s.) to E,[¢(X)], for a suitable class of functions. The
second thing to note is that when the second moment is finite, then not only is it known
that a.s. convergence applies but one can also obtain a rate of convergence of @, to
E. [¢ (X)], assuming that ¢ is an element of the class of square integrable functions.

This rate of convergence is obtained by estimating the variance using the generated

samples, (X(l), ....,X(N)), as follows,

1 N

Vv = 10 o (X9) -2y

i=1

Combining this information one may invoke the Central Limit Theorem (CLT) to
determine that W ~ N (0,1). This has the advantage that now one may obtain
confidence bounds on the estimator, @, . Furthermore, the rate of convergence is clearly
independent of the dimension of the integrand. It is important to realise that this all
relies on the fact that it is possible and not too computationally difficult to obtain samples
from the distribution of interest, 7(z).

There is a large literature on methods for simulating from a target distribution, 7 (dz).
The most basic of these techniques involves uniform random variate generation followed
by inverse transforms, there is a long list of these general transform techniques which
include methods such as Box-Muller. Many of these techniques are thoroughly detailed
in the two excellent texts [35] and [75].

However, most distributions which are of importance in modelling real world systems
are too complicated to obtain samples from using direct inversion techniques as they may
be multi-variate, non-standard and only known up to proportionality. In these cases, one

may attempt another class of simulation techniques known as Accept-Reject, which only
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requires a knowledge of the functional form of the density of interest, up to normalisation.
Given a target density of interest 7 (z) o f (z) and a density g (z) o g (x) which is casier
to simulate from than the target density, the first requirement is to determine a constant

M such that
f(z) < Mg(z)

is true on the support of f (z), [74]. The Accept-Reject algorithm then proceeds as
shown below,[76] page 49.

Accept-Reject Algorithm
e 1. Generate X ~ g, U ~U[0,1]
2. Accept Z =X ifU < f(z) /Mg (z)

3. Return to 1. otherwise

The proof of this procedure for obtaining samples form the target distribution of

interest is very simple. The distribution of Z is given by,

Mg(x)

Pr(US /(z) )

Mg(z)

f(=)
T z) = Pr z f(x))_Pr(XSZ’US )
Pr(Z<z) = P <X§ V<5 =

ffooo fof(x)/Mg(m) du g (z)dz - ﬁ SO f (z)dz

S M dug @) de g [ f (@)de [ 1w

which proves the required result. These techniques are widely studied and it is not
the aim of this thesis to provide a detailed review of these fundamental techniques, the
interested reader is referred to [75] and [18].

In situations where the described techniques either fail or become too computationally
intensive, researchers have developed other techniques to utilise the framework of Monte
Carlo simulation. The first of these techniques to be discussed will be Markov Chain

Monte Carlo (MCMC) techniques.
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2.3 Markov Chain Monte Carlo Methods

In order to overcome the problems discussed, with regard to difficulties in obtaining sam-
ples from the required target distribution. The MCMC approach constructs an ergodic
Markov Chain, { X, ...., Xx}, taking values in a measurable space, F2. This Markov chain
is constructed to have the property that it has a limiting, invariant distribution, which
is the target distribution of interest, 7 (dz). This invariant distribution is the target
distribution that we require samples from in order to calculate Monte Carlo estimates.
Now for the Markov Chain samples to be used as samples from the target distribution,
it is necessary that there exists a unique invariant distribution which is the target dis-
tribution and that the Markov Chain is ergodic. The requirement of ergodicity, in the
most simple situation of the discrete state space, effectively requires that there is a single
non-empty closed class which is aperiodic and that there exists a state, jg, such that the
expected recurrence time, E7;,, is finite. An excellent review of the properties of more
general state space Markov chain theory and the analogous definitions can be found in
the following references [67], [46], [75]. It should also be mentioned that a lot of work has
been focused on reversible chains that satisfy the condition shown in(2.1), where 7 (dz)

is the stationary distribution and K (z,z) the transition kernel.

7 (dz) K (z,dz) = 7 (dz) K (z, dz) (2.1)

When these sufficient conditions are satisfied one can use the Markov Chain iterations,
{Xi,..... Xn}, in the Monte Carlo integral to obtain the estimator @,. This estimate
can be considered as an ergodic average and convergence to the required expectation
is ensured by the ergodic theorem. A technical discussion on some of the properties of
this convergence is found in Roberts and Tierney’s sections of [46]. There are several
methods of constructing a Markov Chain which has as its stationary distribution the
required target distribution, however they are all special cases of the general framework

established by Metropolis and Hastings [46]. The two methods that will be presented in
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this chapter are the Metropolis-Hastings algorithm and the Gibbs sampler.

It is worth drawing to the attention of the reader that, although a lot of research has
been carried out using reversible Markov chains, recent work by Diaconis, Holmes and
Neal [36], [68] has focused on non-reversible chains. It has been shown that a reversible
Markov chain on a finite state space, that is irreducible, can be used to construct a
non-reversible Markov chain. When estimates are carried out using the samples from
the non-reversible Markov chain, the variance of the estimate has been proven to be at
least as low as that obtained with the reversible chain. This suggests potential for more
exploration and it would be interesting to consider more general state spaces such as

continuous state spaces to see if these results still hold.

2.3.1 Metropolis-Hastings

The Metropolis-Hastings algorithm was first developed by Metropolis et al. (1953) [66]
and then later extended by Hastings (1970) [55]. The Metropolis-Hastings algorithm
has a proposal distribution, g (z,.), which conditioned on the current state, is used to
sample a proposed new state, Z; 1, for the Markov chain. Then this proposed new state
along with the current state of the Markov chain, X3, are used to calculate an acceptance
probability. The acceptance probability is the probability of whether the Markov chain
makes a state transition to the new sampled state, otherwise the Markov chain remains in
the state it was in at the previous iteration. Hence, this acceptance probability is crucial
as it ensures that the Markov chain that is being constructed will have the required
stationary distribution. For clarity, the reader is reminded that the notation X; will be
used to represent the state of the Markov chain at time ¢, and will in general be a vector.

It should also be mentioned that the Metropolis-Hastings algorithm allows one to
construct a Markov chain which is free to make moves in any direction and to anywhere in
the state space, defined by the support of the target distribution of interest. Additionally,
when calculating a Monte Carlo ergodic average estimate for the integral, one would like

the variance of the estimate to be as small as possible. One way of helping to ensure
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that the variance of the estimate is kept to a minimum is to use only samples from the
Markov chain created, which one is fairly confident come from the Markov chain once it
has reached its stationary regime. This is achieved in most simulations by discarding a
certain number of initial samples known as "burn in" samples. For a detailed discussion

of these ideas there are several good references, the author directs the reader to [46], [75],

[84], [25], [66], [55], [63].

Metropolis-Hastings Algorithm
e Initialisation : t =0, Xg = xg

e Fort=1: N

1. Draw proposal Z; 1from proposal distribution g (¢, .)

2. Evaluate the acceptance probability :

(87 (l‘t, Zt+1) - min (17 W(:Bt)q(SUt,Zt+1)

3. Sample random variate U ~ U]0, 1]
4. MU < a(Xe, Zi1)
Xit1 = Za
else
X1 =Xy

end

The Markov chain created by this algorithm is reversible and has the required target
distribution, p (z). The transition kernel of the Markov chain created in the Metropolis-

Hastings algorithm has form,

K (»Tt; d$t+1) = (g (:Eta de‘t+1) Q ($t;$t+1)

4 l1 _ /q(mt,z)a(mt,z) dz| T (21 = ).
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Where I(.) is the indicator function, the first term represents the acceptance probability
of the proposed state and the second term represents the rejection probability of the pro-
posed state. The choice of proposal distribution is very general, however blind selection
can lead to slow mixing of the chain and long burn in times. This will be reflected in
the acceptance probability ratio. For example, for the GGaussian random walk proposal
it has been shown that ideally one should use acceptance probabilities between 15% and
50% [78], [77] as a general guide. There have been a few studies for optimal acceptance
rates using different types of proposal distribution in different dimensions, a summary of
these may be found in [46] on page 55. This will ensure that the chain is not proposing
steps which are too large, hence rejecting lots of moves and also not steps which are too
small and hence accepting most moves, but exploring the state space very slowly.

There have been many versions of this algorithm developed all of which have differ-
ent properties with respect to the manner in which the Markov chain created explores
the state space. The most commonly known algorithms include the Metropolis algo-
rithm, which has only symmetric proposal distributions [66], the Independence sampler
[46], Random walk Metropolis [46], Configurational Bias Monte Carlo [80], Multiple Try
Metropolis [65] and the single component Metropolis-Hastings algorithm. The single
component Metropolis-Hastings algorithm is so named since it does not update every
component of the state vector X; in a block at each iteration. Instead it is more conve-
nient and computationally efficient to divide X; into sub components, of possibly differing
dimension and then update them one by one. This can be done either one element at
a time or larger sub-blocks can be used. The other consideration is that the ordering
of which components should be updated can be decided randomly or deterministically.
If the deterministic scan sampler is used, which consists of say d consecutive reversible
components, it is important to keep in mind that although each component is reversible
the over all sampler is not reversible. A method of obtaining a reversible sampler would
be to use the random scan, as discussed in [46] on page 51, where the component block

to be updated at each iteration is determined randomly.
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2.3.2 Gibbs Sampling

Gibbs sampling is the most widely used form of the single component Metropolis-Hastings

algorithm. It involves sampling from full conditional distributions shown below,

7 (2)

[ (z)dz;

7 (zi|x_;) =

Due to the construction of the Gibbs importance distribution, the acceptance proba-
bility of a proposed new state for the Markov chain being simulated is always identically
one. It is important to understand the nature of the moves that are possible for any
given Markov chain construction method, since the types of move possible will affect the
rate at which the Markov chain mixes. This ultimately has effects on factors such as
the chain length required for the "burn in" stage, and the variance and validity of the
estimate obtained using the Markov chain variates in the Monte Carlo approximation.
The Gibbs sampler only permits moves which, at any given time ¢, are parallel to the
axis of the component of the state which is to be updated. As mentioned this can affect
the ability of the Gibbs sampler to explore the state space thoroughly. For an in depth
discussion of these factors the reader is referred to [46],[75], [63].

Gibbs Sampling Algorithm
e Initialisation :t =0, Xg = x9
e Fort=1: N

— Iterate from s =1 : p where p is the number of sub-blocks

Sample X ~ 7 (.|z_s¢) where

X*S,t = {Xl,ta ceey Xsfl,b Xs+1,t*17 "'Xp,tfl}
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Now the transition kernel for the Gibbs sampler is given by the following expression,

p

K (ﬂﬁt; $t+1) = HW (mk,t+1’$7k:,t+1) .

k=1

For an in-depth discussion on the finer details of convergence and other properties of
Markov Chains the reader is referred to [67].

Finally another important methodology, that is of key relevance to this thesis, is
Reversible Jump Markov Chain Monte Carlo (RJMCMC) which was first introduced
in its current form by Green [52]. However, carlier work by Grenander and Miller [53]
presented an algorithm for continuous time models which they termed jump-diffusion.
For the purpose of this report the author will be most interested in thinking about
RIJMCMC as methodology to deal with problems which are trans-dimensional in nature.
For an in-depth discussion and measure theoretic presentation of RIMCMC methodology
the reader is directed to [52], [51] and [91].

2.3.3 Reversible Jump Markov Chain Monte Carlo

When one wants to carry out Bayesian analysis in a situation where there is a range of
models which have parameter spaces of differing dimensionality, it is usual to account for
the model uncertainty by assigning a prior distribution over the collection of competing
models. In such situations the posterior distribution over the unknown models and model
parameters, cannot be analysed using the standard Metropolis-Hastings framework. The
difficulty that arises when trying to perform model selection on such general state spaces,
which include the model indicator and each models parameters, is that it no longer makes
sense to consider ratios of densities in the acceptance probability which have support in
different dimensions. RIMCMC solves this problem by extending the basic Metropolis-
Hastings algorithm to these general state spaces. That is, RIMCMC methodology is
designed to create a Markov chain which has as its invariant distribution a posterior

distribution which takes its support on such general state spaces. This extension means

30



that now one must work with a target probability measure, 7 (dz) , and a proposal kernel,
q(z,dz), since comparing densities in different dimensions has no real meaning. So, in
working with distributions instead of densities, it is possible to ensure that we only make
comparisons under the same volume measure, which as stated earlier, we assume to be
either counting measure or Lebesgue. Hence, now the acceptance probability will contain
the ratio of densities and the ratio of the measures, leading to an additional Jacobian
term in the formulation of the acceptance expression.

The next idea of Green [52] was to realise that instead of doing the model search
in the full product space that would arise if one sampled over the model indicator and
the parameters. Alternatively, one could focus on disjoint union spaces of the form
{(k,zr)} = Urex ({k} x &%) and the target distribution defined on such a space is then

given by,
M

7 (k,dz) = Z 7 (m, dzm) Ly x x,, (k, )

m—1
where M is the family of models and z,, € A, are the model dependent parameters.

So RIMCMC, in Green’s formulation, allows the Markov chain to explore within the
sub-spaces and also jump between the sub-spaces, say from A, to A,,. It is important to
mention that to allow this behaviour one must extend the spaces to ?mn £ X, XU, and
?n,m £ X, % Uy, m and also define a deterministic diffeomorphism, dimension matching
function between these extended spaces, labelled h,,,. Borrowing the notation of [2],
this basically means that the user must define the proposal distributions gy, (.|m, Z.m)
and gnm (.|n, 2,) which go from (n,z,) to (m,z,) and back again, the extended state
spaces ?m,n and ?n,m and the deterministic transform between these spaces h,,,. Now
as explained in [2], in a move which goes from (n, z,) to (m, z,,) one must first generate
Unm ~ Gnm (N, Tn) and then evaluate (Zp, Umn) = hnm (Tn, Unm) Where the notation
zh = hl (Tp, Unm) is used for the z,, component of the function hyy,. This move

will then be accepted according to the following acceptance probability of a dimension
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changing move as shown in equation (2.2) below,

min {17 T (m7 :U;kn) q (n’m) Gmn (Um,n’my 1'7*71) det ahnm (l'm, um’n)
T <n’ n) ¢ <m’n) Gnm (un,m]n, Tn) d (ana Um,n)

} (2.2)

det Ynm@mimn) | 5o the Jacobian of the function hpm. The Jacobian

8($m 7um,n)

term in RJIMCMC is an important part of the analysis of RIMCMC and hence warrants

where the term

a brief discussion. The dimension changing move, performed by the function Ay, must
obey the change of variables theorem. This theorem effectively describes how volumes
are distorted by differentiable functions. The change of variables theorem reduces the
problem of determining the distortion of the volume to understanding the infinitesimal
distortion given by the linear map’s determinant. Hence, if S is any subset of R" and
the move involves a function h,,, : R® — R™, then the volume of h,,,’s image is given
by |det %ﬂw times the original volume, which explains why the Jacobian now
appears in the Metropolis-Hastings ratio. Further examples of how to formulate different
types of moves may be found in [51], [52], [2], [20].

The big restriction in this methodology is that the trans-dimensional moves that
are made must be reversible in nature. This means that the Metropolis-Hastings type
proposal moves between dimensions must have an acceptance probability which preserves
detailed balance or equivalently reversibility. Note there has been some discussion about
the Jacobian term which is required for the RIMCMC methodology, however the author
points out that when one proposes moves directly in the new parameter space as opposed
to dimensional matching of random variables, then the Jacobian term is unity in the
acceptance probability expression.

RIJMCMC is applied in; mixture modelling where the number of mixture components
is unknown, the number of splines in a multi-variate adaptive splines regression (MARS)
model, non-parametric Bayesian smoothing, linear regression with varying number of

covariates and finite point processes, for more details see [91]. Further references which

provide detailed insight into RIMCMC are; [52], [91], [8], [7], [2],[20], [34].
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2.4 Importance Sampling

As has been discussed, the ability to estimate integrals using a collection of random
samples is very important. Importance sampling avoids the problem of trying to sample
directly from the target distribution by instead sampling from an importance distribution,
g (z), which is selected to have the property that it is simpler to obtain samples from
than the target distribution. Then one must correct for the fact that these samples
were not taken from the distribution of interest, 7 (z), but instead from the importance
distribution, g (z). This correction step is known as importance weighting. Together
these steps produce the point mass representation of the target distribution presented
previously. Integrals of some bounded, integrable test function, ¢, with respect to the

target distribution,

mwuw=/mmawm=/ﬂ@i@ﬂmm=mpav

may then be approximated as

I (¢) = 3 T, W (X0) ¢ (x) (2.3

where the importance weight is W* (z) = 7 (z) /q (), and the particles, X® are samples

from the importance distribution, ¢ (z). This will produce an unbiased estimate since

E [qu\ (goW*)} = I, (¢W*) = I (¢)

and the variance of the estimate will be inversely proportional to the number of particles
N.

Importance sampling is performed as demonstrated below. Version one demonstrates
importance sampling in which the target distribution can be evaluated point wise and ver-
sion two demonstrates the situation in which the target distribution can only be evaluated

pointwise up to a normalising constant, which occurs most frequently in applications.
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Importance Sampling IS: ( version 1 )

e c.g. 7(z) is difficult to sample, yet can be evaluated analytically

° {X (i)}i: x4 (z) samples easily generated from Importance density ¢ (z)

W(X(i))
()

samples are weighted

N
o m(z) = Y W*®§ 4 (z) particle representation of the target density
i—1

)

Importance Sampling IS: ( version 2 )

e c.g. 7(z) x f(x) is difficult to sample, yet can be evaluated analytically up to a

normalisation constant

the samples are weighted and w® is the un-normalised weight and W® is the

normalised weight
N .
o m(z) = S WO (z) particle representation of target density
i=1

i w(®)
Where I/Vv() = W

When version two of the importance sampling techniques is used then the normalised
weights obtained provide an estimate of the "true" importance weights [42], as shown

below

W — N,
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It should be noted that when one uses importance weights given by W to estimate
an integral then the solution will be biased as a result of taking the ratio of estimates.
However, it has been shown that under mild assumptions the SLLN yields asymptotic
convergence of the estimate formed using these importance weights to the true solution,
[42]. Importance sampling can now be used to develop the more widely used sequential

version known as Sequential Importance Sampling (SIS).

2.5 Sequential Monte Carlo Methods

In many applications one is interested in "on-line" or sequential data analysis, for this
reason much effort has been devoted to developing Sequential Monte Carlo methods,
otherwise known as Particle Filters. Generally, in non-linear filtering one is interested
in calculating the solution of a non-linear system which takes values in a space of prob-
ability measures. The problems encountered usually require one to resort to using nu-
merical approximations in the form of interacting particle systems. Particle filters have
developed from this methodology and allow one to approximate distributions, sequen-
tially in time, using point-masses. The sequence of probability distributions that are
being approximated shall be denoted {%t}tzl' These distributions shall be defined to
take support on {Et}t21 such that dim (F;) < dim (E;4); eg. By = E, B, = E* and

7t (dz14) = Tt (214) dz14 where each T (214) is known up to a normalizing constant, i.e.
%t ('rl:t) = \Z;I 'ft (':El:t) where T1:t £ (SE'l, Zo, ... )mt) .

~r N —~
unknown known

This situation arises, for example when one is interested in the sequence of posterior
distributions which are formed when updating a posterior distribution in light of new

observations, arriving sequentially in time.
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Essentially the SMC principle is to approximate each distribution 7; by a weighted
sum of random samples/particles {Xl(?, W, i)} (I/Vt(i) > 0, Zi\il M/t(i) =1); ie

N
%t (dzy1y) = Z M/t(i)5x§f2 (dzy¢) and %t — 7 as N — o0

i—1
This approximation is carried out sequentially by first sampling from 7y then 79 and so
on.

Using this approximate representation of the target distribution clearly has advan-
tages as it allows computations of integrals to be carried out easily using the sampling
property of the Dirac delta mass. The weights present in the above expression are chosen
using the principle of Importance Sampling (IS). As mentioned earlier, it is often very
difficult to generate samples from the target distribution using standard techniques. Al-
ternatives for generating such samples from the target distribution, in batch scenarios
were presented at the start of this chapter. This section is now going to present sequential
sampling methods, on which there is much literature. The reader is directed towards the
following far from comprehensive selection of papers and books for further details [41],
[37], [63], [64], [24], [30], [70], [L1]. For convergence results and Central Limit Theorems
relevant to this rich class of algorithms and methodology, the following papers provide

excellent insight into the field [32],[27], [62], [39], [29].

2.5.1 Sequential Importance Sampling, Resampling and MCMC

Diversification Move
The generic Sequential Importance Sampling situation can now be derived as follows. At
time ¢t — 1, assume a set of weighted particles {VVt(f)l,Xl(fzfl} (t=1,...N, M/t(i)l > 0,
Zi\il VVt(i)l = 1) approximating 7; 1 is available, i.c. the empirical measure

7Tt 1 dﬂ?lt 1 2142(%)15)((1) ) dl‘l:tfl);
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is an approximation of 7; 1. At time ¢, one extends the path of each particle by sampling
from an importance distribution, g (x¢|Zo. 1,%1.) , which could for example be a Markov
kernel, Ky (z,2'), giving the probability or probability density of moving to 2’ when the
current state i1s . Importance sampling can then be used to correct for the discrepancy
between the sampling distribution and the target, 7 (21.). In this situation one has;

o If Xﬁ?ﬁl ~ p, , and target is 7; 1 then

,  Fa(x)
W, ; Z w® =1.
Hi—1 (Xlt 1) i=1

o If Xgi)

Xt(i)l ~ K, (Xf@l, ) and target is 7; then

7 (x()
s (X0) Fe (X0, 50)

o 7 (x{))
= t—1
7y (Xlaz 1) K, (Xt(”l,X(“)

W

the normalized weights are given by
W oc W w, (Xl(;) Z W = (2.4)

where the incremental weight is equal to

ﬂ}t (Zlfl.t) _ %t (:‘Ul:t) .
' o1 (T1-1) Ke (ze-1, 1)

(2.5)

Hence, it has been shown how one may approximate the target distribution using
a weighted delta mass or particle representation. It is also worth noting that this rep-
resentation involves approximating a continuous random variable by a discrete random

variable, with random support from the continuous target density. Additionally, the
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weighted particle representation will form an increasingly more accurate representation
of the target distribution as the number of particles is increased. As was shown in the
papers mentioned earlier, convergence results have been established in which the asymp-
totic limit of the particle representation of the target distribution has been shown to
converge to the true target distribution for a range of different classes of convergence.

Of key importance is the fact that in order to obtain a well represented point mass
approximation of the target distribution, in which the particles are located in regions of
the support where the target distribution has most mass, one must endeavour to select
an importance density which resembles the target distribution as closely as possible.
Hence, when it is possible, in order to obtain a set of weighted particles which accurately
represents the true target distribution, one should strive to select the importance density
so as to minimise the variance of the importance weights. It is intuitive therefore that
the efficiency of the importance sampling methodology is directly related to the choice
of the importance sampling density.

In [41], it is demonstrated that the optimal Importance Sampling density for a general
SIS framework is given by 7 (24|14 1) . This importance density is optimal in the sense
that it minimises the conditional variance of the particle weights. It is important to
understand that much work has been spent developing importance densities which may be
used as an approximation to this optimal importance density, in applications in which it
is not possible or not easy to sample the optimal importance density. The "efficiency", 7,
of an importance density has been studied and a "rule of thumb" criterion was established

by which one could use the estimated efficiency to quantify the effective sample size, as

first shown in [14] and [61].
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In order to obtain this expression for the effective sample size, one must first consider

the efficiency. The efficiency is determined by the following set up :
e Suppose the mean B [p (z)] of some function ¢ (z) is of interest

A~ N . .
° Eév () = %;Mf* (X(%)> ¢ (X(%)> an estimate of the mean using samples drawn

from importance density ¢(.)

N
o EY (¢) = % Z:lga (X (i)) an estimate of the mean using samples drawn from the true

target distribution 7(.)

My = ; ~ 1+ vary, (W (X)) = E, [W* (X)?] .

This approximation has been shown to hold in [61], when test function ¢ (z) varies
sufficiently slowly. This approximation is obtained by utilising the Delta method, which
is explained in [87] Chapter 3, and disregarding all but the first two terms of the Taylor
expansion. This approximation has had such a wide use due to the fact that in quantifying
the efficiency it only depends on the weights obtained from the IS step. This makes
it applicable for any scenario. The related yet more common form of quantifying the
performance is to consider the effective sample size. The effective sample size is a well
established measure used throughout the literature to quantify the performance of a
particular importance density. The effective sample size Erf provides a measure of how
much the importance distribution differs from the target distribution. If N independent
samples are drawn from the importance distribution ¢(.), then the effective sample size
is given by,

a N N ~ < 1

-1
') —_— — YV W (X 2)
rf ,),/q Eq <I/{/* (X)2> N2 szl ( )

Further consideration is that SIS in its present form suffers from a serious problem
which has become known as degeneracy. The degeneracy problem of the SIS algorithm

is that in nearly all situations, after only a few iterations, all but a few particles will
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have negligible weight. This is a serious problem as it means that the particle estimate
of the target distribution is not very good, since all but a few of the particles are located
in regions of the target distribution with significant mass. It should be noted that the
degeneracy problem will always be present since the variance of the importance weights
can only increase over time. However, one should take steps to minimise the degeneracy.
One of the most important applications of the effective sample size is in quantifying the
degeneracy. A small effective sample size indicates severe degeneracy of the algorithm.

One can take several steps to minimise the degeneracy of an algorithm, the most
obvious being to increase the number of particles used until an acceptable effective sample
size 1s obtained. This is not necessarily practical as it presents an excessive computational
burden in many situations. The next option is to ensure that one uses an importance
density which is as close to the optimal as possible. This will ensure that the variance of
the IS weights is minimised and hence the effective sample size will be maximised. This
can be explained as a direct result of sampling an importance density which places most
of its mass in regions of support to which the target distribution also places most of its
mass. The third means of minimising the degeneracy is known as resampling which was
first introduced in this context by [50] and then shortly after by [59].

The resampling criterion commonly used, is to resample only when the effective sam-
ple size drops below some threshold, which as a rough guide is typically in the range of
30 to 60% of the total number of particles used. The purpose of resampling is to reduce
the degeneracy present in a particle filter by eliminating samples which have low impor-
tance weights and multiplying samples with large importance weights [11]. There are
many methods that one may use to perform resampling, such as multinomial resampling
[81], residual resampling [64] and "stratified /systematic/minimum variance" resampling
[58]. The multinomial approach is the simplest, involving sampling from a multinomial
distribution in which the normalised weights of the particles are used as the probabilities

in the multinomial distribution.
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All the methods mentioned ensure that the number of times a particle is multiplied as
a result of resampling is unbiased, that is [E [Nt(i)] {VV 1? H = NW, 1(? , however they differ
in var [Nt(i)] The method that the author recommends is that of systematic stratified
resampling, which is the minimum variance unbiased resampling technique.

The final point to make is that, although resampling reduces the effects of degeneracy
on the particle approximation, it does introduce other problems. Resampling increases
Monte Carlo variance, is time consuming and limits the ability of an algorithm to be run
on parallel computers, since all particles must be combined for resampling. Secondly,
although resampling may aid in the problem of degeneracy, when particles which have
high weights are statistically resampled many times, this will lead to a loss in diversity
of the particles since the resultant set of resampled particles will contain many repeated
samples. This problem is known as sample impoverishment and can be severe when the
process noise is too small. In the situation in which one experiences sample impoverish-
ment, since the diversity of the particles paths is reduced, then any smoothed estimates
which are based on these particle paths will degenerate, making smoothing inaccurate.
In order to counteract this problem of sample impoverishment, by introducing diversity
to the resampled batch of particles, it was first suggested in [45] that an MCMC step,
may be used in order to add diversity to the repeated particles. This technique, when it
is possible to apply an MCMC or "particle diversification" step, can be very effective in

reducing the sample impoverishment.
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To summarise, the generic SMC algorithm proceeds as presented next. The initial

importance distribution is denoted as p;.

Initialization; ¢ = 1.

Sampling step

e Fori=1,...,N, sample Xl(i) ~ 14 (+) and evaluate the normalized weights M/li).

(0 %1( 1(1)) o )
Wi oc —— L > oy =1. (2.6)
Hq (Xl ) i=1

At time n; n € N\ {1}.
Sampling step

e Fori=1,...,N, sample Xt(i) ~ K; (Xt(i)l, )
e Fori=1,..., N, evaluate the normalized weights W using (2.4) and (2.5).

Resampling step

o If /4y <Threshold then resample particles {M/ti),Xf@} to obtain N new particles
{N*l,Xf)}.

e Diversification step : MCMC step

To finish of this section on Sequential Monte Carlo methods it will be instructive
to provide an example of how the general framework just presented is used in many
applications, in practice. The framework which is adopted by many practitioners who use
SMC methods involves state space modelling and presenting SMC in the case of filtering
for a state conditioned on some noise observation sequence. In these situations the target

distribution of interest is typically the posterior distribution of the state conditioned on a
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realisation of some noisy observation sequence. Due to the prolific representation of SMC
methods in this light, the author feels it instructive to briefly present the basic ideas of
casting SMC in this framework. This has relevance in many fields including tracking,
control, computer vision and finance and hence the author feels it is important to include
as an example in any discussion on SMC methods.

State space modelling is a widely used method in science and engineering, for formu-
lating models of dynamical systems [26], [1], [13]. State space modelling assumes that
one has an observed time series (Y;) which is derived from an unobserved state process
(X;¢). The state process forms a Markov chain {Xp, X7,...} and conditionally on this
state process the Y;’s are independent, and Y; depends on X;. The general model that
will be of interest involves two measurable spaces (I, ) and (F, F), where X; and Y;
respectively take their values.

It is useful to note that the joint process (Xy,Y;) is a Markov process on the product
space IJ x F', however the observation process (Y;) is typically not a Markov process.
The transition equation and initial distribution for the state Markov process {z;;t € N},
z; € R" will be denoted by p (z¢|z;_1) and p (xg), respectively. The observation process
{ys;t € N}, y, € R™, is assumed to be conditionally independent given the hidden state
process, with likelihood p (y¢|x;). Hence, the general aim of the analysis will be to estimate
the posterior distribution p (zo.|y1+) and its attributes. It is often useful to formulate

this problem as shown below:

zy = fi(Te1,v1) State equation

w = he(ze,ny) Observation equation

where f; (.) represents the state equation, v;_; the state noise process and hy (.) is the
observation equation with observation noise n;.
Given this first order Markov dependence in the state equation, one may write the

combined distribution of the state process at time ¢ as shown in equation (2.7). Ad-
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ditionally, the joint distribution over the observation process conditioned on the state

sequence, at time ¢, may be written as shown in equation (2.8).
P (w01) = P (0) [Ty P (@] 201) (2.7)

P (Y1:t|w14) = Hizlp(yn’l‘n) (2.8)

Using the Bayesian methodology explained previously, one may obtain the posterior

distribution of the state conditional on the observations, as shown in equation (2.9).

P (y1:|214) P (Tos) (2.9)

e (Zox) = P (Z14|y14) = P (1)

In many real world applications one is interested in making a sequential ‘on-line’ in-
ference on the "state" of the system as new observations are considered, hence a recursive
update to the posterior is required. Using the model assumptions stated previously this

recursive update can be performed, as shown in equation(2.10).

Fora ($0:t+1) _ p(xt+1’$t)p($0:t)p(yt+1’$t+1)p(y1:t’$1:t) <2‘10>
P (Yes1|y1e) © (Y1)
D (?Jt+1 ’$t+1) P ($t+1’$t)

D (?Jt+1 ’Z/l:t)

= T (Sﬂozt)

One may also obtain the filtering distribution by marginalising out the previous states

T (Sﬂt) = /P(iﬂlzt’yl:t) dTy.e—1

or, in a recursive setting, by following prediction and update steps, shown below.

1 (24) /P (ze|ze—1) P (@41 |Yra-1) A2 q Prediction

. (SEt) _ p(ytlxt)p(xt’ylztfl) Update

D (yt’ylztfl)

Now that the general SMC framework has been recast in the form of filtering recur-

44



sions it is also instructive to present the form of the optimal importance distribution,

which is now given by,

Q(%’»thl;yt)opt, = p(zelzi1,91)
p(?Jt’xt;mtfl)p(xt’xtfl)
P (yelze-1)
o p(ytlzt;mtfl)p<$t’$tfl)
[l p (e 1) day

2.6 Summary

To summarise it is noted that the importance of Monte Carlo methods in simulations of
stochastic systems and in estimation of integrals has been presented. It was explained
why the key to Monte Carlo methods revolves around the ability of one to efficiently
simulate samples from an appropriate probability distribution. It was explained what
alternatives are possible when generating samples directly from the desired distribution
is not possible. These included importance sampling in which one generates samples from
a importance distribution close to the desired target distribution and also Markov Chain
Monte Carlo methods in which one produces statistically dependent samples. These
samples may then be used in the Monte Carlo analysis. The next chapter deals with the
new contributions developed by Pierre Del Moral, Arnaud Doucet and the author of this

thesis.
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Chapter 3

Sequential Monte Carlo Samplers

3.1 Introduction

This chapter introduces work which is a collaboration between the author of the thesis,
Dr. Arnaud Doucet of Cambridge University and Professor Pierre Del Moral, working
at Université Paul Sabatier (Toulouse III) at the time of collaboration. This work is
found in [31]. The work focused on developing a general methodology to enable one
to sample sequentially from a sequence of probability distributions which are known up
to a normalizing constant and defined on a common space. In the same manner as
standard Sequential Monte Carlo, it will be the aim to approximate these probability
distributions by a cloud of weighted random samples which are propagated over time
using Sequential Monte Carlo methods. The generality of this methodology, termed SMC
Samplers, allows one not only to derive simple algorithms to make parallel Markov Chain
Monte Carlo runs interact in a principled manner, but also to obtain new methods for
global optimisation and sequential Bayesian estimation. This methodology also paves the
way for the discussion and development of Trans-Dimensional Sequential Monte Carlo,
TDSMC, which forms the second body of work in this thesis. The algorithms developed
using SMC Samplers will then be demonstrated through simulation for various integration

and global optimisation tasks arising in the context of Bayesian inference.
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3.2 Motivation for SMC Samplers

The idea that has driven the development of SMC Samplers was the need to be able to
obtain a particle estimate from a sequence of probability distributions, (), , which
are defined on a common measurable space, F, where N' = {1,...,p} or N = N,
Throughout this thesis ¢ will be referred to as the time index, however this variable
is just a counter and need not have any relation with "real time". The idea behind
SMC Samplers will be to sample the sequence of distributions 7y, ms... sequentially.
This has many important applications and it should be mentioned that the generality
of the method to be presented, comes from the freedom in the choice of the sequence of
distributions (7¢), - -

Some of the interesting applications involve sequential methods to move from a
tractable and easy to sample distribution, 7y, to a distribution of interest, m,, through
a sequence of artificial intermediate distributions as discussed in [69]. In the setting of
Bayesian inference one could consider 7y to be the posterior distribution of a parameter
given the data collected until time ¢, where 7, (z) = p(z|y1,...,¥). In a batch setting,
in which a fixed set of observations ¥, ...,yr 1s available, then the sequence of distrib-
utions one is interested in could be p(z|yi,...,y) for t <T. There are two reasons for
approaching a batch problem in this manner. First, treating batch data sequentially has
been shown to provide a beneficial tempering effect [28]. This is especially important
for very large data sets, for which the chosen models typically exhibit complex proba-
bility surfaces. In these situations treating the data sequentially causes the probability
surface to exhibit a natural tempering effect, which results in the ability to move from a
simple to an increasingly more complex surface as more data points are included. Thus,
a sequential strategy allows an efficient exploration of the probability surface without
the need to construct complex annealing schedules. Second, for huge data sets, stan-
dard simulation methods such as Markov Chain Monte Carlo (MCMC) methods require
a complete "browsing" of the observations, in contrast a sequential strategy may have

reduced computational complexity, as discussed in [73]. Another interesting application
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can be found in the context of optimisation, and similar to simulated annealing, one
could consider the sequence of distributions 7; (z) o [7 (z)]" for an increasing schedule
{7¢}en- Finally, one could simply consider the sequence of distributions where m, = 7
for all t € N. Hence, one can see that the motivation behind developing SMC Samplers

methodology is that it would find applications in several areas of interest.

3.3 SMC Samplers Methodology

The framework of Sequential Monte Carlo (SMC) has been discussed in Chapter 2. Stan-
dard SMC techniques have been developed to deal with "on-line" applications which
involve sampling from a sequence of distributions sequentially in time. Until the devel-
opment of SMC Samplers, SMC techniques have been solely confined to situations which
involve a sequence of probability distributions (7;) where a distribution, at time ¢ in the
sequence, is defined on a measurable product space of the form I, = F x ' x E.... = E*,
which means that dim (%, ;) < dim (F;). SMC Samplers generalises the methodology
of SMC in order to sample sequentially from a sequence of probability distributions ()
where now each distribution in the sequence is defined on a common measurable space,
L. Typically the methods favoured by statisticians to sample from complex distribu-
tions, on a fixed space F, are MCMC methods. The fundamental ideas that underpin
MCMC techniques were presented in Chapter 2. Two problems with MCMC are that it
is difficult to assess when the Markov chain has reached its stationary regime and it can
easily get stuck in local modes. Moreover, it is not ideal to use MCMC in a sequential
Bayesian estimation context.

It is important to note that SMC Samplers should be viewed as a complementary ap-
proach to MCMC, and that MCMC kernels will in most cases be ingredients of the meth-
ods proposed here. Additionally, it is worth noting that an SMC based approach in which
particles are carried forward over time using a combination of Sequential Importance Sam-

pling (SIS) and resampling ideas is completely different from parallel MCMC/tempering
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mechanisms, where one runs an MCMC chain on an extended space /Y. When carrying
out parallel MCMC/tempering, one specifies a joint invariant distribution on EV for
the particles [49], whereas the use of SMC samplers requires only the specification of a
distribution on F.

In the development of SMC Samplers one would like to be able to maintain the ben-
efits of standard SMC methodology. This was achieved by effectively transforming the
problem posed above into the framework familiar to standard SMC techniques. The im-
portant concept developed is that in order to use the methodology of SMC, which involves
Sequential Importance Sampling (SIS), resampling or resample and move techniques, one
would need to come up with a means of transforming the idea of sampling from a sequence
of distributions, which are each defined on F, to that of sampling from a sequence in
which each distribution, 74, is defined on the product space E*, ¢ € N. Hence the idea was
to construct a sequence of distributions, (7;), which are defined on the product space,
E*, required by the standard SMC methodology. The important consideration is however
that in order for this construction to be used as a method to sample sequentially from the
sequence (7;) where each distribution, 7y, is defined on I, one needs to construct 7 in
such a way that it admits as a marginal distribution the required target distribution .
This approach has connections with Annealed Importance Sampling (AIS) [69] and the
algorithms recently proposed in [28] and [23]. However, it will be demonstrated that the
generic framework presented by SMC Samplers is more general and allows one to develop
new algorithms to make parallel MCMC runs interact in a simple and principled way, to
perform global optimization, solve sequential Bayesian estimation problems or compute
the probabilities of rare events. As with MCMC, the performance of these algorithms is
highly dependent on the target distributions (7;),. , and proposal distributions used to
explore the space. Throughout this thesis effective guidelines will be presented for the
design of efficient algorithms which utilise SMC Sampler methodology.

Consider now the construction of the target distributions, (7;), . The construction

of the sequence of distributions, as proposed in [31], is carried out as shown in equation
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(3.1). For t =1, consider 7y (z1) = 1 (x1) and for ¢ > 1, one has

Tt (ﬂflzt) = Ty (l‘t) Tt ($1:t71’$t) (3-1)

The distribution 7 (#1.4-1|%:) is designed in such a way that for any z; € I the distri-
bution 7y (z1.4 1|%;) is a probability distribution on the product space B! In order to
allow for a recursive evaluation of the importance weights it is wise to use 7y (214 1|%4)

as shown in equation (3.2).

Tt $1t 1’% HL $s+1;$s (3-2)

The kernels L, form a sequence {L;},  which would ideally be a sequence of auxiliary
Markov transition kernels, in which the kernel L, (z, ') represents the probability or
probability density depending on the context, of making a move from state z to state x’'.
It is now obvious how this construction allows one to transform the problem of sampling
from the sequence of distributions (7;), defined on the space F, to that of sampling
from a sequence of distributions (7;) defined on E* and then obtaining samples from the
required distribution by just taking the marginal distribution as shown in equation (3.3).
Note that for ease of exposition, x; shall be used to represent the state of the system
at time £. It is also the case that z; may be an element of a state space F which in
generality can be multi-dimensional, in which case z; would be a vector of state variates

at any given time .

/%t (1:4) dx1. 1 = 4 (T4) (3.3)

This formulation is that of the familiar family of algorithms developed in the SMC
literature, as illustrated in Chapter 2, section 4. Thus one may consider the application
of this idea to carrying out SIS on a sequence of distributions, coupled with resampling
or resample-move steps. After constructing (7),. 5 in order to transform SMC Samplers

framework into the form of standard SMC algorithms, it is important to present what
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form the incremental importance weight will take for this new framework. The standard
incremental importance weight for SMC techniques is presented in (2.5) and this can
now be used to develop the new importance weight for this SMC Samplers algorithm to
obtain equation (3.4). Hence, the Particle Filtering framework is recovered using these
new SMC Sampler ideas as follows. The sequential weighting steps are presented below,
with the importance sampling density given by the transition kernel K;(2',z) and the

incremental weight,

T (Sﬂlzt)
wy (21 = = 3.4
¢ (@) Te—1 (T14-1) Kt (-1, 24) (3:4)
Ty (lUt) Tt ($1:t71’$t)
-1 (-rtfl) -1 ($1:t72’$t71) K; (Itfla ZUt)
t—1

T (mt) H Ls (ms+la xs)
s=1

t—2
o1 (1) [ Ls (o1, 2s) Ki (@41, 2¢)
s=1
Tt (SUt) L (SUt, 5171571)
= = W (Tg—1, Tt) -
Ti—1 (%4) K (ZEtfl; 9515) ! ( ot t)

Where the IS weight is now given by VVt(i) X wlgi)W’t(j)l. The particles may then be
resampled from these weights in the desired method, several examples of which are
mentioned in the chapter on SMC methods. The author always advocates the use of
stratified /systematic resampling technique, as it has been shown that this resampling
method minimises the variance of the importance weights. It is important to point out
that the introduction of the sequence of auxiliary kernels, {L;}, -, allows for the use of
importance sampling without having to compute the marginal distribution of the parti-
cles {Xt(i)} explicitly, which is typically difficult to calculate. This is discussed further in
the next section along with discussion of how to choose the parameters of the algorithm
which include {K;}, - and {L;}, 5 in order to minimise the variance of the importance

weights obtained.
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3.4 SMC Samplers Specifics: Theoretical and
Algorithmic Considerations

This section explains how one may deal with the fact that the SMC Samplers methodology
introduces additional degrees of freedom to standard SMC. In standard SMC algorithms,
one has the sequence of distributions, {7;} which have typically been selected according
to the problem being solved and the user must choose a suitable sequence of importance
distributions / transition kernels {K;},. . Typically one chooses the transition kernels
to have two properties; easy to sample and also as close to the transition kernel that min-
imizes the variance of the importance weights as possible. In SMC Samplers algorithms
there is also the additional freedom in choosing the auxiliary transition kernels {L;}, -
The following section provides a theoretical analysis of how to select these kernels in
order to minimise the variance of the importance weights, then suggested algorithmic

settings are presented.

3.4.1 Asymptotic Analysis of Variance

This section provides an expression for the asymptotic variance of the estimate shown in
equation (3.5) , which was obtained using the SMC Samplers algorithm. The expression
presented in Proposition 1 was derived in [31] and builds on the work of [62], [32] using
similar ideas to [27]. This expression is included as it will be very useful when it comes to
understanding how the selection of the auxiliary kernels {L;},. - will affect the variance

of estimates obtained using SMC Samplers.

Er, (o) = X2, W% () (3.5)
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Proposition 1 Under the weak integrability conditions given in (Chopin, 2004; theorem
1) or (Del Moral, 2004, section 9.4, pp. 300-306), one obtains the following results.

When no resampling is performed, one has

VN (Br, (¢) = Br, () = N (0,035, ()

with

2 _ %f (1) ) — 2 10
Thoa () = [ T (o a1)  Br, () v 36)

where the importance distribution p, is given by

e (T1:) = py (1) HZ:2 K (z5-1,5) -

When multinomial resampling is used al each iteration, one has

VN (Em (p) — En, (SO)) =N (0, O%MC’,t (SO))

where, forn > 2,

() 2 57
/M </¢<It>%ﬁ (we|21) dy — B, (s@)) dzy

Hq (951)
t—1 (%t(:ﬂs) Lsfl(l.s;l‘sfl))Q 25 (2l dar — ? .
vy [P Rl il ([ ) o) o~ B (9)) o,

. / (me o) Los @u 1) o0y B (o)) ey

T—1 (ajtfl) K, (SUtfl; ZEt)

In these expressions [ 7y (214) dZ1.s-1dZs414 1s denoted by 7, (z5) and
[ 7 (@14) dz1.s 1dzs 141/ (25) by 7y (24 z5). The proof of Proposition 1 is found in
Appendix 1.

What is evident from this theoretical analysis is that careful selection of the auxiliary

kernels {1} is imperative in order to obtain an algorithm that provides sensible answers.
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This is made explicit by the fact that, in the expression for the asymptotic variance,
it can be seen that the faster the mixing of the {L;} kernels then the faster 7 (2] x)
converges to m; (x;), as t — s increases. Therefore in the situation that the {1;} kernels
are mixing well, variance terms in the summation, with s < ¢, will become insignificant

since the square difference given by

</ ¢ (zt) T (24| z5) dzy — B, (90)>2

will be negligible. This means that in situations in which the {I;} kernels are mixing
rapidly, one may obtain a good approximation of the variance by just taking the last
few terms in the expression for the variance shown in equation (3.7), since the remaining
terms in the sum will be negligible. However, it is worth considering the situation in
which the {L;} kernels have their fastest mixing. This will be the situation in which
Ly q (2,2 1) = Ly (24 1). Now, in this situation if one assumes all terms in the
variance expression obtained in 3.7 are negligible except for the last term, then one

obtains a variance expression given by,

Fhuscy o) = [THILL LI (g () () s

T—1 (5171‘,71) K, (fUtfl; ZEt)

Given the form of this variance expression it would be tempting to select Ly (24, 1) =
71 (1) as then cancellation is possible and one obtains a variance expression given

by,

cale) = [T (0 ) — B, () do

As pointed out in [31], the reason why this is not a good idea is a result of the fact that,
in order to ensure that the variance expression U%Mo’t () is small for any function ¢,
this would require the ability to control the importance weight

7 (24)

Ky (21, 24) 39
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over IY X IJ. As mentioned in the paper, this expression would typically prohibit the use
of MCMC moves, as the ratio in 3.8 is typically not defined. The example provided to
demonstrate this point involves taking 7 (z;) as a probability density on R and K; a
Metropolis-Hastings kernel. Hence for these reasons it is wise not to use Li_1 (24, 24—1) =
Li—1 (x4-1) and the trade-off is that a sum or terms will appear in the expression of the
variance. However most of these terms in the sum will contain a part which takes the

form
%t (xs) Lsfl (xsa :L.sfl)
Ts—1 (l‘sfl) Ks (l‘sfl; ms)

which can be controlled more easily via selection of Ls i (zs,2zs-1) as a function of
K (zs-1,2s) and w1 (25-1).

With these results in mind the following section will discuss and motivate different
choices for the sequence of auxiliary kernels, {L;}. In addition to this, a comparison and
links will be drawn with algorithms in the literature which can be viewed as special cases

of this general SMC Sampler framework.

3.4.2 Auxiliary Kernels {L;}

As discussed above, careful selection of the sequence of auxiliary kernels { L;} is important
if one is to obtain sensible estimates using the SMC Samplers framework. The expression
obtained in (3.7) suggests that one should try to optimise the selection of {L,;} with
respect to { K;} kernels. There seems to be two approaches to consider when selecting
the sequence of kernels {L;}. The first involves minimising the asymptotic variance of
the estimate (3.5) with respect to the kernels {L;}. The second approach would be to
look directly at the variance of the importance weights, as found in (3.4), and to try to
minimise the variance of the importance weights with respect to the {I;} kernels. As
was pointed out in [31] it was found to be a good idea to consider the second option and
select {L;} kernels by considering directly the variance of the importance weights since

this would make the choice of the {L;} kernels independent of the function ¢.
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In order to explain how to obtain the solution to minimising the variance of the
importance weights with respect to kernels { ;} one must first define the following items.
The marginal distribution of particles, {Xt(i)} , at time ¢ shall be denoted p, (z;) and will
have one of the following forms depending on whether resampling has taken place. When

no resampling has occurred up to time ¢, one has

py (22) = piy Kot () (3.9)

and if the last time the particles were resampled was at time [ then one has

o (20) = T Koqe (2e) - (3.10)

Now, assume one has particles distributed according to y,, at time ¢, and it is desired
to have them distributed according to the target distribution 7;. One way of obtaining
particles distributed according to 7; would be to correct for the discrepancy between
the distributions via simple Importance Sampling weights. Hence, one would obtain the

following expression for the un-normalised correction weights for the particles

7 (4)
Uy (xt) '

(3.11)

The problem with using this simplistic approach is that it could be either too com-
putationally intensive or extremely difficult, if not impossible, to obtain an analytical
expression for u, (z;), at each time ¢. Therefore a first naive approach would be to look

for a solution to this dilemma such as using an approximation of the form
1 ‘
Hy () = N ZKt (Xt(i)l?mt) :

i=1

This is also not ideal since clearly it would produce an algorithm which is O (N?), and

this should be avoided when possible. If one took the approach presented previously and
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performed the IS correction, using the weights obtained in (3.4), then clearly one no
longer has to compute y, (z;). However, this comes at a price since now the importance
weights are defined on domain I, as opposed to F, and so will ultimately produce larger
variance in the importance weights. This problem is rectified by the fact that one may
choose the sequence of {1} kernels, and intuitively the optimal choice minimising the
variance of the importance weights will be the one that takes us from evaluating the
weights on F! back to evaluating the weights simply on E. The following proposition
from [31] provides a solution to this problem. The version of the solution presented will

be for the situation shown in (3.9) where no resampling has occurred.

oy . . . . ~opt . .. .
Proposition 2 The conditional distribution 7T,"" on FEy 1 which minimises the variance

of the importance weights, w; (z14), is given by

ngt (mlttfllwt) = Uy ('rl:tfllmt) <3.12>

and this conditional distribution takes the form provided in equation 3.2, with for any s,

S— KS S— 1) S
L (2, 1) = Mot @) Ko (@e1,2) (3.13)

ps (2s)

The proof of Proposition 2 may be found in Appendix 2. Now, it is obvious that
although this is the optimal solution in terms of minimising the variance of the importance
weights, with respect to the {L;} kernels, this will not be of use in practice since one
still can not easily calculate p, (z:), as explained previously. One can either choose
to approximate L;” tl or choose kernels {I;} so that the importance weights are easily
calculated or have a familiar form. It is in this second approach that parallels are found
with existing literature on the subject. The connections to other works are explained in
[31]. It is however useful for completeness to outline the connections found between the
SMC Samplers methodology and existing work, in more detail.

The first connection that will be mentioned is of importance to the simulation section

to be presented next. This connection relates to the work of Jarzynski, [56] and also
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to the Annecaled Importance Sampling (AIS) algorithm of Neal, [69]. The problem Neal
discusses involves moving from a tractable distribution to a distribution of interest via a
sequence of intermediate annealed distributions. Neal discusses the fact that the annealed
sequence of distributions is typically used as an inexact means of handling isolated modes
in Markov chain samplers. He then demonstrates how the Markov chain transitions
used for the annealing sequence can be developed to define an importance sampler. He
argues that the combination of importance sampling and Markov chain samplers has
two advantages. The first advantage comes from the fact that the Markov chain aspects
allow for acceptable performance in high dimensional spaces where it may be difficult
to design effective importance sampling proposal distributions. The second advantage is
that using importance sampling allows for a correction to be made to the Markov chain
samples, to make these techniques asymptotically exact, that is as the number of runs
is increased the estimates will converge to their correct values. Hence, Neal combined
positive aspects of both methods to provide a means of assigning weights to the states
which are obtained by making multiple Simulated Annealing (SA) [57] runs. When one
is looking at the problem of moving from a distribution which is easy to sample y, (),
to a distribution of interest 7 (x) , through a sequence of intermediate distributions. One
way of doing this could be to consider the sequence of distributions suggested in [47],

where they consider a geometric path such as the one given by equation (3.14) below.
e () oc [ (@)™ [y (2)] (3.14)

If one considers such a geometric sequence and uses a transition kernel, K;, which is an
MCMC transition kernel of invariant distribution 7, then the form of the L; | kernel
which recovers the AIS algorithm as presented in [69] (with the time index reversed) is

given by the following auxiliary kernel.

¢ (mtfl) K (lﬂtfl, 51715)
e (24)

(3.15)

Ly (mtaxtfl) =

o8



This selection of kernels for { K;} and {L;} will produce an incremental importance weight

given by equation (3.16) below
Tt (mtfl)
-1 (thfl)‘

(3.16)

Clearly this will produce importance weights which are fairly uniform in situations
for which 7, _; = m;. However, when this is not the case one can expect poor performance
from such an algorithm. The weight update presented in 3.16 also allows one to perform
auxiliary particle filter concepts to help boost the particles in regions of the state space
which will be of importance in the next iteration, prior to mutation by the transition
kernel. This can be seen to be the case since the particle weights only depend on the
position at the previous iteration and not the new time ¢. It is also important to mention
that the AIS algorithm does not use resampling, the effect of this will be demonstrated
in the examples at the end of this chapter.

The second example that demonstrates how SMC Samplers relates to existing work
is given by analysing [28]. This paper presents the Importance Sub-sampling Iterative
Scheme, (ISIS). This algorithm allows one to obtain samples from a static posterior,
7 (0y1.x) , by carrying out initial exploration of partial distributions, 7 (0|y1.,) (n < N).
The ISIS algorithm considers the sequence of partial posterior distributions (7 (0|y1:n,)),
with n; < ... <ny < ... <np = N . It operates by obtaining a set of particles distributed

as 7 (0|Y1.n, ) , then this inference is "updated"” in a consistent manner, recursively taking

the next p observations into account according to the weight given in equation (3.17).

™ (Hlyl:n+p) p (ylzn+p’9)
Wh.p (0) = x
2O = Ol = b (gm0

=D (Unt1ntp|0, Y1:n) (3.17)

The number of observations p used in this update step is adaptively determined
according to a criterion presented in the paper and shown in equation (3.18), where one
resamples the particles when D,,, > d, where for example d = 10~ 2. Basically the need
for this criterion is due to the fact that each update step adds more variability to the

initial estimates, which leads to a progressive degeneracy of the particle weights. This can
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be stated another way; as p increases the support of 7,4, will continue to shrink, relative
to the support of 7, and hence the particles will become increasingly degenerate. Hence
in the same vein as the standard effective sample size criterion presented in Chapter 2,

one uses this criterion to decide when the particles need to be resampled.

1V (En+p) 1V (‘7””)
"V 0) 4V, (0

(3.18)
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n+p N
D im1 Wi

=
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Once resampling is carried out there is likely to be sample impoverishment and this
must be combated if one wants a sample which is a good representation of the posterior
Tntp (0). To combat the problem of sample impoverishment and the fact that the pos-
terior m,, is likely to place most of its mass either in different regions or in a reduced
region of the state space when compared to 7,, one can use the idea of Gilks et al [45]
where the particles are "moved" according to a Metropolis-Hastings transition kernel
with invariant distribution 7,4, (6).

It is the view of the author that developing effective moves which will place the parti-
cles in high mass regions of the support of 7,4, (), is in general a non-trivial task. This
is especially true when the mass of the posterior is moving rapidly around the state space
as each observation is added, which is the case when one has informative observations
and also in the initial stages when one only has a small number of observations, n small,
and the mass of the posterior is still concentrating itself.

The suggested method of [28] is to use an Independent Metropolis-Hastings transition
kernel which depends weakly on the previous value of the moved particle. The suggested

transition kernel is given by a Gaussian with mean F,, and covariance V,,, shown in
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(3.18). Thinking in the framework of SMC Samplers, one can see that the algorithm
presented in [28] is obtained as a special case within the SMC Samplers framework when
one has K; as an MCMC transition kernel of invariant distribution 7; and L;_; is given by
(3.15). Hence, ISIS can be seen to be very similar to AIS, except that the ISIS algorithm
allows for resampling and the sequence of distributions one wishes to sample is different.

The third example to be presented relates the work of [23] to the SMC Samplers
framework. The Population Monte Carlo algorithm presented in [23] can be viewed as
a special case of SMC Samplers framework in which one considers the homogeneous
situation in which 7, = 7, K; = K and I, = L. As mentioned in [31] the Population
Monte Carlo algorithm considers the case in which the transition kernel K (z,z') =
K (z') is an MCMC kernel of invariant distribution 7 such as a Gibbs sampler or the
situation in which K depends on the statistics of the entire population of particles at the
previous iteration. The auxiliary kernel they consider corresponds to I; (z,z') = L (2') =
().

It was explained in [31] that if one was considering the special situation of the ho-
mogeneouse set up presented above then in the case that one used an auxiliary kernel
given by the same form as [69] and [28] then after resampling once, the particles would
be distributed approximately according to m. Then the L kernel becomes the optimal L
kernel and the importance weights become unity so that each particle evolves indepen-
dently according to K and it is not necessary to make them interact anymore. It is then
argued that if any other choice is used for the L kernel in this homogeneous situation
then resampling would need to be performed periodically and it is pointed out that this
approach is not really justified since resampling is not carried out to modify the marginal
distribution of the particles but only to modify the correlation between surviving parti-
cles at two successive time instants. This would limit the diversity in the set of particles
and in general one would not expect the variance of estimates formed using the particles
from such a scheme to be any better than that obtained by using non-interacting MCMC

chains.
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There are many other choices one may consider and some of these are highlighted in
detail in [31]. This thesis explores the choice presented in (3.15) and also investigates
another approach which was to approximate the expression for the optimal kernel L7 tl.
The approximation used is presented in equation (3.19). This approximation involves
substituting the distribution 7; 1, which is defined by the problem being solved and

assumed known up to a normalising constant, for the distribution y, ;, which is difficult

if not impossible to evaluate analytically.

Tg—1 (371571) K; (Sﬂtfl; fﬂt)
T 1 Ky (%ﬁ)

(3.19)

Ly (lUt;SUtfl) =

Now following the definition in equation (3.10), it is clear that if the particles are
resampled at time ¢ — 1, then in this case y, ; will (approximately) equal 741 and the
expression for Ly 1, given in (3.19) , will equal (3.13). This approximation can be solved
in several interesting situations, some of which will be presented next. It should however
be mentioned that it may in general be difficult to solve the integral given by 7,1 K¢ ()
and hence other approaches should be considered. There will be more discussion on this
in the chapter on Trans-Dimensional Sequential Monte Carlo. Using the approximation
found in (3.19), the following section presents two detailed examples which demonstrate

the performance of the SMC Samplers methodology

3.5 Applications of SMC Samplers

This section provides two detailed examples complete with comparisons between existing
algorithms and SMC Samplers methodology. These examples are the joint work of the
author and Doucet and can be found in [31]. The problem to be studied is that of vari-
able selection in a Bayesian context. The first example presented will use a sequence of
intermediate distributions to move from an initial distribution, py, to a target distribu-
tion, 7¢, using the SMC Samplers methodology. Comparison with Annealed Importance

Sampling [69] and MCMC algorithms will be provided to demonstrate the performance
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of SMC Samplers relative to other algorithms in the literature.

The second example is an optimization problem in which one would like to find the
mode of the distribution ;. This allows SMC Sampler methodology to be compared to
a long chain annealed MCMC algorithm and also a parallel annealing MCMC algorithm.
Before going into the details of these two examples, the Bayesian variable selection prob-
lem shall be presented so that one can understand what sequence of distributions will be

used in each example.

3.5.1 Bayesian Variable Selection

For any (X,Y) € X xR, we consider the following regression model [60]
M
Y =) LB (X)+V; V ~ N (0,07) (3.20)
k=1

where the indicator variable, [, € {0,1}, is such that 3, = 0 if [, = 0 and 3, # 0 if
I, = 1. In this situation there will be 2™ possible models for the regression function.
Now, if one assumes there are T’ independent identically distributed data points, denoted

(X171, Y1), then the following vector-matrix notation can be used
Yir = D (I1.m) B (I.m) + Vi,

where D (I1.pr) is a T %1 (I1.37) matrix and [ (I1.3) = Zk;M:1 I;; is the number of basis terms
included in the model. The 5** column of D (I1.ar) corresponds to (\IIQ(II:MJ-) (X1),...

Woiriang) (X7))T where @ (11,7, 7) is the index of the j'® non-null coefficient of the se-
quence Iy, and (3 (I1.a) is the associated 1 (I1.ps)-dimensional vector of non-null regres-
sion coefficients. To complete the model in a Bayesian framework the following priors

shall be used for the amplitudes of the basis functions and the variance of the observation
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noise.

B (Iaa)| (0% huas) ~ N (0,0%0% (D" (Iar) D (11ar)) )
* o~ 10(3.3).

This choice of prior was made as it allows one to perform Rao-Blackwellisation on the
parameters for the amplitudes of the basis functions and the observation noise variance.
That is, they can be integrated out of the posterior since they have the form of a g-prior
[34], which coupled with the linear form (with non-linear basis functions) of expression
(3.20) and the Gaussian observation noise, allows for this integration to be made. The
details of such an integration are omitted, but a reference in which they are carried
out in detail may be found in [79], appendix A, page 202. Secondly, the choice of a
g-prior as opposed to, for example, a ridge prior allows one to remove the assumption
of prior independence between the amplitude coefficients, hence one does not need to
imply that one is using orthogonal basis functions. The properties which make the g-
prior favourable are that when one has basis functions along similar projections, then the
coeflicients of these basis functions will be highly correlated, a priori. A lucid discussion
of the attributes of the g-prior and the ridge prior may be found in [34], page 80.

Finally, the following specifications were made, Pr (I, = 1| A) = A where X is uni-
formly distributed on [0, 1] and ~,, vo and ¢ are fixed hyperparameters. After integrating
out those parameters discussed previously and given a realization (1.7, y1.7), one obtains

the following marginal posterior distribution for the indicator variables
. . T/2420 —1(i1:m0)/2 5 ;. .
p (i1:m| Trr, Yror) X (Vo + ?JETP (i1:01) ?Jl:T) /7% (1 + 52) )/ L (i) (T = (1))

where

-1

P (iv.ar) = Digiyag) — (1 + 572)71 D (41.1) (DT (i1:) D (h:M)) D" (iy.ar)
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with I;(;,,,,) the identity matrix of dimension [ (41.01)-

The first example of interest will be to sample this marginal posterior distribution and
in the second example it will be the aim to carry out optimisation in order to determine
the maximal mode of this distribution. The data for both examples is taken from the sinc
function, i.e. sinc(z) = sin (z) /z, corrupted by additive Gaussian noise, with ¢ = 0.1 for
T = 50 evenly spaced points in the interval [—10,10]. It is assumed there are M = T

basis functions of the form

where ¢ = 1.6.

3.5.2 Application 1: Sampling from p (i1.3/| y1.7, T1.7)

The aim of this first example will be to consider a sequence of distributions given by the

expression

7t (t1.0) X [P (G1.0s] 17, Y1.7)]

where the "annealing" schedule v, € [0,1] and ¢ € {1,...,p} is monotonically increasing.
This produces the example where one would like to move from a tractable distribution,
for example where m; = py is the uniform distribution which corresponds to v; = 0, to
the distribution of interest 7, (i1.a7) = P (41.:m| Z1.7, Y1.7) Which corresponds to 7 = 1.
In this example the kernels { K;} were selected as deterministic scan Gibbs samplers of

invariant distributions (), where one variable was updated per iteration

Uy (ile,t)

7t (G1.a02) + 7 (ﬁ:M,(pl))

K, <11:N[,(t71)711:]\/[,t> =

where il:M’,(tfl) = <ij,(t71)ai1:M’\j,(t71)> and il:M,t = (i;f,(t,l);il:M\j,(tfl))-
Hence the total number of steps, p, required in the "annealing" schedule, v,, was set

such that p > 1. For the selection of the L; kernels both equation (3.19) and the AIS
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choice (3.15) were considered. Now, for the j* particle ]1(3 J)VI,(tfl) (resp. [1(?})%15) at time
t — 1 (resp. t) these algorithmic choices produce the following incremental importance
weights.

For the AIS choice of the I; kernel one obtains the incremental importance weight as

follows

1:M,(t—1)> "1:M,t

) Tt ([10]241‘,) Ly (11(34,1‘» [1(?])VI,(t71))
€)) (9) ()
-1 (II?]\/I,(tfl)) K (]1?M',(t—1)7 ]l?J\/I,t)

) )] )]
I(j) i (II?M,(t—l))Kt (II?M,(t—l)Jl:JM,t)
T\t ant

w, ( Ji) i)

. Tt (Il(JI)\/I,t)
-1 ([1(?])\/1,@71)) K ([1(2)\4,@71)7 [1(?z)v1,t)
()
T ([ 1?]\/[,(t71))

@) '
-1 ([1?M,(t71))

For the second choice of the L; kernel given by (3.19) one obtains the incremental im-

portance weight

1:M,(t—1) * 1: Mt

) Tt ([1(jz)v1t) Ly ([1(?z)v1,ta [1(34,(1,71))

e ([(j) Iihie) = ) W) )
j j j
Te-1 ([lzlv[,(tfl)) K ([1:M,(t—1)7 Il:M,t)

) Ti—1 (Il({l)\/l,(t—l)) K (Il(-?l)\4,(t—1)’l§?l)\l,t)
Wt—th<I(j) 1) )

Tt ([1(32241,
’ 1:M,(t—1)"1: Mt
@) @) (4
Te-1 (II?A/I,(tfl)) K (A?M,(tq)a II?JVI,t)
Ty ([10])\/115)

1K ([1(jj)\/lt)
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now the integral 7,1 Ky (i1.a+) has the following form

e 1K (ile,t) = Tt-1 (h:M,(pl)) K (Z’I:M,(tfl); il:M,t) + T (ile,t) K <Z.1:M,(t71)72'1:M,t>
Uy (ile,t)

7t (T1.002) + T (Z'le,(t71)>

= [7Tt71 (ile,(tq)) + T (ile,tﬂ

hence this produces an incremental importance weight with the following form

Ty <[1(j]2/[t)
m-1 K, ([sz)m)
T ([1(32)\4,(1‘,71)) + 7 <[1(jz)v1t)

T 1 ([1(?])\47(1‘,,1)) + M1 (]1(Jz)v1t)

Wy (11(34,(# 1)’ [1(?z)v1,t)

In this case, and more generally in any discrete state-space problems with local ex-
ploration, it is usually possible to compute (3.19) exactly. It is worth mentioning that
when one considers the importance weights for each of the choices of L; kernel, clearly
one can not expect much difference between using (3.19) or the AIS choice, when one is
in the situation that m; ~ m, 1. It should also be pointed out that the computational
complexity of AIS and of the alternative method proposed are similar.

The following set of experiments were carried out for different values of
p € {250,500, 1250, 2500,5000}. The schedule used for this example had v, = 0 with the
sequence {7,} initially increasing linearly for L%J steps and then according to alog () +b
with v, = 1.

The number of particles, used for all simulations in this example, was N = 1000.
Additionally, an adaptive resampling scheme was used for the SMC Samplers algorithm
where resampling was performed when the F¢f was below N/2. The SMC Samplers algo-
rithm was also compared to sampling from 7 with a Gibbs sampler, using pN iterations
for the computational complexity of both methods to be approximately similar.

The results of the simulations are presented in table 1, which displays the average

Mean Square Error (MSE) and the standard deviation of the MSE estimate of the re-
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gression function over 50 simulations using the same data set. The average and standard
deviation of the mean of the log-posterior of the last population of particles is also pre-
sented. For the MCMC results, the average and standard deviation of the mean of the
log-posterior of the samples obtained after burn-in are presented. Two sets of results are
presented for AIS with no resampling, one using (3.19) and the other using (3.15). The
results for the new SMC Samplers algorithm were produced using (3.19) for the choice of
the I 1 kernel and the Gibbs sampler results were produced by discarding the first 40%
of samples as burn-in period. For each simulation, the same N random initial starting
points are used for AIS and SMC and one of those N points was used to initialize the
Gibbs sampler. The results demonstrate that there is almost no difference between AIS
using (3.19) or (3.15).

The results demonstrate that in all simulations, the resampling step used in the SMC
algorithm produces a reduction in the variance cheaply. The reduction of the variance is
most prominent when the number of updates per site is small, hence p is small. Intuitively
this makes sense, since in these situations the difference between 7, 1 and 7; can be
significant when compared to the situations in which p is very large and m;,_; ~ ;.
An additional point is that, as would be expected, the number of times resampling
is carried out increases as p decreases. The results also demonstrate that for large p
where 71 & 7, the SMC algorithm and AIS give almost similar results with regard
to the average MSE and its standard deviation. However, the average log-posterior for
the final population of samples is clearly higher for SMC compared to AIS, this trend is
demonstrated graphically in figure 1 below. The plot in figure 1 demonstrates the average
and the standard deviation of the mean log posterior for all of the simulations versus the
number of updates per site for AIS and SMC Samplers. In each of the 50 simulations this
average was computed using the last set of particles at time p. The average and standard
deviation results for MCMC simulations are also presented, except the mean log posterior
for each simulation was calculated for the samples remaining after discarding the burn in

period. It can be seen, from the plot in figure 1, that for small values of p SMC Samplers
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yields samples with higher log-posterior values than the AIS algorithm and the MCMC
Gibbs sampler. As p increases, the MCMC algorithm outperformed SMC Samplers and
AIS in terms of the average mean log posterior, however the standard deviation of the
mean log posterior was significantly larger for MCMC compared to both AIS and SMC
Samplers. In fact the SMC Samplers algorithm results are contained within 1o of the
MCMC average mean log posterior as demonstrated in figure 1.

Table 1 also demonstrates that compared to SMC, MCMC algorithms yield a lower
average MSE. Nevertheless, only one realization of observations has been used so this is
not significant. This argument is supported by the fact that the average MSE appeared
to be unchanged at approximately around 2.2 even for low values of the average mean
log posterior. Additionally, it is worth mentioning that the average effective sample size
for the last population of the particles for the SMC Samplers algorithm is significantly
better than the results obtained for the AIS algorithm, as shown below in Table 1. When
this result is coupled with the results of the average mean log posterior for the last
population of particles it demonstrates that the particles simulated in the SMC Samplers
algorithm are exploring important regions of the state space with respect to where the
target posterior places most of its mass. However the AIS algorithm was not exploring
regions of the state space which were as significant and very few particles were located

in these regions of interest with respect to the target posterior.
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Updates per site for MCMC to be
computationally equivalent (pN/50)
oN 10N 25N 50N | 100N
MCMC
avg. MSE 2.29 2.32 2.49 2.48 2.21
std. MSE 0.93 0.83 0.91 0.81 0.71
avg. mean log posterior 033 | 357 | 581 | 631 | 6.26
std. mean log posterior 3.61 4.54 4.75 2.92 2.22
Updates per site (p/50)
5 10 25 50 100
AIS with (3.15)
avg. MSE 4.79 3.26 3.50 3.29 3.44
std. MSE 2.83 1.25 1.60 1.08 1.06
avg.mean log posterior last population | -7.17 | -3.21 | -0.76 | 0.90 | 2.12
std. mean log posterior last population | 0.24 | 0.17 | 0.23 | 0.20 | 0.26
avg. E;; last population 350 | 450 | 13.35 | 79.21 | 85.21
AIS with (3.19)
avg. MSE 4.78 3.26 3.50 3.28 3.44
std. MSE 2.83 1.25 1.60 1.08 1.06
avg. E;; last population 352 | 451 | 13.39 | 81.27 | 87.89
SMC with (3.19)
avg. MSE 3.05 3.04 3.34 3.19 3.65
std. MSE 1.45 1.22 1.17 0.93 1.01
avg. mean log posterior last population | 2.53 | 3.84 | 4.09 | 4.63 | 451
std. mean log posterior last population | 2.21 | 0.67 | 156 | 0.42 | 0.69
ave. number of resampling steps 786 | 7.82 | 646 | 498 | 3.22
avg. s last population 820.97 | 925.10 | 756.96 | 880.23 | 802.22

Table 1: Performance of MCMC, AIS and SMC over 50 simulations

70




12
—— MCMC
SMC Samplers with (3.17)
10 —— AIS with (3.13)
—_—
8
6 -
k]
g
2 4 - 777777777777’/7777*
o
g
s
- 2FfF e ——
s R I I i
@ ———
£
& or
g
3
2
4 -
6 - ,z/',;';/
*
'8 L L L L L L L L L ]
0 10 20 30 40 50 60 70 80 90 100
Number of updates per site for AIS and SMC Samplers

Figure 1: Blue: Average and o of mean log posterior for MCMC samples after burn
in, Green: Average and o for mean log posterior for SMC Samplers (with 3.17) last set
of particles, Red: Average and o for mean log posterior for AIS (with 3.13) last set of

particles.

3.5.3 Application 2 : Optimization of p (i1.a| y1.7, z1.7) to find
the Mode

The aim of this second example will again be to consider a sequence of distributions given

by the following expression

7t (t1.0) X [P (G1as| 217, Y1.7)]

where now the "annealing” schedule has v, € [0,10] with ¢ € {1,...,p} for the same
values of p that were used in Example 1. The annealing schedule in this example was
given by 7, = 0 with the sequence {v,} initially increasing linearly for ng steps and then

according to alog (t) + b with 7, = 10. This produces an example where one would like
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to explore the modes of the distribution 7, (i1.a7) = p (41.0| 1.7, Y1.7) culminating at the
end of the annealing schedule, when v, = 10, in an estimate of the most probable mode
for this multimodal distribution. Again in this example, as was the case in Example 1,
the {K;} were selected as deterministic scan Gibbs samplers of invariant distributions
(7¢), where one variable was updated per iteration. The settings of the SMC algorithm
will be the same as presented in Example 1.

Two simulated annealing versions of the GGibbs sampler presented in Example 1 were
used for comparison with the SMC Samplers algorithm. Long run annealing with v, =0
and v,y = 10 was used as one of the comparative algorithms and the other was N
parallel (non-interacting) annealing runs in which v, = 0 and ¥, = 10 were used. As a
note for each iteration of the annealing schedule, one of the M variables was updated
using the Gibbs deterministic scan sampler. Hence for the long run annealing algorithm
it is obvious that each of the M sites were updated pN/M times and for the parallel
annealing example in which there were N parallel non-interacting chains, then each site
was updated a total of p/M times.

In table 2, we display the average log-posterior values of the estimated mode and its
standard deviations over 50 simulations. Again we use the same data set and the same
initialization procedure. The posterior mode estimate used to obtain the results for each
algorithm was chosen as the sample generated during the simulation which maximized
the posterior distribution.

The results of the simulations demonstrated that the SMC algorithm outperforms
both these techniques and again this is especially evident when p is small. This is best
demonstrated by the simulations where there are 5 updates per site, which corresponds
to p = 250. In all the simulations, the best estimated mode had a log posterior value
of 14.31. In this case the number of times the SMC algorithm reaches a maximum log-
posterior value equal to 14.31 is more than twice as often as parallel annealing and the
long run annealing never obtains a maximum log-posterior value even close to it, this

is also graphically demonstrated in figure 2. The plot in figure 2 clearly demonstrates
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that SMC Samplers has the best performance in terms of the number of times a mode
greater that 14.3 is obtained, out of the 50 simulations performed for each experiment.
Each experiment in the plot corresponds to a different number of updates per site with
experiment 1 being the simulations performed for the number of updates per site as 5.
The plot demonstrates that most significant difference in performance in which SMC
Samplers is clearly out performing both Long run Annealing and Parallel Annealing is
when the number of updates per site is small, and hence when the difference between
71 and 7 1s large. This type of performance was also observed in application 1 and
further emphasises the gains that can be made through the introduction of resampling

which allows the simulated annealing chains to interact in a principled manner.

Updates per site for Long run

Annealing to be equivalent (pN/50)
SN | 10N | 25N | 50N 100N

Long run Annealing

avg. max log posterior mode 5.07 | 7.59 | 890 | 11.12 12.13
std. max log posterior mode 3.24 | 3.21 | 3.22 | 2.74 2.40
number of times reached model4.31 0 1 8 17 24

Updates per site

5 10 25 50 100
SMC optimization with (3.19)
avg. max log posterior mode 11.67 | 13.15 | 14.26 | 14.31 14.31
std. max log posterior mode 235 | 147 | 0.34 | 0.00 0.00
number of times reached mode 14.31 | 14 30 49 50 50
Parallel Annealing runs
avg. max log posterior mode 11.51 | 12.40 | 14.15 | 14.26 14.31
std. max log posterior mode 141 | 1.43 | 0.66 | 0.34 0.00
number of times reached mode 14.31 6 16 46 49 50

Table 2: Performance of simulated annealing and SMC over 50 simulations
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Figure 2: Number of times out of 50 simulations each algorithm reached a mode
greater than 14.3. Blue: Long run Annealing, Green: SMC Samplers (with 3.19),

Brown: Parallel Annealing runs

It is interesting to mention that Figure 2 demonstrates that for all the experiments
the Parallel Annealing simulations out performed the Long run Annealing simulations
when it comes to the number of times a mode greater than 14.3 is obtained. This is an
interesting result which can be considered for future research since generally one would
expect the results of these two types of simulation to be approximately the same and not

demonstrate such stark contrasts as was obtained in the simulations carried out.
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3.6 Summary

This chapter has provided an introduction to new methodology termed SMC Samplers.
SMC Samplers has been examined both from a theoretical perspective and also from an
algorithmic perspective, and connections with existing work were detailed. Finally, sim-
ulation examples were provided with a detailed comparison between existing algorithms
to demonstrate the performance of the new SMC Samplers algorithms developed using
the new methodology. The next chapter will present an extension to the SMC Sam-
plers methodology which has been termed Trans-Dimensional Sequential Monte Carlo
(TDSMC). Just as SMC Samplers were presented as an SMC analogue of MCMC meth-
ods, this methodology has been developed to be an SMC analogue of RIMCMC methods.
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Chapter 4

Trans-Dimensional Sequential

Monte Carlo (TDSMC)

4.1 Introduction

This chapter introduces work which is a collaboration between the author of the thesis,
Dr. Arnaud Doucet and Dr. Jaco Vermaak of Cambridge University. This chapter builds
on the previous chapter on SMC Samplers methodology by providing a general framework
in which one may carry out joint model order determination and parameter estimation
for the analysis of data sequentially. The TDSMC framework to be presented can be used
in either the sequential analysis of batch data or in the analysis of sequential data for
truly "on-line" situations. This chapter opens with the reasons for developing TDSMC
then the link with SMC Samplers methodology will be made explicit. The remainder of
the chapter will subsequently consist of constructing a set of principled "moves" in the
same vein as RIMCMC methodology. After developing these moves, a generic TDSMC
algorithm will be presented and finally applied in two examples. The first example in
this chapter will be sequential linear interpolation and the second will involve sequential

Kernel Regression.
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4.2 Motivation of TDSMC

This section motivates the development of Trans-Dimensional Sequential Monte Carlo.
The primary interest in developing this methodology is to construct an algorithm to
perform joint estimation of model order and parameters using a framework based on
SMC methods. This is an interesting problem to solve as it has wide ranging applica-
bility which stems from the fact that it is a task that is important in a multitude of
disciplines including statistics, engineering, finance and bioinformatics. Additionally the
development of TDSMC methods is interesting because the approach taken in developing
TDSMC can be viewed as the sequential analogue of the Reversible Jump Markov Chain
Monte Carlo (RIMCMC) algorithm [52],[51] which has been well received in the statis-
tics community. However, unlike RIMCMC, the TDSMC algorithm does not require the
moves to be reversible, is non-iterative, and requires only a single pass over the data set.
As mentioned in the introduction, TDSMC can also be applied to either batch data sets,
where the ordering of the data is unimportant, or to the analysis of sequential data.

To further motivate the idea behind TDSMC one may consider what is common to
all problems that the RIMCMC algorithm of Green [52] is used to solve. When viewed
in a probabilistic framework the common feature of these applications is a posterior
distribution defined on a countable union of sub-spaces, one for each of the candidate
models. These sub-spaces are generally of different dimension. So basically the RIMCMC
algorithm, reviewed in Chapter 2, is essentially an extension of the Metropolis-Hastings
(MH) [66] algorithm to accommodate moves between the model sub-spaces as well as
those within a single sub-space. Here it will be shown that in the same sense that
RIMCMC extends MCMC one can view the TDSMC algorithm as an analogous extension
of the SMC Samplers methodology.

Another important property that enables one to draw parallels between RIMCMC
and TDSMC is that both methodologies allow many different moves to be combined to
facilitate an efficient exploration of the space that the posterior of interest takes support

on. These may include birth moves to add new parameters, death moves to remove
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redundant or erroneous parameters, update moves to adjust parameter values, split and
merge moves to partition and combine parameters, and many more.

A key difference between the RIMCMC algorithm of Green and the TDSMC frame-
work being proposed in this thesis is that TDSMC is a non-iterative algorithm which only
requires a single complete pass over the entire data set, whereas due to its batch nature
the RIMCMC algorithm makes use of all the available data for each sample generated,
this has several consequences. The first consequence of such an approach is that for very
large data sets it can become computationally cumbersome, or even infeasible to have to
store and access the entire data set for each iteration, this is a significant problem which
is discussed in [73]. Another consequence is that a batch, iterative approach also presents
the algorithm with the entire probability surface in all its complexity right from the onset
which can make efficient localisation and exploration of the modes a potentially difficult
problem. There have been approaches suggested which attempt to mitigate this problem.
One such approach is to combine RIMCMC with Simulated Annealing (SA) [7] with the
alm being to be able to move from a simple probability surface to an increasingly more
complex one. However, the construction of an annealing schedule that allows an efficient
exploration and guarantees convergence, is a difficult problem.

Hence, these difficulties highlighted lend support to the argument that it is often
also beneficial to treat batch data sequentially, as it has been shown to provide a useful
tempering effect [28]. This is especially important, as stated before, in the situations
where one has very large data sets for which the chosen models exhibit complex proba-
bility surfaces. In these situations when the data is treated sequentially the probability
surface exhibits a natural tempering effect, which results in the ability to move from a
simple to an increasingly more complex surface as more data points are included. Thus,
with a sequential strategy, an efficient exploration of the probability surface would be
possible without the need to construct complex annealing schedules. The final argument
for looking at data sequentially is that either the problem is such that the data arrives

sequentially and one would like to perform "on-line" analysis, in which case RIMCMC
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is not a viable option or alternatively one has a massive data set and drawing on the
arguments made by [73], a sequential analysis of the data may lead to significant com-

putational savings.

4.3 TDSMC Methodology

In this section a general framework for joint model order determination and parameter
estimation for sequential analysis of data will be developed. The strategy presented is
applicable to truly sequential data, as well as batch data. In the batch case the time
index has no relation to physical time, and should be interpreted as a counter ranging
over the data. In this TDSMC framework the order in which the batch data points
are presented to the algorithm is unimportant, and could be random. The best way to
think about TDSMC methodology, presented in this section, is as a generalisation of
Importance Sampling (IS) to spaces of variable dimension. Then in the same manner in
which SMC Samplers recursively updates a sample, or particle, based approximation of
the posterior distribution as more data points become available, so too does the TDSMC
algorithm. The TDSMC algorithm provides a means of moving "particles" between
different dimensional spaces so that one may obtain an empirical particle estimate of the
true posterior defined on the space ®@. Where the space @ of interest in this chapter
is of the form ©® = J, {k} x Oy, where k represents the unknown model order and ©y
represents the space on which the model parameters exist for the k' model. As was
the case in the SMC samplers methodology, the interest will be to sample a sequence of
distributions (7 (k,01.)), except now the support of each distribution is on space ©.
When one has a space of the form @ it is difficult to design efficient proposal distribu-
tions that are capable of generating samples directly in the target parameter space. This
is largely a result of the fact that the dimension of the parameter space is generally high
and variable. Other factors such as non-linearities in the model and multi-modality of

the probability surface also create difficulties. To circumvent these problems the target
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parameter space is augmented with an auxiliary parameter space, which will be associ-
ated with the parameters at the previous time step before the new data point becomes
available. The distribution over this joint space is defined in such a way that it ad-
mits the target posterior as one of its marginals. This is where the connection between
TDSMC and SMC Samplers will become evident. The advantage of doing this is that
Importance Sampling in the joint space can now be formulated in terms of moves from
the auxiliary parameter space to the target parameter space. This essentially embodies
the sequential nature of the algorithm, since the auxiliary parameter space is associated
with the parameters at the previous time step before the new data point at the current
time step becomes available. Since the parameter spaces are of variable dimension these
moves are frequently trans-dimensional. In this sense the algorithm is the sequential
Monte Carlo analogue of RIMCMC. The objective of the TDSMC algorithm will be to
recursively estimate the joint posterior distribution of the model order and parameters
as more data points become available. This produces the sequence of distributions given

by 7 (k,01.1) = pe(k, 01.6]y1:), which can be rewritten using Bayes’ rule as

pe(k, Orilyre) o< pe(yelk, Ora)pe(k, O1.1), (4.1)

and it will be assumed that the target posterior can be evaluated up to a normalising

constant. The prior is assumed to factorise as

k

pt(kaelzkz) :Pt(]f)]?t(el) Hpt(ezfelzzq)- (4.2)

=2

The interpretation one gives to such a factorisation is that when new parameters are
added to the existing parameters they may depend on previous parameter values. Now
the following definition presents the target distribution which is defined on the aug-

mented parameter space which clearly admits as a marginal distribution the distribution
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of interest m; (k, 01.).

(k01 k' 01pr) = pe(k, Ora|y 1) Le (K 010 |k, O1:0). (4.3)

From a theoretical perspective the choice of the augmenting distribution I; is arbi-
trary, however in practice the choice for L; does affect the performance of the algorithm,
for the same reasons that were presented in the chapter on SMC Samplers. It is now
possible to use the same [; kernels presented in Chapter 4, including the approxima-
tion (3.19) to the auxiliary kernel which minimised the variance of the particle weights,
given by L. Tt should be mentioned that k and k' are not constrained in any sense,
so that the target and auxiliary parameter spaces may be of different dimension. Now
one must define the distribution on the augmented space from which the particles will

be generated, this proposal is given by equation (4.4).

Qt(ka 91:]9; k/7 9/1:16’) = pt*1<k/7 9/1:19’ IYI:tfl)KtUC) 911’9 ’k/7 H/I:k:’) <44>

Hence samples for the parameters at time ¢ are generated by the proposal as a result
of incrementally refining the posterior at time ¢ — 1 via the kernel K;. One may now
employ an Importance Sampling correction to compensate for the discrepancy between
the proposal in (4.4) and the joint posterior in (4.3) which is given by the following

incremental weight (4.5).

pt(ka lek’y1:t)[/t<k/; /1:19’ ’k, el:kz)
pe1 (K, 0y 1e—1) Ki(k, 01 K, 0 )

wt<ka elzk; k‘Ja /l;k/) = (45>

As a result of the construction of the joint distribution in (4.3), marginal samples in
the target parameter space associated with this weighting will be distributed according to
the desired target posterior pi(k, 01.5|y1.t). Importantly, this convenient result is achieved

without the need to marginalise the proposal in (4.4) over the auxiliary space.
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The algorithm presented in this form is very general and allows for many potential
choices for the kernel K; which can include the possibility of dependence on individual
particle parameter values at time £ — 1 or for examples such as those presented by [92],
where the kernel K; could depend on sufficient statistics drawn from the entire set of
particles at time ¢ — 1. Several choices will be presented for the design of K; which each
represent a different type of "move" and the corresponding approximation (3.19) for the
optimal L; kernel for each "move" will be presented. An underlying characteristic that
must be common to any type of move kernel K; is that it should be constructed in a way
that facilitates an efficient exploration of the model spaces.

For a given K the choice of L is arbitrary, as long as the importance weight in (4.5) is
well-defined over the support of the participating distributions. However, a poor selection
of I; may lead to poor performance in practice, this was explained in depth in Chapter
3. So following the arguments presented there it can be shown that the approximation
for the optimal I; kernel that will minimise the variance of the importance weights for a

given K, takes the form

_ ]f/ 9/. /’y G )K (lf Hl'k’k/ /. /)
0Pt k’, - k, 0. _ Dt 1( y U1 | Y 1:6—1 ) 12 \R, Uy, » U1k 46
t ( 1.1@’ 1.k) ptaKt(k,@L/@) ( >
ptfl(k/aH/I:k:”ylitfl)KtU{;)Hlik’k/7 /lzkz’)

ZZE;C f@l pt71<la 91:1’}’1171)}@(/9; 91:1:“; 91:z)d91:l '

In many cases the marginalisation in the denominator of the above expression is an-
alytically intractable, so that L;®" cannot be computed in closed form. The author has
developed generic analytical solutions to this problem which have partially been demon-

strated in [31] and shall be detailed in this chapter and the next chapter on applications.
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4.4 TDSMC Specifics: Theoretical and Algorithmic
Considerations

This section will present the main framework for the algorithmic development of TDSMC,
which will include the selection of the K; kernels to accommodate different moves around
and between model sub-spaces, Oy, as well as the corresponding approximations of the
auxiliary kernel L for each choice of K;. One may also choose to use a mixture
transition kernel to select from several possible moves at each time instant. In many
situations it will be beneficial to consider a mixture of moves in order to efficiently

explore the model space.

4.4.1 Multiple Moves

The types of moves that one may be interested in incorporating, in a mixture transi-
tion kernel in order to efficiently explore the posterior of interest include the following.
Adjustment moves to adjust existing model parameters to incorporate new data, update
moves which adjust the weight of a given set of parameters in light of new observations,
birth moves to add new parameters to better explain the data and death moves to remove
redundant or erroneous parameters. The form of a mixture transition kernel is presented

in equation (4.7), where M candidate moves are used in the proposal kernel K.

M M
Kt<k7 lek’k/a /1:k’) = Z am,t<k/7 Hazk’)Km,tUﬁ lek’k/a /1:k’)7 Z am,t(k/a 9/1:k’) =1
m=1 m=1

(4.7)
Note that the mixture weights corresponding to the different moves may depend
on the previous set of parameters. This gives the algorithm an adaptive flavour, since

samples can individually choose the most appropriate moves based on their state values.
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One may then define the augmenting kernel [, as a mixture kernel given by

M M
Lo(K 03018, 016) = Brne (s 1) Lon t (K, 03018, 018) s Y B (R O1) = 1
m=1 m=1

where the mixture weights do not necessarily correspond to those of the proposal kernel
n (4.7).

The incremental importance weights may then be calculated by direct substitution of
K; and L; into (4.5). Another approach which is computationally more efficient is to in-
volve the additional discrete random variable M; such that Pr (M; = m) = (K, 91 Kl)-
Now for each sample, at each time step, new state values are obtained by first ran-
domly sampling M, to obtain a choice of proposal kernel according to the proposal kernel
weights, and then sampling the new state values from the chosen kernel. The correspond-

ing incremental importance weights can then be calculated as

k,0 k,01.) L (K', 0, |k, 0O
wmt(k? 911@,/?/ lk’): Pt( 11;’}’11,) ( lkz) t( 114;’ 1k) ‘ (4.8)
pe (K, 91 e l)athC Hlk’)Kmt<k 01|k, 91 w)

Using a similar argument to that used to obtain the optimal L;” * kernel in Chapter
4, one may obtain an expression for the optimal weight 5 '+ and auxiliary kernel L}

which minimises the variance of the weights.

Bk, 01 Lry (K, 000K, O1) (4.9)
Di— 1(79 911@/’}’115 1>@mt<k 91 k;/)Kmt(k 01 k;W 1k/)
224:1 ZZGIC f@u Pt—1 l) Hl:l ’y1:t71)an,t(l7 lel)Kn,t<k7 91:]@ ’la 91:Z>d91:l

opt
m,t

The computation of the optimal mixture weights, 3, ;, for the augmenting kernel may
be computationally cumbersome and very difficult to solve. Hence, in practice one often
sets these to be equal to the corresponding weights for the proposal kernel, that is one

will use 3, ,(k,01.6) = Qmy(k,0},), m = 1--- M. This choice has worked well, which

illustrates that it is more important to approximate the optimal augmenting kernel than
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it is to approximate the optimal mixture weight, at least for all the examples that have
been examined using this methodology to date.
To accommodate multiple moves the generalised importance sampling step is pre-

sented as follows.

Generalised Importance Sampling Step

e For i =1,..., N, sample a move index Mt(i) ~ {o (K@, 9’1(:2,(1.)) M

e Fori=1,...,N, sample (k(i)vegg(i)

) ~ Ky (IR, 00), ).

I O]
e Fori=1,..., N, set the importance weights to

M/t(i) x VVt(f)le(i) 2ﬁ(lc(i), 9%@; 40N 9’1(2,(1.)), and normalise such that Zf\il VVt(i) =1.
t . :

The next section will present the details for some generic moves which allow for

efficient exploration of the state space, and which will be used in simulations to follow.

4.4.2 Construction with Auxiliary Random Variables

The following move is discussed in [52], and its purpose is to allow one to construct
the new state at the current time step as a deterministic function of the old state at
the previous time step and some auxiliary random variables as shown below in equation
(4.10). This type of move will be useful when one would like to perform tasks such as
split and merge moves. An application where one could envision this being useful would
be for example a sequential basis function regression, where new information favours one
basis function as opposed to two. In this setting it may be beneficial to construct the
parameters of the new single basis function as a deterministic function of the parameters

of the two basis functions.

Ore = V(O 0),  u~ Kio). (4.10)
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The incremental importance weight is now given by

wt(ka lekz; k/a /1:143’) =

Pk, Oy ) Lo (') ‘3<9m“’> (4.11)

ptfl(k/’ H/I:k:’ IYI:t71>Kt(u) a( ll:k;” ll)

where the Jacobian appears as a result of the random variable transformation. In this

case the augmented parameter space is assumed to be constructed through the mapping

/1:k;’ = 80(91%; u/)a u' ~ Lt(')'

From a theoretical perspective the choice of ¢ and L; is, as before, arbitrary, as long
as the importance weight in (4.11) is well-defined over the support of the participating
distributions. Where possible, however, attempts should be made to construct these so

that the variance of the importance weights is minimised.

4.4.3 TUpdate Move

Unless very informative measurements are received, the posterior is not expected to
change much between the arrival of consecutive measurements. This is especially true
in batch settings when the number of measurements received adequately reflects the
meaningful statistical variations in the data. Under these circumstances the existing
settings for the model parameters will often fit the new data sufficiently well. It there-

fore makes sense to include a move that leaves the model parameters unchanged, i.e.

{k’ @), 9/1(:2/(1-)} = {k(i), 98{3@ } For such a move both the proposal and augmenting ker-

nels are delta functions as shown below

Ki (R, 00K, 00p0) = S(r ) (K Or)
Le (K, 00k, 016) = o) (K, 0100)

86



and hence the incremental importance weight is given by

pt(kla 9/1:k’ IYI:t)
ptfl(k/) 9/1:k;’ ’y1:t71)

will, Oras K, 0,,) = (4.12)

4.4.4 Birth Move

For data that arrives sequentially a birth move is of paramount importance. Such a move
is required to add new parameters to the model to better explain the increasing data.
Here it will be assume that only a single new parameter is added, and that the existing
parameters remain unaltered. For such a birth move the proposal and augmenting kernels

take the form given by

Ky (k, 01K, 01) = Owrra (K) Ogr, (Orae—1) Ko (On|K', 00)

Li (K, 0|k, 016) = 01 (K') by, (014)

from which it is clear that k¥ = k' 4+ 1. In the above, the new parameter is generated
from the kernel K (0y|k’,0),,), which will be specified shortly. For these kernels the

incremental importance weight becomes

pe(k' + 1, Hazk'agkzb’l:t)
pe1(K, 0|y 1) Ke (0K, 04 0)
pe(K, 01301y 1:0) P (0001000, K, 91:0)
Pro1 (ks O |y 1:0-1) Ko (O |K, 000

wt(ka Hltk; k/a H/I:k:’)

Hence if one would like to minimise the conditional variance of the importance weights
it is easy to see that the kernel from which the new parameter is generated should be set

to

K (00K, 010) = pe(041010, K, Y 1) (4.13)

In this case the incremental importance weight is again given by the expression in (4.12).
The advantage of this optimal birth weight expression is that it only depends on the

parameters obtained in the previous iteration. Hence one may carry out resampling
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prior to mutation and correction. This is similar in idea to auxiliary particle filtering and
has the aim of boosting particles in regions of high posterior mass before mutation, as
first suggested by [70] and then improved in [4]. Note that it is generally not possible to
use the optimal proposal in practice, since its normalising constant can normally not be
obtained in closed form. However, it is possible to use this strategy for parameters with

a finite discrete support. In other cases suitable approximations can often be found.

4.4.5 Death Move

A death move is required to remove parameters that have become redundant, or that
have been erroneously added at an earlier time. Here it will be assumed that only a single
parameter is removed, and that the remaining parameters are left unaltered. For such a

death move there shall be two possible representations of the proposal kernel presented.

Technique 1 This death kernel has been included as it provides a simple method of
applying a death move which is computationally cheaper than the second technique to be
presented and in many cases provides an effective kernel, which explores the parameter
space sufficiently well. For such a death move the proposal kernel can be written as

Ky (K, Ov | K, 0110) = 01 (R)g;, (Or) K (AR, 01 0), (4.14)

from which it is clear that k = k' — 1. In the above ’\’ denotes the set difference opera-
tor, d is the index of the parameter to be removed, and K;(d|k’,#),,) is the probability
of picking this parameter to be removed. A common approach is to select the para-
meter to be removed uniformly randomly from the existing parameters, in which case
Ki(d|k',0,.) = Uiy (d), where Uy(+) denotes the uniform distribution for the set A.

Using the expression in (4.6), it is straightforward to show that the optimal augmenting
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kernel for the proposal kernel in (4.14) is given by

ptfl(k/a 9/1:1@’ IYI:tfl)
pea(k =1, Hllzk’\db'vl:tfl) '

Lipt<k/7 /lzkz”kagliki) =

For these kernels the incremental importance weight becomes

pe(k' =1, Hll:k’\d’ylit)
pe1(k — 1, Hazk’\dIY1:t*1)Kt<d’k/a O1a)

we(k, Or; K, 010) = (4.15)

Technique 2 This version of the death transition kernel and its associated weight has
been provided as an alternative method of carrying out death moves as it may be more
efficient at exploring the state space in question. In this case the death move proposal

kernel can be written as
M
Ki(k, 01|k, 010) = Z5k’71(’<¢)50;:k,\j(lek)Kt(eij’a )5 (4.16)
=1

from which it is clear that k = k' — 1 and again ’\’ denotes the set difference operator,
M 1is the set of possible parameters which may be removed, 0; is the parameter to be
removed, and K;(0;|k',0',,) is the probability of picking this parameter to be removed.
Where one way of selecting these probabilities which has been found to be highly effective
is to use Ki(0;]k,044:) o< pr (K, 0o |y

It is important to note that in truly sequential settings, it makes sense to only allow
death moves to occur for the M parameters which have occurred up to At time steps in
the past. The justification for this is that in some sequential examples it may be assumed
that data observed at the present time ¢ has little or no effect on the parameters estimated
at distant times in the past, this has the added advantage of reducing computations.

Using the expression in (4.6), it is straightforward to show that the optimal augment-

89



ing kernel for the proposal kernel in (4.16) is given by
pr1 (K, 0 y1a—1) Ki(k, 01K, 01 40)
pt,th(k, 91:k)
pe1 (K, 01| y1a-1) (Zj]\il K (0%, /w)(Sk’fl(/f)‘Se;:k,\j(Hl:k))
Zj\il Kt(ej’k/a 9/1:1@’)]%71(]{7/ -1, Hazk’\j’}"l:tfl) ‘

L (K Ok, 012) = (4.17)

For this kernel the incremental importance weight becomes

(k' =1, gazk'\J’YLt)

wt(kr,ﬁlzk;; ]{?/,9/1:,6/) = .
Zj\il Kt(ej’k/7 9/1:k’>pt71(k/ - 1) Q/l:kz’\j IYI:tfl)

4.4.6 Adjustment Move

Very often the arrival of new measurements requires only small modifications to the
existing parameters to improve the modelling fit, another way of understanding when
this will be the case is to consider the situation in which one has a sharply peaked
distribution. In this situation one can explore the distribution well by small perturbations
of the parameters. Here it will be assumed that only a single parameter is chosen to
be updated, and that the remaining parameters are left unaltered. The corresponding

optimal augmenting kernel can be computed from the expression shown below

Lgpt (l{f/ /}k/’k Ql-kz) _ D1 (k/7 H/I:k”ylitfl) Kt<€a’k/7 /l:kz’) )
A S i1 (K, 0105 00l y1:0-1) Ki(OalE!, 0400, 07,) 0,

If one sets the proposal for the parameter to be updated to its posterior given all the

available data as shown below

Ktopt<6a’k/7 /l:k:’) =Dt <904’9/1:k:’\a7 y11t>

then the optimal augmenting kernel can be further simplified as

_1 (K 9/. ,]yl.t,l)
L (K, 0|k, 01) = Pt (K, Oy 4.18
t ( 1:k ’ 1 ki) fpt—l <k/79/1;k;/\a79;’y1:t71> de; ( >
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which in some cases will provide an analytical solution.

However for many cases of interest the integral in the denominator of (4.18) will
be intractable hence one needs to resort to using a different proposal kernel. The next
version of the adjustment move has been presented, as it provides an analytical solution
to L*" which is straightforward and has been found to be very effective in all simulations
carried out. It is assumed that only a single parameter ¢/ at time ¢ is chosen to be
updated, and that the remaining parameters are left unaltered. The proposal kernel for
such an update move may be expressed as

Ki(k, Ol K, 0140) = 01 (k)00 (Orva) Ke(alk', 01.40) Ko (Oal K, 0140),

where a is the index of the parameter to be adjusted, K;(alk’,0},,/) is the probability of
picking this parameter to be updated, and K;(0,|k’,0),,) is the kernel from which the
updated parameter value is generated.

As for technique 1 in the death move, it is common to pick the parameter to be
updated uniformly randomly from the set of M existing parameters. This can be further
extended in a sequential "on-line" setting, in which parameters are temporally ordered
so that one only selects a parameter to be adjusted which is within a window of time
given by the range [t — At, t]. Some examples of such a situation shall be presented in the

/

applications chapter. Now if one selects the kernel K;(0,|k', 07.,/) to be a set of weighted,
randomly or deterministically spaced grid points {0, — 01, ..., 0., + $09541} such that

2s+1

Ki(0alk,0100) = > wib(er, (s 41y (0a)
=1

where w; « p; (k’, 9'1:,6,\,1, O, = (0, —(s—7+1)6;) ]y1:t>, then the corresponding optimal
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augmenting kernel can again be computed, and is given by

Lgpt(k/v &:kz”kagl:k)
Pe-1(K', O y1-1) (ﬁ > wib e (s 4165 (0a) 5k’(k)60’1:k,\a(91:k\a))
i Z?‘:il wjptfl(k/) 9/1:19’\(1) ;1 - (S - j + 1) 6j’y1:t71) ‘

This will then produce an incremental importance weight for the adjustment move,

Pk, 9/1;1@/\,1; 0aly1:t)

wt(k7911k3; k/7 /lzk:’) = 2s+1 . ’
ﬁ Zj:t wjpt*1<k/7 9/1:k’\a7 ZJ, - (8 —J + 1) 53”}’1:1571)

which is again similar to the expression obtained for the death move using technique 2.

The moves presented are just examples and many others could be designed and used.
Now that the basic settings for the transition kernel and auxiliary kernels have been
established for several move types, one may construct the following generic TDSMC

algorithm.

4.4.7 TDSMC Algorithm

At time ¢ — 1 assume that one has a set of weighted samples {I/Vt(f)l, 40N 9/1(2,(1-) N, that

are approximately distributed according to the posterior distribution p; 1(k,01.4|y1.¢ 1)

which is given by the particle approximation,

N
ptfl(ka 91:k’y1:t) ~ Z I/‘/t(i)lé(k/(i)’g’(i) (_))(ka elzk)a
i—1 1:k'0

in which d,(-) denotes the Dirac delta function with mass at . The TDSMC algorithm

then proceeds as follows at time .
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TDSMC Generic Algorithm

) ~ Kt(.’k/(i) 9’@) ).

e Fori=1---N, sample (k® o) s Uit

» 1)

e Fori=1---N, set the importance weights to M/t(i) o I/Vt(j)lwt(k(i), 9%@)3 K@ oo )

P Lk @)
and normalise such that Zi\il I/Vt(i) = 1.

Resampling Step

e If resampling is required then for i = 1--+ N, sample an index j(7) ~ {wgl)}f\il, and

replace {wgi), k(i), 9%@)} — {Nﬁla kj(i)a Hjl(;?m)}

The resulting set of weighted samples {T/Vt(i), k@), 9@@) 1| is then approximately dis-

tributed according to the posterior distribution pg(k, 01.x]y1.) given next.

N
pt(k?; 91:1;’Y1:t) ~ ZV[/t(l)é(k(i)’g(i)(_))(k) lek)-
i—1 1:k\2

Hence, summarising what has been presented. An algorithm has been developed
which sequentially allows one to obtain weighted samples from the sequence of distribu-
tions (7 (k, 01.5) = pt (k, 01.5|y1.¢)) where each distribution p; (k, 01.5x|y1.¢) is defined on a
space of the form ©; = U {k} X O4. This has been achieved by augmenting the target
parameter space with an auxiliary parameter space which is associated with the samples
obtained in the previous iteration. This augmented posterior was designed to admit as
a marginal distribution, the target distribution of interest at iteration ¢, which is given
by pi (k,01.|y1.4). An algorithm was presented in which the transition kernel comprised
a mixture of transition kernels, with each component transition kernel representing a
different type of move within or between dimensions, such as birth, death, update and

adjustment. In addition to this a computationally efficient incremental weight estimate
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(4.8) which involved sampling an auxiliary random variable at each iteration ¢ was pre-
sented. This auxiliary random variable M; was sampled from the discrete distribution
of mixture weights ay,; presented in (4.7) and then it was associated with the type of
move/transition kernel that would be used at time ¢ for the mutation step.

Following this algorithmic section, in which the TDSMC framework has been detailed,
is a section which involves an asymptotic analysis of the TDSMC algorithm, followed by

a section in which these ideas have been successfully applied in two different situations.

4.4.8 Asymptotic Variance for TDSMC Algorithm

The weighted particle estimates obtained from the TDSMC algorithm are typically used

to form estimates of integrals, as shown in the example below

By (9) = S0 W% ({014} ) (4.19)

To obtain such an estimate at time ¢, one first determines the mode for the marginal
posterior of model order k. Then conditional on this modal or MAP model order, which
shall be labelled k*, the weights of the particles associated with k* are renormalised. This
allows one to obtain a weighted estimate, such as the one presented above in equation
(4.19), where P is the number of particles associated with model order k*.

In the same manner as [31] and the results presented in Chapter 3, an asymptotic
variance expression for the estimate (4.19) has been developed. This follows the results
presented for the Central Limit Theorem of ([27] and [32], section 9.4, pp. 300-306).
The asymptotic variance expressions obtained are for the two extreme cases, when no
resampling is used and when multinomial resampling is used at every iteration. It is
important to mention that by introducing the auxiliary random variables M;.; in order to
create an efficient means of computing the incremental weights, the parameter space has
changed from ©; = Ugexc{k} X Op 1 to ©p = Upeic{k} X Op s x X, where X = {1,2,3,..M}

is the support of the auxiliary random variable M;. Recall that this represents the set of
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indexes associated with the M possible move types/mixture components in the mixture
transition kernel presented in (4.7). Therefore defining the new posterior on this extended
product space as 7y (kt, 016, Me|y1:6) = Pr (key O1.6.6/mes Y1) P (Me|y1.4) which as one can
see, still clearly admits the desired target posterior pg (ki,01..t|mt, y14) as a marginal.
The distribution p; (m¢|y1.) is just a discrete set of probabilities ay,; over the set X' at
each iteration .

Before stating some results which are a direct result of proposition 1 and derived from
the work of (Del Moral and Guionnet,1999; Del Moral and Miclo, 2000; Kunsch, 2001;
Chopin, 2004), it will prove useful to define the following notation, where the initial set

of particles at time ¢ = 1 are given by {k1,01.41,m1} and they are assumed to be

i=1:N

sampled from the distribution gy (k1,01.5,1,m1). Then at time ¢, if the particles have not

been resampled they will be distributed according to

Hy (/ﬁ:t, 91:k,1:t, ml:t)

= M (/ﬁ, 91:k,1, ml) H2:1 Qm,n (knfla 91:k,n71) Km,n (knfla lek,nfl; k?n, 91:k,n)
and if they have been resampled at time [ then they will be distributed as

7ATt (/ﬁ:t, 91:k,1:t, ml:t’ylzt)

= T (k?z, 91:1;,1; mz) H;:l Cmn (knfla 91:k,n71) Km,n (kjnfla 91:k,n71; ky, 91:k;,n) .

However, we would like the particles to be weighted samples from the target posterior

%t (klzt) Hl:kz,l:ta ml:t’yl:t)

= Ty (]ft; lek,t; mt’ylzt) Hizl ﬁm,nfl (kna lekz,n) Lm,n (kna lek,n; kn_1, 91:k,n71)

so an importance sampling correction is made. We shall also use the following notation
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for the marginal posterior of the set of variables at time a

kmax,j

M
e (kaaelzkz,aama’ylzt) = Z Z /%t (klztalek,lztamlzt’ylzt) del:k;,l:t\a
j=lit\a k;=1 m;=1
and we shall denote the following conditional distribution 7 (¢, 014, M| Y14, kay 010> Ma)

as follows

%t (kta Hl:k,ty mt’yl:t; ka; lekz,a; ma)

t—1 kmax M

= Z Z Z /%t (klzta@lzk,l:tamlzt’ylzt) dal:kz,l:tq /%t (kaaglzkz,a;ma’yl:t)-

Jj=1 k;j=1m;=1

Now by using Proposition 1 of this thesis which uses a combination of equations
(3,4,9) and Theorem 1 from [27] and the Delta method, one is able to make the following
remark which is of fundamentally the same form as Proposition 1, presented in [31]. The

proof of this remark is identical to that found in appendix 1.

Remark 3 Utilising the Central Limit Theorem and assoctaled weak integrability results
presented by (Chopin, 2004) or (Del Moral, 2004, section 9.4, pp. 300-306), we are able

to state the following results:

In the case in which no resampling is used the following convergence in distribution

18 obtained :

VN (Br (9) = Ex, (¢)) = N {0,035, (0)}

where

t kmax M

7o (K1, Orie 1, M|y )
UQGIs,t (¢) = ZZ Z / e (hat, O, Mhaalye) (¢ (91:1@,1‘,) — I, (SO))d@l:k;,l:t

oy (kflzt, 91:k,1:t, ml:t)

j=1 k;j=1m;=1
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and in the case in which multinomial resampling s used at every iteration, one has

VN (Em (p) — Er, (50)) = N{Oa U2TD5MC,t (90)}

where, for n > 2 one has

U%DSNIC,t (SO)
kmax M
= Z Z /Al </30 (lek,t)%t (ktaelzk,t;mt’ylzt; /ﬁ,@lzk,l,ml) — In, (30)> d91:k,1

k1=1mi=1
t—1 kmax M

—I—Z Z Z /AQ </30 (91:k,t) Tt (ktaelzk,t;mt’ylzt; kjaelzk,j;mj) — I, (30)> ijfl:j
=2 kj=1m;=1
kmax M

+ Z Z /A3 (¢ (O11t) — Er, (¢)) db;_ 1.4
kj=1m;=1
with

A . %t (klaelzkz,l)mllyl:t)Q

1 =

Hq (kla 91:1{:,17 ml)
A2 _ [%t (kja glzk,j) mj’yl:t) ﬁm,jfl (kj) elzk,j) Lm,j (kj) lekz,j; kj*l) Hl:kz,jfl)}2
-1 (kjfla lek,jfla mfl) Q5 (kjfla 91:1@,3'71) Km,j (kjfla 91:1@,3'713 kja lek,j)

A. — [%t (/ft, 91:1@,15; mt’ylzt) ﬁm,tfl (kt; 91:k,t) Lm,t (k‘t; 91:k;,t; ki1, 91:1@,1571)} 2

3 =

Tj—1 (kftfla 91:1@,1571; mtfl) Qi t (ktfla 91:1@,1571) Km,t (ktfla 91:1@,1571; Ky, 91:k,t)

4.5 Application of TDSMC Algorithm

This section will now demonstrate an application of the TDSMC algorithm which has
been published in [89] and [90]. The problem to be investigated is sequential kernel
regression which will be applied in a simulated example and then to a real data set. The
sequential kernel regression example presented in this chapter is adapted from earlier
work of Dr. Jaco Vermaak of Cambridge University. The author must also thank Dr.

Doucet for suggesting the radial basis function regression example as a good means of
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testing the TDSMC methodology and for guidance in the development of this problem.
The input of the author came from developing and implementing the framework for the
approximation of the optimal L;” * kernel and then in this example demonstrating and
developing its use. This involved carrying out more extensive simulations, which include
the use of approximation of the optimal L;”* kernel, than those found in [89] and [90] .
The author has used this example to demonstrate how one may improve the choice
of the kernel L;, that was used in the two papers just cited, by using the approxima-
tion of the optimal L;? * kernel which minimises the variance of the importance weights.
Hence the author of this thesis has used this example and introduced the moves de-
veloped throughout this chapter, coupled with the associated approximations for the
optimal auxiliary kernels to improve the performance of the algorithm used in the two
papers. This improvement is compared with the results obtained in the two papers to
help demonstrate why one should attempt an approximation of the optimal L¥* kernel
and when this is important. It will also give some indication of how much difference
there is between a poor choice of kernel I; and an approximation of the optimal kernel

for this application.

4.5.1 Application 1: Sequential Kernel Regression

The objective of the radial basis function regression is to fit a mixture of local kernels
to some unknown function of which one only has noisy samples. This example is built

upon an example presented in [89).

Model Description

The aim of this section is to develop a strategy that estimates the number of kernels, k,
and the parameter values, 0., of the kernels sequentially and in a single pass over the
data. Kernel regression [16] is a well studied problem and many batch strategies have
been developed to estimate both the number of kernels and the parameters of the kernels

[5], [60], [34]. This example provides a set up in which a sequential approach is being
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used to solve what is typically a classical batch estimation problem. Hence there will be
no temporal ordering to the data points, this does not affect the TDSMC algorithm to
be presented.

The model for the kernel regression is defined as follows

k
Ye = Bo + ZﬁiK(Xzﬁa i) + v
i=1

with the following specifications :

e x; € R? is the input variables

y: € Ris the corrupted output

v, €R v ~ N(O, 05) is the i.i.d. Gaussian noise

05 1s the observation noise variance

B =By B3;) € R* is the regression coefficients

e K(-;u) is a local Gaussian kernel function with centre g € R* and known width.

In this example it is assumed that the batch data {x;,y:}1 , is available and one
would like to estimate the number of kernels and the corresponding unknown regression
coeflicients and kernel centres which will be denoted by 0y, where 0; = (8;, ;). The
kernel centres shall have an evolving support which is given by the available data points
at time ¢. IHence the support of the unknown parameters can be written as ©;; =

(R x {x;---x:})*. The prior structure used in this analysis is given by the following
k
pe(k, 01) = p(k)p(Bo) Hﬂﬁi)%(ﬂi)a (4.20)
i=1
with
e p(k) x AP exp(—A)/k!l ke {l - kmax}
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o p(3;) = N(B,|0,0%) i=0--k
o pi(p) =Upqxy () i=1--F.

where O'% is a common variance and the maximum number of kernels is typically
set to some value less than the total number of data points T. Additionally it will be
assumed that the prior parameters (A, 04, 0,) are known. The conditional independence
assumption on data points coupled with the conjugate prior structure used allows the
full posterior to be marginalised over the regression coefficients to obtain the following

(k. iy lyee) |B|'? exp(—y"Py/205)p(k)pe(p1.4)
Pe\Fs Ky |Y1:e) X (zﬁag)t/Q(U%)szrlﬂ ’

(4.21)

B = (KTK/O'; —+ Ik:+1/0-%’)71

P=1,—-KBK"/o..

1 K<X17/J’1) K<X13H’kz)
K= |: . .

1 K(Xta/*"l) K(Xtap’kz)

where y € R? is the column vector of ¢ outputs and K € R¥**+1) ig the kernel regression
matrix.

Given an estimate of the number of kernels and the locations of the kernel centres one
can then reconstruct an estimate of the noise free data points as z = KBK"/ O'Z. The
following section will outline the algorithmic aspects of the TDSMC algorithm that shall

be used in this example.

TDSMC Algorithm

Four moves shall be used in the application of the TDSMC framework to solve this

problem; an update move, an adjustment move, a birth move and a death move. The
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details of the moves are identical to those presented previously in this chapter, with the
incremental importance weights given as follows.

Birth Move : In this model it would be possible to sample from the optimal proposal
for the birth move, since the kernel centres have a discrete support, however to reduce
computation the birth location is sampled uniformly over the grid of unoccupied data

points.

Kbirth,t(“k’k/a :u/lzkz’) = ul“;(ﬂk)a

where I, = {xy---x.} \ {#d) - - o,/ } is the set of unoccupied data points. At time ¢ — 1
one has particles given by {k’, p}...} then at time ¢ one has {k, ;.. } where k = k' + 1

and py., = p)./U o, which produces an incremental importance weight given by :

i (ks 1k |Y1:t)
D1 (K o [Y16-1) Koiene (K 18500)
Bl exp (- (u"Py—y"PY) [20) A -1)"
o5 ’B,’1/2 (QWUQ)I/Q k(K +1) (t-K)

Y

Wheirth X

Death move : For the death move one discards a kernel selected uniformly randomly
from the set of existing kernels. At time ¢ — 1 one has particles given by {k’, ;. } then
at time ¢ one has {k, p,,} where k = k' — 1 and p,,, = p}.. \p; which produces an

incremental importance weight given by :

Pt (k/ -1, N1:kﬂ\d’ylzt>
D1 (k/ -1 :u/lzk/\d’ylttfl) Ki(d|k', p )
o ’B’l/Q exp <_ (yTPy _ y/TP/y/) /20.5) (t N 1)k;’ (k/)Q
]B’]UQ (2702) 1/2 ' Atk

Yy

V[/death X
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Update move : At time £—1 one has particles given by {£’, p¢/ ;. } then at time ¢ one
has {k, p,.,} where ¥’ = k and p},,, = p,., which produces an incremental importance

weight given by :

Dt (ka Hl:k’ylzt)

I/I/u ate
pdat Di—1 (/f’, Nl:kz’yl:tq)
’B’l/Q exp <_ (yTPy o y/TP/y/) /20.§> (t N 1)k’
o ]B’]l/Q (2702)1/2 S
Y

Adjustment move : At time ¢ — 1 one has particles given by {£, p].,.,} then at time

¢ one has {k, py;} where k = k" and poy, = ptl 0\ U g = (N’Laqa Hgs N;+1:k/)- In this
type of move it shall be assumed that there are s or less possible grid points {,uj }j:1~s’
to be used as the potential new adjusted kernel centre, which were selected randomly

from the set T, = {xy---x¢} \ {p) - )} U {pe,,}. This will produce an incremental

importance weight given by,

Pe(k's Whgon os HalY1:
I/Vaayustment X 1 s t( Ml.k/\ /M| lt)
W 2ai—1 wips—1(k s Byna jly1e-1)
/ t/2 (k+1)/2
(t= )" (B exp (= (y7Py) /202) | ((2702)"* (63)**17)

i;_k/ 25:1 w, ‘B}‘I/Q exp (_ (y/TPJ{y/> /205) / ((2%0;)(%1)/2 (O_%)(k’+1)/2)

with the probability of a given new kernel centre position given by w; o py(k/, ,u’l:k,\ w M|y 1e)
Note that the assumption on factorisation of the likelihood no longer applies since
integration over the regression coefficients has caused the data points to become depen-
dent in the marginal posterior. Thus, the addition and deletion of kernels has an impact
over all data points, such that the entire likelihood has to be evaluated for each move.
As was carried out in [89], the inverse calculation required to obtain matrix B can be

determined incrementally from the inverse obtained at the previous time step, [85].
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The mixture weights for cach of the moves were set in a similar fashion to [52], and
for the following constraints were also imposed; for £ = 0 only a birth move is possible

and when k& = min{kp,.., t} a birth move is impossible.

iy = cmin{1, p(k +1)/p(k)}
Qdeath = len{17p(k - 1)/p(k)}
Qadjustment — [1 - (abirth + adeath)] /4

Qyupdate = 1-—- Qpirth — ®death — (adjustment

In the above ¢ € (0,1) is a parameter that tunes the relative frequency of the dimension
changing moves to the adjustment and update moves. For simplicity and computational
savings the probabilities for the corresponding augmenting kernels were set to the same
values as the transition kernel equivalent moves. This was found to work well in the
experimental evaluation. To initialise the algorithm & = 0 was used for all of the samples.
The performance of the TDSMC algorithm was then tested on the two data sets found
in [89] and [90].

TDSMC: Sinc Data set

This data set has been used in [17] and has proven to be a popular bench-mark which
allows for direct comparison between TDSMC results and current algorithms in the
literature. Just as was the case in [89], the data is taken to be the sinc function,
sinc(z) = sin(z)/z in the interval z € [—10, 10] which was corrupted by additive Gaussian
noise of standard deviation o, = 0.1. The kernel used is a Gaussian of o = 1.6, the train-
ing data was taken to be 50 evenly spaced points in this interval and the test data was
1000 points also over this interval. Then in the training stage and the test stage of the
TDSMC algorithm data points were presented randomly. Several simulations were carried
out which involved varying the A parameter in (A, kpax). The values used for the simu-

lations were given by the following combinations {(1,50),(2,50), (3,50), (4, 50), (5, 50),
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(6,50), (7,50), (8,50)}. These A values were selected as they represent a range of mean
values around those obtained by the algorithms being used for comparison, as found in
[16]. The fraction of dimension change moves was set to ¢ = 0.25.

Initially all four move types were implemented. However, it was found that for this
example the adjustment move did not significantly improve the performance of the al-
gorithm. It should be stressed that the adjustment move is an integral part of such
a methodology, there are several situations in which results are significantly improved
through the use of such moves. This has been demonstrated in the sequential estimation
example presented in [31] and the author has applied adjustment moves to other sequen-
tial kernel regression problems and found they significantly improve the performance as
will be demonstrated in the following chapter.

The results for the sinc data simulations are now presented. Figure 3 shows the
average test error, as a function of the number of particles N, for the range of A values
used. These results were obtained by averaging over 50 random generations of the training
data for each value of N. As expected, the error decreases with an increase in the number
of particles. No significant decrease is obtained beyond N = 250. A typical MMSE
estimate of the clean data, computed from the particles prior to resampling, is shown in
Figure 4. The results are also presented in Appendix 3 with standard deviation errors

provided.
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Figure 3: Average RMSE approximation error versus the number of particles for a

range of A values.
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Figure 4: Blue: original uncorrupted data, Red: noisy observations, Green: typical

MMSE estimate obtained
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A comparison can now be made between published batch algorithms and the sequen-
tial TDSMC algorithm. The batch techniques compared are Support Vector Machine
(SVM) [88] and Relevance Vector Machine (RVM) [86], [43] and the results for these
algorithms are from [90]. Table 3 shows that the error for the sequential algorithm is
on average slightly higher than the results of the batch algorithms. This is due to the
stochastic nature of the algorithm, and the fact that it uses only very simple moves. The
fact that the test error of the TDSMC algorithm is slightly larger than the batch algo-
rithms used in this comparison should be offset against the TDSMC algorithms simplicity
and significant gain in computational efficiency, data storage and the fact that it is an
‘on-line’ algorithm. The value of A = 5 was used to generate the results in the following

table, with N = 1000 particles.

Method Test Error # Kernels Noise Estimate
Figueiredo 0.0455 7.0 -

SVM 0.0519 28.0 -

RVM 0.0494 6.9 0.0943
Variational RVM  0.0494 7.4 0.0950

MCMC 0.0468 6.5 -

Sequential RVM  0.0591 4.5 0.1136

TDSMC L 0.0563 7.05 -

TDSMC [90] 0.0591 4.5

Table 3: Comparative performance results for the sinc data.

The results in Table 3 demonstrate that the average test error for the TDSMC algo-
rithm using the approximation of the optimal auxiliary kernel L;” " seem to only make
a marginal improvement over the results obtained in [90], where the auxiliary kernel for
the death move was not optimised and was supposedly selected as a degenerate delta

mass. However, this is somewhat misleading since this will only be the case when large
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enough numbers of particles are used such as in Table 3 where N = 1000. In actual
fact this is in stark contrast to the performance obtained when one varies the number
of particles used in the simulations for smaller values of N. The plot shown in Figure 5
below was presented in [90]. It demonstrates the performance of the TDSMC algorithm,
when one does not use an optimal auxiliary kernel. Clearly in this case for small num-
bers of particles such as when N € [1,200] the performance of the algorithm presented in
[90] is significantly worse than the results presented for the new algorithm and shown in
Figure 3, which utilises approximations to the optimal auxiliary kernel L. Hence, it can
be argued that it is important, when ever possible to make a wise choice for the auxiliary
kernels L, as this will improve results by minimising the variance of the particle weights

with respect to these kernels.

0.4 H :

0.35 [ m

0.3 4 m
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0.2 -
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0.1 - -
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0.05 | hid §

0= I I I I I I | | =)
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Figure 5: Blue: Average RMSE approximation error versus the number of particles,

reproduced from [90].
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TDSMC: Boston Housing Data

The algorithm was also applied to the popular Boston housing data set. The Boston
Housing problem data can be found at Statlib at Carnegie Mellon University. The
Boston house price data was first published by [54]. This is a very famous dataset in the
field of statistical analysis; many have used it to prove the validity of alternative statistical
techniques. It is a well known data set for testing non-linear regression methods. The
data set consists of 506 cases with 14 attributes in which 12 continuous variables and 1

binary variable determine the median house price in a certain area of Boston in thousands
of dollars. The prices lie between $5000 and $50000 in units of $1000. There are 14

attributes in each case of the dataset, which are listed below.

z- elements

e CRIM - per capita crime rate by town

e /N - proportion of residential land zoned for lots over 25,000 sq.ft.
e INDUS - proportion of non-retail business acres per town.

e CIAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)
e NOX - nitric oxides concentration (parts per 10 million)

e RM - average number of rooms per dwelling

e AGE - proportion of owner-occupied units built prior to 1940

e DIS - weighted distances to five Boston employment centres

e RAD - index of accessibility to radial highways

e TAX - full-value property-tax rate per $10,000

e PTRATIO - pupil-teacher ratio by town

B - 1000(Bk — 0.63)% where Bk is the proportion of blacks by town
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e LSTAT - % lower status of the population
y - value
e MEDV - Median value of owner-occupied homes in $1000’s

The algorithms used for comparison were the SVM and RVM with the results taken
from [86]. A random train / test partitions of the data of size 300 / 206 was used for this
example. Again, a Gaussian kernel with width of 5 was used. Parameter values similar to
those for the sinc experiment were used, except for setting A = 15 to allow a larger number
of kernels. The results are summarised in Table 4. These were obtained by averaging over
10 random partitions of the data, and setting the number of particles to N = 250. The
results for a range of A values are presented in appendix 4. The test error is comparable to
those for the batch strategies, but far fewer kernels are required. It should be mentioned
that this is partially due to the fact that the tests that TDSMC is being compared to
used linear spline kernels, which is why they required larger numbers of kernels. However,
it is clear that using the TDSMC algorithm makes for a computationally efficient and
sequential alternative to these batch strategies. Additionally it is interesting to note that
in this example again there is no significant difference between the performance of both
forms of the TDSMC algorithm in terms of the average test error. However, use of the
optimal auxiliary kernel has clearly reduced the number of kernel basis functions required

to achieve approximately the same level of accuracy.

Method Test Error # Kernels
SVM 8.04 142.8

RVM 7.46 39.0
TDSMC L' 7.96 8.6
TDSMC [90] 7.18 25.29

Table 4: Comparative performance results for the Boston housing data.
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4.6 Summary

This chapter introduced the TDSMC algorithm to perform joint model order determi-
nation and parameter estimation using sequential data. The algorithm is non-iterative,
and based on a generalisation of importance sampling to spaces of variable dimension.
The methodology underpinning the TDSMC algorithm was developed and several move
types described. An asymptotic analysis of the variance of the Importance weights was
presented. Two examples were analysed using TDSMC and comparisons to existing
batch techniques were made, both for simulated data and for a real data set, each of
which can be considered to be a bench mark data set. These examples demonstrated the
problem of sequential kernel regression on a batch data set and hence provided an exam-
ple of sequential analysis being used to solve classical batch estimation problems. The
TDSMC algorithm was able to achieve results that compare favourably with a variety of
batch algorithms. These results are even more remarkable considering the fact that the
TDSMC algorithm is non-iterative, requiring only a single pass over the data. Further-
more, only a small number of Monte Carlo samples were used. This gives the TDSMC
algorithm a computational advantage over batch algorithms, since its processing time

can be guaranteed, while batch algorithms are inherently iterative.
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Chapter 5

Applications

This chapter develops two detailed applications of the TDSMC methodology presented in
Chapter 4. The first application is the estimation of an inhomogeneous Poisson process
rate using a simple piecewise constant function approximation. The unknown elements
will be the rate over a given segment and the number of segments. The algorithm
developed was then applied to the popular real data set for coal mine disasters in the
UK between 1851 and 1962.

The second example involves sequential basis function regression for the General Lin-
ear Model. TDSMC was developed to perform sequential basis function regression using
an exponential basis function. In this example the parameters of the exponential and the

number of exponentials present are unknowns.

5.1 Inhomogeneous Poisson Processes

Inhomogeneous Poisson processes are used in many fields to model a vast number of
different phenomena. For example, they have been used to model claim occurrence
epochs in a risk model [18], in applications such as finance. The Bayesian formulation of
the model for an inhomogeneous Poisson process was used in [52], to analyse a data set

which contained the dates of coal mining disasters in the UK.
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5.1.1 Construction and Conditions for an Inhomogeneous

Poisson Process

The following provides a brief review of which conditions a point process must obey in
order for it to be considered a temporal Poisson process. As stated in [82] where they
are rigorously presented, the reason for presenting these conditions is that the degree to
which a Poisson process can be considered a reasonable model for a given application can

be judged by the degree to which the following conditions are satisfied.

e Orderliness : Counting process {N(t) : t > to} is orderly at t > tp if for any given
g, there exists a § = d (¢,€) > 0 such that,

Pr(N(t,t+¢)>1)<ePr(N(t,t+d)=1)

This condition can be interpreted as stating that points may not arrive simultaneously.

e Evolution without after effects : A point process evolves without after effects
if the realisation of points in the interval [t;, c0) is independent of the points that
occurred in the interval [t;, ¢;]. This characterises a notion of independence of time

Increments.

Now one may define the Poisson process, which is an integer-valued stochastic process

{Ni},50 in continuous time with rate or intensity parameter A (¢) if

o Ny~ P (M):Pr(Ny=k)= e k=0,1,2..

k!

e N, has independent increments on disjoint intervals

To obtain the inhomogeneous Poisson process one extends the above definition of a
Poisson process in which the rate parameter is constant over time to that of a Poisson

process in which the rate parameter is now time varying. The following construction is
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required. Assume that one has a measurable function A (¢) > 0 on [0, 00), then one can

define the following expression :

I1-AX@t)h+o(h) k=0

P<Nt+h:Nt+k’Nt:$) —t
A(t)h+o(h) k=1

This expression defines an inhomogeneous Poisson process N; which has a rate function
given by A (). This provides a natural interpretation of the distribution of the number
of jumps N4 that have occurred at times from a Borel set A C R which is given by

P (A (A)) where A (A) represents the integrated rate on this Borel set, given by

5.1.2 Bayesian Model for Estimation of the Rate of an

Inhomogeneous Poisson Process

A Bayesian model for the simple function piecewise constant non-parametric estimation
of the intensity function of an inhomogeneous Poisson process can be presented as follows.
One is assumed to have a data set which was generated by a process which satisfies the
requirements that were presented earlier. This restriction is necessary for the process to
be an inhomogeneous Poisson process. Consider the model, as used by [9], in which at
time £, one has access to time occurrences which are assumed to follow an inhomogeneous
Poisson process of intensity A : RT — R*; that is the likelihood of I; time occurrences is
given in (5.1) by

It

pr (1) 2 (1)} cy) = exp <— /0 Aw) du) @) (5.1)

=1

In order to carry out any form of estimation of the rate function A (f) one must first

decide on how the rate function will be represented, either as a parametric approximation
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or as a non-parametric estimation. For this analysis the author has followed the repre-
sentation of A (f) used in [9] which is a non-parametric simple function approximation of

the rate function. This simple function approximation takes the form

k
A(t) = Z Al 1 7m) (t) + A1l 00) (¢)
m=1

with 79 = 0. This corresponds to the left end-point simple function approximation of
the rate function. This approximation of the rate function may be parameterised using
the variables {k, Ty, A1py1}. Here k represents the model order, that is the number of
segments in the approximation and 71 represents the knot points which correspond to
the times at which these k intervals begin and Aq.; 1 represents the rates or amplitudes for
the corresponding intervals. All of these variables are assumed unknown. The objective

is to estimate the full posterior distribution,

p (?Jl:zt Ui‘, T1:k, /\1:k:+1)p (k?, T1:ks /\1:k;+1)
P (?Jl:lt)

P (K, T 1wy My 1|12,) =

Now the likelihood under this parameterisation takes the form

k+1 k
Pt (ylzlt’ka T1:ks )\1:k+1) = H ()\m)L(m) €Xp <_Z)\m [Tm - Tmfl] — Aot [t - Tk]) .
m=1 m=1

Where here L (m) represents the number of observations that arrived in the interval
[Tm_1,Tm] for m < k and for m = k + 1 then L (m) is the number of observations that
arrived in the interval [7;,%]. In this sequential analysis the following time-dependent

prior distribution on the unknown parameters was used

Pt (b, Mikr1, Tie) = pe (k) pe (A1 | k) pe (710 k)

where p; (k) is a Poisson distribution of parameter Ayt, p; (71.4] k) is the distribution of
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a vector of uniform order statistics on [0,¢) and

k+1

pe (A k) =p(\) [ [ 2 (Aal A1)
m=2

where \; ~ Ga (u,v) and Ay | A1 ~ Ga ()\fnfl/x; )\m,l/x); W, U, X are parameters spec-
ified by the user. The prior model given to the intensity A, of the rate function over
an interval [7,, 1,7m,| was defined as being conditional on the previous intensity A, 1
on the interval directly proceeding the m!, as given by p; (An|Am_1). Now in [52] the
prior structure for the intensities was an independent Gamma distribution. However,
the author argues that in a sequential setting and for the sake of continuity of the rate
function in such a setting, it makes sense to base the current intensity of the rate function
at time ¢t on previous intensities, which is why a conditional prior for the intensity was
used. The height prior therefore took the form shown above which specifies the mean of
the Gamma distribution to be A; 1 and the variance of the Gamma distribution to be y.

Combining this prior structure with the likelihood presented, allows one to define the
sequence of posterior distributions over times nAT that will be of interest in this analysis

which are given by

Tn (]f, )\1:1@+1, Tl:k;) = DnAT (]f, )\1:1@+1, Tl:kz’ ylzan)

X PnAT (?Jl:lnAT’ k?, )\1:kz+1; Tl:k)pnAT (/f, )\1:1:+1, 7'1:k;)

where AT is a time interval defined by the user. These distributions are defined on
© = U2, {k} xV) where ¥y, = {Tl;k ERF0<T1<... < Tk} X(R+)k+1, with the support
of 7, being reduced to the subset {TM ERFO0<Ti <...<Tp < nAT} X (]RJ“)]Hl.
This is a problem in which the number of unknowns is itself unknown. To sample
from one of these distributions, a standard approach would consist of using a Reversible

Jump MCMC algorithm [52]. Instead it is proposed here to sample from the sequence of
distributions using SMC samplers methodology in the form of the TDSMC algorithms
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presented in Chapter 4. At each time step, a mixture of four different moves was consid-

ered and the next section explains the construction and selection of the moves.

5.1.3 Moves Used In Sequential Estimation of the Underlying

Rate Function in an Inhomogeneous Poisson Process

The estimation of the sequence of distributions (7, (k, A1.x11,T1)), using the TDSMC
framework, used update, birth, death and adjustment moves. The i® particle, at time n,
in this analysis will contain a realisation of the random variables denoted by {k, 71., )\M}g ),
Update Move
No change to the parameters is made by this move which has a transition kernel given
by

1oy / _ 1oy !
Kn,l ((/{5, )‘1:k+1) Tl:kz) ) (k ))\lzkz’+1? Tl:k;’)) - 576,/\1:k+1,7'1:k (k » k41 Tl:kJ’)

and {k, T1.x, )\M}g) = {k, T1.x, )\M}SZI. The TDSMC generalised incremental importance

weight for an update move is given by the expression

/ / !
Tn (k a>\1:kﬂ+1a71:k’)
! ! !
Tn—1 (k s ALk 415 Tl:k:’)

DPnAT (?Jl:znAT’ k?, )\1:1<;+1,71:k;)pnAT (/f, )\1:1;+1, Tl;k;)

X

Pn—1)AT (ylzz(n,l)AT k, >\1:k:+1;7-1:k) Pn—-1)AT (k?, Akt Tl:k;)

= ()" exp (= A 1AT) exp (= A, AT)

where L, (k + 1) is the number of observations that have occurred in the interval
[(n — 1) AT, nAT].

Birth Move

As described earlier, when carrying out a birth move it is ideal if one can construct it in
such a manner that the optimal importance sampling distribution is used. For the model

described in this example it was possible to obtain a good approximation with a simple
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form, due to the conjugacy introduced. The approximation of the optimal importance
density means that the importance distribution is not blind to the information contained
by the data. The optimal importance distribution for the birth move is obtained from
minimisation of the variance of the birth step incremental weight, as discussed in Chapter
4. An approximation of this importance distribution is now presented. Assume that at
time (n — 1) AT one has {k, T1.5, A1.x11} and that after the birth move, at time nAT, one
has {k 4+ 1, Tnew, T1:ks Anew, A:6+1}- 1n the birth step constructed, the first & components
of the particle undergoing a birth step remain unaltered since it makes the problem sim-
pler computationally and it was found that adjustment moves were adequate if changes

with previous parameters were required. The birth transition kernel will be expressed as

Kn,Q <<k7 )‘l:ki+17 7-11]9) ) (k/7 )\/1:19’4»17 T/lzki’))

= 6k+1,>\1:k+1,71:k (k/a /1:k;’+177-/1:k:’) 4n <<)‘1:k+17 Tl:k) ) <)‘;€+27 7-;9+1))

where the appended component ()\;g 421 Tk +1) = (Anew; Tnew) 1s sampled according to a

proposal distribution g, ((A1.x, 1) , ). In this case the incremental weight is given by

/ / /
T, (k? s Mg 2 T1:k;/+1)

Tn—1 (ka )‘lzk+la Tl:k)) Gn <()\1:k;+la 7-lzkz) 3 A;H»Qa 7-;§;+1> ‘

It was established in Chapter 4, that the proposal ¢°** minimizing the variance of this

n

incremental weight, given (A1.41,71.%), is of this form

/ /
T (Movor Thot | # 4 1, Myt 1)

= PnAT (A;G+27 T;g+1‘ Yidyar> B+ 1, Mg, Tl:k)
PnAT (yl:anM;H, Thg1s Mk 7'1:k;> PnAT <)\23+23 Thop1| AMikt1, Tk, K+ 1)
PraT (Yrapar | Akt T1m, £+ 1)
Pt (Yrrtpar Nevas Thit) Paar (Mgl A1) Paar (7h 11 718)

f fpnAT (yL’:lnAT’)\;g+27 7-94;4»1) DPnAT (>\9§+2’)\1:kz+1) DPnAT (T;Hl’ﬁ:k;) d)\;g+2d7—;§+1

where L' is the first arrival/observation in the interval [7';9 415 nAT} and the conditioning
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on k + 1 is suppressed for notational convenience. In this model the prior p; (Agi2|Ait1)
is known to take the form of a Gamma distribution. Observe now that conditional
on knowledge of 7., the occurrence times of the previous segment starting times, the

distribution of 7543 will be an exponential distribution with rate A;. This is summarised

by

A2
® D <)‘I@+2’)\kz+1) = ga ()‘k;+2§ o = ’;:1 B = AFCT+1)
® D (Try1|T1k) = exp (Try1; Ag) -

Note that it does not make very much sense to sample a new segment time 71, at
a time which is greater than nAT as there will not yet be observations to support such
a sample. Hence the time 75,1 will instead be sampled from a truncated exponential
distribution which will be restricted to the interval [7;, nAT]. This results in a truncated
exponential distribution, which can be sampled from via rejection sampling.

Now if one were to use this model for the birth kernel it would require two things to
be possible. First one would need to be able to sample from
PnAT <)\;€+2’T;€+1‘ Yidap b+ 1, )\Lk+1;71:k) and then one would also need to be able to

solve the normalising constant,

//pnAT (Yo tpar | Nesos Thit) Prar (Mpal As1) Prar (Thga | T1) dN,0dTh 4y

N // [(/\;cw)[lnﬂim exp (/\;s+2 [”AT - T;c+1])}
X PnAT (>\§;+2’)\1:k+1) PnAT (T;g+1’7-1:k;) d)\;g+2d7-k:+1
= [ [ [0 exp (e, [0AT = 7))

xGa ()\;ﬁ+2; a, [3) exp (T}Hl; )\q) AN, 24T 41

It is difficult to sample from this optimal distribution and the normalising constant
of this importance distribution is not easily solved. However an approximation may be
obtained which has been found to work effectively in practice, as will be demonstrated

in the examples section. This approximation is to use the alternative formulation for a
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Poisson likelihood which involves numbers of counts in an interval, [(n — 1) AT, nAT],
which will be labelled N, as opposed to the times of occurrence of the counts in the
above formulation. This formulation contains slightly less information, however has the
big advantage of allowing one to calculate the normalising constants, and as will be
demonstrated in the simulations, works effectively. Hence the new formulation for the
approximation of the optimal importance sampling distribution will use a likelihood of

the following form

P (Nin|A) = [HNLS‘ (A)™ exp ()\)]

s=1

where V., are the observation counts for the intervals associated with rate \.

Now the next step to note is that if, as shown in [48], one has a vector Ny., of i.i.d.
counts of observations from a Poisson process over a segment of time [t1,¢,], in which the
rate function is constant and n is the number of integer segments in this interval. One
also has a prior distribution for this rate being a Gamma distribution Ga (A; @, 3), then
the natural conjugacy allows one to obtain the fact that ANy, ~ Ga (A; a*, 5%), where
a* = a+ nN and 5* = B+ n. Note that N; represents the number of counts which have
occurred in the i integer time segment [¢;,¢; +1]. One may now use the ideas presented
to produce an approximation of the optimal importance sampling distribution, however
first a few more definitions are required.

Assume a time segment [, nAT] in which 71 is sampled, and the simple function
approximation of the true rate function is A1 over [Ty, Ty 1) and Ay 9 over [T441, RAT],
where A, and 74 are known. However the value of 74,1 is unknown, so it must be

sampled first. In this situation one has yp. which represents the observations over

lnaT
the interval [1,1,nAT] for the occurrence times. In order to use the new likelihood
formulation these occurrence time observations need to be changed into counts over the
interval [Tj1,AT]. In situations in which 74,1 is not an integer time one should just
approximate and use the integer part |7j11|. Now assuming there are s integer segments

in the interval [|7441],nAT] , then one will now obtain the reformulated observation

sequence les. The count of the arrivals in the i*" integer segment is given by ]/\\fi, the
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total number of segments being s. Hence, one has converted the arrival times yz,, ., into
the number of counts of arrivals N 1:s in each integer time interval between [| 71/ , nAT],
S A~
where Y N; ~ [, a7 — L.
i—1

So now using the new likelihood formulation presented, coupled with the fact that

2
the model structure uses a prior for Ay, which is Ga </\k+2; o= /\’}“,5 = /\’“—X“) and a
modified prior for 74 which is the truncated exponential on the interval [}, nAT], then

the following simplifications can be achieved

DPnAT (yL’:lnAT’)\;H»Qa 7—;§+1> DPnAT <)\;<;+2’)\1:k:+1) DPnAT (T;g+1’7-1:k:)

f fpnAT (yL’:lnAT’)‘;;;+25 T%;H) PnAT ()\;g+2|)\1:k;+1) PnAT (7-;@+1’7-1:k) d)\;g+2d7-;9+1

ﬁnAT (]/\\71:8’)\;g+27 T;§+1) PnAT <)\;9+2’)\1:k:+1> DPnAT (7—;@+1 ’lekz>

f U ﬁnAT (les’)‘;gH»Qa TZ;H) PnAT (A;g+2’)‘1:k+1> d)‘;g;+2:| PnAT (7_;9+1’7-1:k) dT;Hl

]
~

In order to proceed, a two stage process is developed to sample from the approximation
of the optimal importance distribution. Stage one involves first sampling the new knot
point 7}, from the truncated exponential as discussed above, this is unfortunately not
based on information from the observations. Then based on the newly sampled value

T}.41 one can use the conjugacy argument presented above to sample the new rate Ay,

~ 2
from Ga ()\;6+2; a+ sk |:N1:s:| B+ 8), where q = 2kt B = 21 and the sampling of

X P

this new rate will be based on information from the observations.

Death Move

Given (k4 1, A1.519, T1.611), the third move is a death move where it is proposed to
remove a knot (Ay,1,7) among the D most recent knots to obtain (/{:’, )‘/1:k’+177-/1:k:’> =
(ky Arbg2\ {Ass1} s T1er1\ {7s}). The value of J is sampled according to a uniform dis-
tribution J ~ U ({k — D +1,....k}). In this case as was demonstrated in Chapter 4 for

the death move, the resulting incremental importance weight is given by

/ / !
Tn (k » ALK/ Tl:kz’)
Y / -1
Tn—1 (k a)‘lzkﬂ+1771:k/> D

120



Height Adjustment Move

Finally the fourth and last move is a height adjustment move, which was constructed
in order to introduce some diversity into the sample paths over time and also to allow
the particles to adjust the intensity or "height" of one of the segments. The aim of this
move was to improve the simple function approximation of the underlying rate function,
as more information is received.

In the height adjustment move, the current value of an intensity parameter in the
recent past is modified to obtain (k’ s AL 1 T’M,). Here J is sampled according to a uni-
form distribution, J ~U ({k — D +1,....k}), and the new intensity X, according to a
discrete probability distribution with support {A; 1 — s0, A1 — (s — 1)d, ..., Ayp1 + 86},
where s and 0 are specified by the user. The discrete proposal distribution for the inten-

sity to be adjusted is given by

4n ()‘J+1a )‘/J+1) X Tp (/{?, )‘lzkz+1\ {)‘J+1} ) >‘/J+la Tl:k)

and the resulting incremental importance weight using the approximation of the optimal

L kernel and the framework introduced in Chapter 4, is given by

Tn (/f, )‘lzk+1\ {/\J+1} ) )‘/J+1) Tl:kz)

YoiaAor, Aupr — (s— i+ 1)0) mooy (K, Arepa \ {1}, Ay — (s — i+ 1)5771:1@)(' >
5.2

The expressions for the importance weights of each move just presented do not

include the move probabilities. The simulations were run using a birth probability

Qp o (k) = cmin (1, %), a death probability a,3 (k) = cmin (1,)&), a height ad-
justment probability ;4 = 0.15 and finally the probability of not moving was selected
such that the probabilities sum to 1. The constant ¢ was selected as large as possible
under the constraint that a,s (k) + an3 (k) < 0.85. These probabilities correspond to
the terms o, 5, appearing in the mixture proposal (4.7). Using the expression (4.8) with

Bpm = Qnm in this example provided computational savings and satisfactory results

so there was no need to approximate the optimal 3, ,, given in (4.9). The next section
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presents application of this algorithm to the analysis of simulated and real data sets. The
parameters used for the simulations which were the same for all simulations are § = 0.2,

s=4, D =A4.

5.1.4 Simulation Examples

Example 1: Estimation of the Rate of an Exponential Inhomogeneous Poisson

Process Rate

Now that all the moves used have been specified and explained, one may now consider
some applications of this model. The first application involves data which is a set of
arrival times generated from an exponential rate function. The method used to generate
this observation data was the thinning method of Lewis and Shedler as described in [35]

which is presented below.

Generation of observation sequences :
Initialisation :
T=0
k=0
Repeat
Generate Z, the first event in a Poisson process from which
one can sample with rate function p occurring after T'.
Set T'=7
Generate a uniform [0, 1] random variable U.

A(Z)
U< L@
k=k+1
y="T.

end

Until reach end of time limit on which want to run simulation
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The inhomogeneous Poisson Process rate function used in the first simulation was an

exponential rate function with the following expression

A(z) = —10exp(—(1/100)z) + 11.5 (5.3)

The first result to present for this model is a simple analysis which demonstrates
that the moves made are sensible. Figure 6 shows the simple function approximation of
the underlying inhomogeneous Poisson Process rate function obtained using the MAP
estimate for the full posterior distribution at time point T = 100. It is important to
mention that during the simulation the effective sample size was well behaved with an
average effective sample size during this simulation of 39%. The following specifications
were used for this simulation; 7= 100, N =100, A, =1/8, X =1/4, AT =1, u =9/2,
v = 3/2, and Ef; = 30%. Figure 6 presents a comparison of the reconstructed simple
piecewise constant rate function approximation for the MAP estimate at time T = 100

and the true exponential inhomogeneous Poisson Process rate function.

True Rate Function vs. Simple Function Approximation
1 O T T T T T

Rate
&
T
I

0 I I I I I I I I I
0 10 20 30 40 50 60 70 80 90 100

Time

Figure 6: Simple Function Approximation of Inhomogeneous Poisson Process Rate

Function vs. True Rate Function
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The results to be presented next demonstrate the behaviour as the number of particles
is increased. Tables b, 6 and 7 present results for the same simulation scenario discussed
above, using a rate function which is again given by (5.3). There is two ways in which
one may calculate the MMSE estimate. The first involves taking the MAP estimate for
the model order which is the number of piece-wise linear segments k* associated with
the largest particle weight. Then all the particles which have this model order have their
weights renormalised within this batch of particles and the MMSE estimate is calculated,
this corresponds to model selection. The second approach to calculating the MMSE rate
at a given time ¢ involves taking an average of the rate. This is obtained by taking each
particles estimated rate at time ¢ then averaging these rates using the corresponding
particle weights, this corresponds to the case in which one performs model averaging.
This case was used for this section.

If the algorithm is performing well, one would expect that as the number of particles
is increased, the MMSE estimate should become smoother and better approximate the
underlying rate function. Additionally, if one looks at the average absolute error be-
tween the MMSE estimator at each time step and the true rate function then this error
should decrease and stabilise as the number of particles used increases. It should also
be mentioned that during the simulations it was noted that depending upon the mixture
probabilities used for the moves for each particle, the percentage average effective sample
size can be between an average of 30% and 79%, hence this is something to keep in mind
when designing algorithms using this methodology.

These runs were carried out in Matlab V6.5 with a seeded random number generator
which ensured that the data samples being analysed in each example were the same
for each simulation. There were three different seeds (rand(‘state’,1) | rand(‘state’,8) |
rand(‘state’,16)) used to obtain three different data sets for the observational data and
the choice of seed was not important. This will allow a rigorous comparison between the

results as the number of particles is increased.
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Table 5 presents the results of these simulations using A, = 1/8 and X = 1/4

# Particles | % Ave. N.¢; | Ave. |E A (1) [y10,..] — A (2)]

Seed : 1| 8] 16 Seed : 1| 8] 16 Ave.

50 37.6| 37.3| 35.7 0.7819] 0.7555| 0.7371 0.7582
100 34.6| 35.2] 36.8 0.7055| 0.5674] 0.7362 0.6697
250 35.7| 35.0] 34.7 0.6012| 0.6313| 0.6191 0.6172
500 35.1] 34.9| 33.0 0.5779] 0.6860] 0.6267 | 0.6302
750 34.9| 34.4] 32.4 0.5413| 0.6586| 0.6217 0.6072
1000 33.9] 33.9] 32.7 0.5884| 0.7040| 0.6749 0.6458
2000 32.8| 32.5| 33.6 0.5389| 0.7302| 0.6146 0.6279
3000 32.5| 32.9] 32.0 0.5853| 0.6592| 0.6608 0.6351
5000 33.0] 32.3 31.3 0.5982| 0.6841] 0.6720 | 0.6514
7500 33.2] 30.1] 32.0 0.5785| 0.6346| 0.6468 0.6200
10000 33.5| 31.1] 30.9 0.5678| 0.6829| 0.6767 0.6425

Table 5: Estimation of an exponential inhomogeneous Poisson Process Rate function.

The important point to make about these results and those to follow is that as the

number of particles is increased it can be seen that the average error is beginning to

stabilise and is definitely reducing as the number of particles is increased.

Table 6 presents results using A\, = 1/4 and X = 1/4 and Table 7 presents results
using A\, = 1/2 and X =1/4.

# Particles | % Ave. Ny | Ave. |E[A () |y1a,07) — A (1))
100 35.5 0.7529
500 35.4 0.6194
1000 33.2 0.5772
5000 33.5 0.5318
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# Particles | % Ave. Ny | Ave. |E[A (1) |y1a,.7) — A (1))
100 32.0 0.6048
500 32.7 0.6065
1000 32.0 0.5990
5000 31.9 0.5341

Table 7: Estimation of an exponential inhomogeneous Poisson Process Rate function.

These results demonstrate several important points. The first point is that they sug-
gest that the algorithm is robust to the parameters which are set by the user, since the
range of parameters used produced similar results and behaviour throughout the simu-
lations. Ideally one would like to use hyperpriors for the parameters which are currently
being set by the user, however it is not obvious how to do so in this sequential setting.
This is being investigated as future work. The results also demonstrate that as the num-
ber of particles is increased the average absolute error between the MMSE estimator and
the true rate function is decreasing. This demonstrates that the estimates obtained by
the TDSMC estimate of the inhomogeneous Poisson Process rate is improving as the
number of particles increases. This behaviour is what is expected from SMC algorithms
and suggests that the particle filter density estimate of the posterior is converging to the
true posterior.

The next section presents another simulation carried out for a different rate function.
The same conclusions are drawn for the results of this simulation as were made for the
simulation above. Note in this case the inhomogeneous rate function is more difficult,

yet the algorithm still performs well.

Example 2: Estimation of the rate of a Sinusoidal Inhomogeneous Poisson

Process rate

The inhomogeneous Poisson Process rate function used in this simulation was a sinusoidal

rate function with the form
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At =2+4(1+ cos(%t))

This is a difficult problem especially in the minima of the sinusoidal function as there
are several integer intervals in which there are very few observations. This problem
is however still successfully tackled by the algorithm as will be demonstrated. Again
the observation data is generated using the same method detailed in Example 1 in this
section. This time a realisation of the MMSE estimate versus the true rate function
will be provided to demonstrate graphically that the algorithm is providing reasonable
estimates of the rate function at each time instant. The plot in Figure 7 presents the
MMSE estimate I [A (t) |y1.4] versus the true sinusoidal rate function when only N = 100
particles were used and the user set parameters were set to AT = 1, p = 50, v = 5,
A; = 1/4 and X = 1/2. This plot was provided to demonstrate that even with a
very small number of particles and no smoothing applied, the estimated inhomogeneous

Poisson Process rate obtained is still reasonably sensible.

14 Ji
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Figure 7: True Rate Function vs. MMSE Simple Function Approximation
(100 particles)
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Tables 8,9 and 10 present results for the sinusoidal rate function simulations, again
for an increasing number of particles and a range of different user set parameter values.
Table 8 is for parameter values A, = 1/2 and X = 1/2, while Table 9 had parameter
values A\; = 1/2 and X = 1/4 and finally Table 10 used A, =1 and X = 1/4.

# Particles | % Ave. Ny | Ave. |E[A () |y1a,07) — A (1))

50 37.4 1.0152
100 36.1 0.9703
250 37.0 0.8863
500 35.6 0.9302
750 35.6 0.8560

1000 34.8 0.8647
2000 35.4 0.8739
3000 35.2 0.8403
5000 34.8 0.8562
7500 34.0 0.8485

Table 8: Estimation of a sinusoidal inhomogeneous Poisson Process Rate function.

# Particles | % Ave. Ny | Ave. |E[A () |y1a,07) — A (1))

100 30.5 1.1021
500 29.1 0.9130
1000 29.0 0.9289
5000 29.1 0.9253

Table 9: Estimation of a sinusoidal inhomogeneous Poisson Process Rate function.

# Particles | % Ave. Ny | Ave. |E[A (1) |y1a,07) — A (1))

100 24.3 0.9332
500 23.5 0.9317
1000 23.5 0.9423
5000 24.0 0.8786

Table 10: Estimation of a sinusoidal inhomogeneous Poisson Process Rate function.
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The previous tables of results again demonstrated that the algorithm is performing
as desired for a range of different user set parameters. Again the performance is seen to

improve as the number of particles is increased.

Example 3: Estimation of the rate of an Inhomogeneous Poisson Process rate

for Coal Mine Disasters between 1851 and 1962

The final example will involve an analysis of a real data from the Coal mine data set,
which represents the coal mine disasters between 1851 and 1962 in the UK. The first plot
below presents the coal mining disaster data set to be analysed, presented as a cumulative

counting process.

Coal Mining Disaster Data Counts
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Figure 8: Coal Mining Disasters, 1851 - 1962

The version of the data set in [52] was used. However, the analysis carried out was
for disasters renormalised on a year scale. A RIMCMC algorithm was also implemented,
using the same statistical model as the TDSMC, to sample from the posterior distribution

given the whole data set. The moves utilised in the RIMCMC algorithm were designed
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to be similar to those used in [52]. The user specified parameters were AT = 1 year,
AN=1/4, p=9/2,v=3/2,D=4,5s=4,6 =0.2and x =0.1. The number of particles
used for the SMC simulation was N = 25000 while the RIMCMC algorithm used 220000
samples with the first 20000 samples discarded for the “burn in" stage.

Figure 9 displays the smoothed estimate of the inhomogeneous Poisson intensity ob-
tained using the TDSMC algorithm versus the estimated using RIMCMC. The smoothed
TDSMC estimate presented is F [)\ (1) ]ylzlmmMAT}, hence it is different from RJIMCMC
which uses the whole data set. For both the TDSMC algorithm and the RIMCMC algo-
rithm the estimated £30 error lines are plotted. In the simulations the F;s never went

below 0.3N.

3.5

Rate
L

0.5 &W J

years

Figure 9: Bottom: Coal mining disaster data, 1851-1962: occurrences of disasters,
Solid line: RIMCMC estimate of the intensity, Dashed lines: RIMCMC
estimate £ 3 standard deviation, Star: TDSMC estimate of the intensity,
Dotted lines: TDSMC estimate + 3 standard deviation.
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5.1.5 Summary

This example has presented a TDSMC algorithm in which the observations were analysed
in a sequential setting. This constitutes what is effectively estimation of the rate of the
inhomogeneous Poisson Process "on-line". The model used for this analysis and the
details of the TDSMC methodology employed were presented earlier. The reason this
data set was analysed is that it allows a direct comparison between Green’s RIMCMC
algorithm presented in [52], in which this data is analysed in a batch scenario versus the
on-line analysis using TDSMC. It is important to mention that the model implemented
for Green’s RIMCMC methodology was changed so that it had the same prior struc-
ture as was used for the TDSMC methodology. This will facilitate direct comparison.
Additionally all the move types utilised in the RIMCMC simulations were the same as
those presented by Green. The main differences between the priors used for the TDSMC
algorithm and Green’s selected priors in [52], is that Green assumes independence be-
tween heights of segments and also probabilistically spaces the times between starting
points of segments, making it more likely to have longer segments. The author argues
that this is logical in a batch scenario in which one may have an idea of the number of
segments that can be used to model the rate function as a result of visual inspection
of the dates of disasters prior to analysis. Green makes the point that this was used
to ensure that the simplest model is used to represent the rate function and that this
provides an uninformative prior.

However in a true sequential setting in which the data is being presented to the
algorithm as an "on-line" analysis one does not have this foresight. Hence the author
feels it 1s justified to use a prior structure in which a height is sampled from a distribution
in which the previous height is used as the mean. This has the advantage of building
into the model a notion of continuity of the rate function. Both prior structures may be
used for the TDSMC algorithm, however the author prefers the prior presented for the
reasons outlined. The results presented therefore used the prior structure presented by

the author for both the TDSMC algorithm and the RIMCMC algorithm.
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5.2 General Linear Model Basis Function Regression

This section uses the same statistical model as presented in Chapter 4, in the section on
radial basis function regression. However, the big difference between this section and the
work presented in Chapter 4 and in [90] is that this analysis presented next is a truly
sequential analysis which has a temporal ordering associated with the parameters being
estimated. It should be mentioned that the next section to be presented was developed by
the author independently of work found in [90] which was at the stage of development of
this section, unpublished. This section provides a novel truly sequential approach which
differs significantly both algorithmically and methodologically from the work presented
in chapter 4.

So to summarise the situation, Chapter 4 demonstrated how significant improvement
to the results obtained in [90] could be obtained by using the optimal TDSMC version of
the auxiliary kernel L;? * which was developed in this thesis. This example was sequential
but was not "truly sequential" in the sense that it analysed batch data in a non-iterative
fashion, hence saving on computations. However in this chapter it will be demonstrated
that a temporally "truly sequential” analysis can be achieved using a sliding window of
observations. This leads to even greater computational savings as will be discussed. This
was achieved by using the ideas developed in Chapter 4, which relate to the approxi-
mation of the optimal L" kernel. Hence this section demonstrates a different means of
performing sequential basis function regression for the General Linear Model (GLM).

As mentioned instead of looking at all the data at time ¢ given by 1., in this formula-
tion one considers a sliding window of data ¥;_a.; which produces computational savings,
this point will be elaborated upon next. Another difference between the formulation used
in both Chapter 4 and [90] and the framework to be presented next relates to the types
of transition kernels used. In this method a set of very general generic moves have been
developed which work for a range of different models. To avoid unnecessary repetition
of what has been presented previously, the full details of the statistical model will not be

repeated in the sections which overlap, unless it aids the clarity of the discussion. For
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the sake of notational differences, the basic model will be presented here as shown in
equation (5.4).

The application of TDSMC which will be considered for this section involves the
model shown in equation (5.4).

k¢

Y = Z [jexp (B; (L —T1)] It =2 7)) +w, teR, w~N(0,o0,) (5.4)

j=1
In such a problem one is interested in sequentially inferring model order &;, amplitudes
1.4, dilation factors 51:“ and translations 7., given the set of noisy observations .,
which are arriving sequentially in time. It is now clear that this problem is of the form
which is relevant for TDSMC methodology because the space on which the relevant

posterior distribution will be defined has the product space form ©, = UZ’;%" {ki} X Op .

5.2.1 Rao-Blackwellised TDSMC: GLM

In the TDSMC formulation one is interested in sequentially obtaining a weighted particle
estimate of the density p (/{:t, Ql:k,t,ﬁm,t,Tl:k,t’ylzt), where the set of particles at time ¢
take the form {/{:t, alzk,t,51:k7t,71:k7t}flw and the weights for the particles are obtained
utilising the weighting procedure outlined previously in the TDSMC methodology, found
in Chapter 4.

The statistical model used for this example is presented in Chapter 4, except for a few
model specific differences. In this example the regression matrix D (k¢, 01.,) is shown

below

D (K, O1,t)
exp[—B,(L—7)]I(t=71) . . exp[—B, (1 —7i)]I(t > Tk)
| exp (=B, (=TIt =71) . . exp[—B, (t—7)]I(t > Tk) |
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The prior model was also assumed to factorise as shown in equation (5.5).

p (kt;al:kz,t;ﬁl;]@,talek,t;Uw) (5-5>

=D <a1:k,t’]€ta 51:k,t; T 1kt O-w) p (ﬁl:k,t’kt) p(lekz,t’kt)p (kt)p (Uw)

Where the following distributions were used for the relevant elements of the prior

factors above.

o 02 ~1IG (”—2(],7—20) where vy = v, = 0.01. Note, in the limit vy — 0,7, — 0 one
obtains a distribution for the noise variance which is Jeffreys’ uninformative prior

for scale parameters.

o k; ~ P (A;t) where this is a truncated Poisson distribution with &, < (Ajt + n) and

it is assumed A, is known.

e 714k now conditional on the model order at time ¢ the translations 7.4, are

distributed as the uniform order statistics on the interval [0, ¢]

e It is assumed that the dilations (3, ,|k; are independent where cach dilation 3;|k; ~

U [a,b] where the user defined values are a = 0.2, b = 0.7;

® Qytlke, B ps Tiikyts Ow ™~ N (0,02 %,) where the mean is zero to reflect ignorance

about the sign of the amplitude and E,;l =0°D (kt, Ha;k,t)T D (/{:t, 93:1:,1&)7 [6].

Now that the prior structure has been established as before it is possible to integrate

2

out the nuisance parameters which are the amplitudes ay.,; and the noise variance o,

from the full posterior. It is noted that given the prior structure established above the
joint density p (alzk,t, Ui’ktaﬁlzk,ta lek,t) is the well known g-prior, the interested reader
is referred to either Chapter 3 or [40], [34] and ([79] Appendix A) for discussion of the
g-prior properties and the details of the standard integration of the posterior to remove

these nuisance parameters. The posterior that is obtained after this analytic integration
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takes the form presented in Chapter 3, which is reproduced here for the specifics of this

model as shown in equation (5.6).

P (Bes B Tiwelyree) (5.6)

k¢
A
[52 + 1} (b — a)] Il <kt7 51:k,t7 7—lzkz,t>

_ (t+vg)

X (’Yo + yitpktyl:t)

where

My, = D (k, lek,t)T D (kg 01.) + E;;l

Py, = I;— D (ky01s) My, D (ky, O10)"

It should be noted that the amplitudes integrated out of the posterior may be esti-

mated using Least Squares or in sequential situations, Recursive Least Squares.

5.2.2 Move Detalils

The moves used in this application were birth, death, update and adjustment of the
dilation factors. Kach particle contained the following random variables ki, 8. 4, T1:k
at time . An important point to make is that the moves were only carried out on the
parameters of each particle k¢, By, k4 Th,_a:k¢ Which were located in time, within a
window of [t — A, t], which shifts forward with the time index. The justification of this
characteristic is that it is assumed that the observation obtained at time ¢ will not contain
significant information about any parameters obtained before ¢ — A, where A is the
window length which may be set by the user. This allows for substantial computational
savings to be made. The details of these moves are now presented below.

Update Move

In this move the parameters which make up the particle undergoing an update move

obey {ktaﬁlzk,taTltk,t}ii) = {ktfla51;]9,(7;1)7Tl:k,(tfl)}i?l and have a TDSMC generalised
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importance weight which takes the following form :

o (t 7A+UQ)
2

T
(i) (Vo + Ui AuPru sk t¥—ait) (%
Wy~ X (1A 05 By achytr Theath.t
2

(’yg + yz:1,A:t,1szt,1,A:k:,(tfl)ytflfA:tfl

Birth Move

The birth move used in this application is again based on the results presented in
Chapter 4. It is written in such a way that it serves as a model for any TDSMC for-
mulation of GLM basis regression. The birth move will be presented with respect to
this example but as mentioned is very general in nature and what is more important
is the fact that it is adapted to the observations and the previous particle information.
The birth move is one where k; = k; 1 + 1, and the first part of the birth step involves
sampling a new dilation factor 5*. The next part of the birth step involves creating a
grid of time points in the window [t — A,t] which will be labelled s;.o. The grid is ob-
tained by sampling a time uniformly from each integer time segment in [t — A, ¢]. Finally
using the same 3" for each grid point, one obtains a multinomial distribution for the grid
times s1.a, which has weights denoted by wiirth and each weight is determined using the

posterior as shown in equation (5.7).

o (thﬁ—UQ)

wiirth X (’YO + Y [Pkt,A:k,t <3j)} yth:t) ? (5.7)
A
[6% +1]

(kt—ks—n)
o T N—

These weights are then normalised and the new proposed birth translation parameter

7; and dilation parameter 3* are sampled from this multinomial distribution. This is
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summarised by the following birth kernel shown in equation (5.8).

Kt (Kty Brape Tuswt K1, Brog o1y, Tak (e 1)) (5.8)

(
= K <7-ja B*U{;t*la 51:1;,(1571); Tl:kz,(tfl)) 5( i ) <7_1:k:,(t71)a 51:1@,(1‘,71)) 5(kt—1+1) (]f)

{Tl:k,(t—l):ﬁl:k,(t—l) }(I)

A
. 1
zgw353.375 o\ Tk, =1) Bk e—1y) Ok, k
Ll prop {g}( )] [(b—a)} <{71:k7(t71)7ﬁl:k’(t71)}<)> ( 1:k,(t—1) 51.k,(t 1)) (k 1+1)( )

The particle {kt, B, -1 B, Tk (-1 Tj} then has its weight calculated as explained
in Chapter 4.

Death Move

The death move has k&, = k; 1 — 1 and was constructed using the same idea as
shown in the birth step. All of the parameters Ty, ,.x¢, By, ,.x¢ Which are associated to
the time window [t — A, ] are used to create a discrete distribution for which a set of
parameters {Tj, 53} € {Tkth:kJ,ta /5’,%7‘&:,{;’15} will be sampled from this discrete distribution
to be removed in the death step. The un-normalised multinomial weights are calculated

as shown in equation (5.9).

j _ (f*A;LUQ)
wljieath x (70 + yéfA:t |:Pkit7A1k?,t ({Tkith:k,t; 5kt,A:k,t} \ {ij 53})} yth:t)
\ (Ft—ks—A)
% 1 (k ’ kot The_ac ) 5.9
[52 + 1} (b _ a)] t 5kt,A.kz,t ke_ack,t ( )

Hence the death move kernel may be summarised as shown in equation (5.10).

K <kta51:k,t7Tl:k:,t’ktflaﬁlzkz,(tfl)afrlzkz,(tfl)) = K (Tja5;”]%71751%,,5:1;,(1571);Tkth:k:,(tfl)>

%) 1- 1. (T ot Be . )5 ok
<{Tkt,w,(tfl),Bkt,Am,(t,l)}()\{Tjﬁj}()) ke akts Bry skt ) Oke 1) (K)
kt 1
= wjea I - 8. Y () i (Tkz, :k:,t;ﬁ . )
j%:A death [TJ’BJ] ({Tkth:k,(t—l):Bkth:k,(t—l)} \{ijﬁj}()> A ke—akt
Xé(ktflfl) (]C) (510>
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The optimal L kernel now takes the form shown in equation (5.11).

Ly (ktfl ) ﬁkt,A:kz,(tfl)? Thi—atk,(t—1) ’kt? ﬁkt—Aikyt’ Tkt*A:k’t) <511>
T—1 (ktfla5kt,A:k,(t71)7Tkt—Aikh(tfl))
-1 (ktfl - 1, {Tk;t,A:kz,(tfl)a5kzt,A:kz,(t71)} \ {7—375]})

Dilation Adjustment Move (adapted to observations and previous particle
parameters)

The adjustment move is designed to randomly select a dilation factor { I6; j} € { B, A:k’t}
from those in the window of time [t — A ¢]. As with the other moves create a grid of
possible new dilations 3., within the range [a,b]. Then in the same manner as shown

previously create a multinomial distribution for the possible dilation factors with un-

J

adjust SHOWN in equation (5.12).

normalised weight w

o (t—A+vq)
2

widjust & (’Yo + yé—A:t [Pkt,A:k,t ({Tkt,A;k,taﬁkt,A;k,t} U {5;})} yth:t)

A

SIGER

(kt—Fk¢—nA)
(b— a)] ! (kt’ 51:’%7&’%“ Tl:kth:ki,t) (5.12)

This adjustment kernel shown in equation (5.13) has the advantage of allowing one
to easily calculate the optimal I kernel for a dilation adjustment, which will ultimately

reduce the variance of the weights of the particles.

K; (kta51:k,t7Tl:kz,t’ktfla51:k,(t71)77-1:k;,(t71)) = K; (5;”/@,—1;51:14;,(1571);7'1%,(1571))

X0 ; N (T 1), Brsvic 1) Oty (k
<{71:k,(t71)761:k,(t71)}()\{Bj}( )> ( D 51.k\j’(t 1)) (ke 1)( )

_ ktji?widjusﬁ(ﬁj) (5)]< : )

kt—Fkt—A

) (lek,(tfl)a 51:1@71,(1‘,71)) 5(’%—1) <k> (5-13>

X0 i i
({Tl:k,(t—l):ﬁl:k,(t—l)}( )\{5]'}( )

Then sample a dilation factor from this multinomial distribution and calculate the
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adjusted particles update weight as shown previously, where now the approximate optimal

L kernel takes the form shown in equation (5.14).

—

L?’t(/ﬂt, 51;19,75: T1de,ts Ke1, 51;1@,@71) » TLik, (b~ 1)) (5.14)
T (ktfla 51;1@,(1571): Tl:k,(t*1)> widjust
kt—ki A

'221 wgdjustﬂ-tfl (ktfla 51:k\j,(t7 1) Tk, (¢—1)s 5])
J:

5.2.3 Simulation Results

In all of the simulations, that will be discussed in the next section, the results are pre-
sented for one simulation as well as summaries of 20 repeated simulations, using the same
data set and algorithmic parameters. Then in appendix 5, some of the 20 multiple simu-
lations run on the same data set can be found in more detail. The following simulations
were carried out to demonstrate how effective the TDSMC algorithm can be when one

uses the moves presented in the previous section.

Simulation 1

The first plot, in figure 10, shows the original data un-corrupted by noise, then the

corrupted data which formed the observations. The additive Gaussian noise had variance

2:

Ow

1 and the exponentials were generated with translation times which were simulated

from a Poisson distribution with rate Agae = 1/20.
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Figure 10: Top: True sequence over time; Bottom: Noisy observations over time
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The results, in Table 11, used the following algorithm parameter values; N = 5000
particles, @ = 0.2, b = 0.5, A\, = 1/20, A = 30, g = 20, vy = 7, = 0.01, 6 = 10,

02 = 1. One way of selecting the probabilities for the different types of moves is to use

w
the fact that the problem is formulated so that birth, death and adjustment moves are
only made within a window of length A which is shifting with the time index. Hence,
the probabilities may be selected such that if there are no basis functions within the
window [t — A ] then only carry out birth and zero moves with probabilities set by
the user, otherwise the full range of moves is available. Then, when it is possible to

perform any type of move, a standard approach, as presented by Green in [52], which

sets the probability of death F; = min (1, 737()%1)\;\51&)) X ¢ , probability of birth F, =

min (1, 737(319(;71)\:‘;)1")) X ¢, probability of time adjustment F,g; = 0.1 and the probability of
doing nothing P, = 1— FP,4— P,— F,; where c is selected as large as possible under the
constraint that F; + F, < 0.7, may be used.

The table demonstrates the estimate F (lekmMAP), )‘lzk(T,MAP) ’k(T,M'AP);yI:T) which
are obtained by first finding the MAP model order which is obtained by finding the
mode of the marginal posterior, p (kr|y1.r), using the particle estimate. This mode will
be labelled k(1,ar4p). Then for all the particles of model order k(z,74p), renormalise the
weights and obtain the weighted average for the translations and dilations for the given
subset of particles. The lower half of Table 11, presents the mean RMSE over time for a
simulation, averaged over 20 simulations and the standard deviation of the mean RMSE
for 20 simulations. The simulations used to calculate these quantities all used the same
parameters and the same algorithmic settings. In order to obtain the mean RMSE, the
amplitudes were estimated using Least Squares at time T using the MAP estimate for
the model order and the MMSE estimates conditional on this MAP model order for the

translation and dilation parameters. The results for the average MAP model order, k,

are also presented for the 20 simulations.
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True o values | -5.3227 | 7.0514 | 5.3895 | -5.9342 | -9.3055 | -9.0064 | 6.3609
True 7 values | 17.6266 | 44.4703 | 61.5432 | 73.8207 | 79.1937 | 82.1407 | 92.1813
True § values | 0.2596 | 0.2046 | 0.4240 | 0.3335 | 0.4795 | 0.3398 | 0.3256
Estimated o | -4.9942 | 6.2242 | 3.7116 | -4.9292 | -6.3888 | -8.6567 | 5.5966
Estimated 7 | 17.9152 | 44.2625 | 61.0624 | 73.9212 | 79.6820 | 82.5011 | 92.0874
Estimated 5 | 0.4483 | 0.2164 | 0.2069 | 0.2891 | 0.4124 | 0.3486 | 0.2128
Ave. RMSE | 0.6953

Std. RMSE 0.1250

Ave. MAP £k | 7.3

Table 11: True Parameter Values versus Parameter Values Fstimated

The next plot in figure 11, demonstrates the reconstructed signal using the estimated

parameters versus the true signal without noise and the noisy observation sequence used

for the data set. It can be seen from this reconstruction that visually the estimated

parameters provide a good estimate of the underlying signal given the high presence of

noise.

amplitude

1
40 50
time

Figure 11:
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The plot in figure 12 is a histogram of the particle estimate of the marginal posterior
for the model order p(k7|yy.7). It can be seen that in this simulation the particle estimate
has assigned a large mass to the correct model order. Obviously, this will not always
be the case and these results have been presented here to demonstrate just how well the

TDSMC framework can perform.
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Figure 12: Histogram of estimated model order.

The next plot, in figure 13, shows a histogram of the marginal posterior of the trans-
lations and dilations, p<7-1:k3(T,MAP)7511]@(T’MAP)’k(T:NIAP)’yLT)’ at time T given the mode
estimate of the model order, k(7 ar4p). This is obtained by resampling ten thousand times
from the renormalised weights associated to the model order k(7 a4p), then plotting a

histogram of the results.
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Figure 13: Histogram of estimated parameters conditioned on MAP estimate of model

order. Left: translations, Right: dilations

It is clear from these results that at time 1" the path history of the particles has coa-
lesced for the parameter values which were obtained early in the path history. However,
the path history close to time T is clearly not degenerate since the plot above demon-
strates that there are a range of values expressed by the particle estimate, conditioned
on the MAP model order, for the dilations and translations. One would expect the coa-
lescence of the path histories of the particles to depend on the length of the window A
used in the simulation. The reason being that parameters associated with exponentials
which occurred temporally before ¢ — A can no longer be adjusted in the algorithm, as
explained in the details of each move. One can see that there is a trade-off between
making computational savings where one would like A to be small compared with other
factors such as having enough information in the observations used to form accurate es-
timates and avoiding as much as possible coalescence in the path history. Hence it will
be important that the TDSMC framework developed here will be fairly robust to choice
of A, within reason.

Additionally, if one would like less coalescence in the path history, then schemes such

as Fixed-Lag SMC,[38], could be attempted in this framework. This is currently being

143



investigated by the author. For the same data set more simulations were carried out

using different number of particles, these may be found in appendix 5.

Simulation 2

The next example demonstrates the performance for a different number of particles and
a different data set. The exponentials were generated with translation times which were
simulated from a Poisson distribution with rate Agee = 1/30. The other parameters
used for this simulation were; N = 500 particles, a = 0.2, b = 0.5, A, = 1/20, A = 30,
g =20, vg =", = 0.01, § = 10, 62 = 1. The original data set and the noisy observations
are presented in figure 14. Again the true parameters used to generate the data set
are presented and then compared to the MMSE estimates of the particle estimate of
p(Tltk(T,MAP)vﬁlzk(T,MAp) ’k(T’]\/[AP), y1.7) when one conditions on the model order which is

most probable, as reflected in the particle weights at time 7.

10
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Figure 14: Top: True sequence over time; Bottom: Noisy observations over time
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The comparison in table 12, again demonstrates for a randomly selected simulation,
how well the TDSMC algorithm performs. It is clear that the moves developed in this
chapter are working effectively, as the correct model order is being selected as the most
probable model order, k(r,arapy. After conditioning on this model order and renormalising
the particle weights associated with this model order to calculate the MMSE estimate
of the parameters, one can see that, even in the presence of significant noise levels, the
estimates obtained for the parameters are close to the true values. It has been found
in the simulations that it is often much harder to estimate the dilations than it is to
estimate the translations. This intuitively makes sense. Although this set of results is
presented for just one simulation, several more simulation results using the same data
set have been provided in appendix 5, which further confirm the findings presented in
the simulation presented here. Again the mean RMSE averaged over 20 simulations and
the standard deviation for the mean RMSE for 20 simulations is provided in table 12.
This RMSE was calculated in the same manner as in simulation 1, where a Least Squares

estimate of the amplitudes was obtained.

True o values | 5.8813 | -5.3227 | 7.1514 | 5.2895 | -5.9342 | -9.3055
True 7 values | 1.8504 | 44.4703 | 61.5432 | 79.1937 | 82.1407 | 92.1813
True § values | 0.2608 | 0.2596 | 0.3811 | 0.2817 | 0.2596 | 0.2046

Estimated o | 8.5916 | -5.6142 | 6.4504 | 4.9900 | -5.0045 | -9.5095
Estimated 7 | 1.4840 | 44.1483 | 61.8961 | 79.5078 | 82.4975 | 92.5832
Estimated 5 | 0.3274 | 0.2202 | 0.3872 | 0.4071 | 0.2744 | 0.2632

Ave. RMSE | 0.4073
Std. RMSE 0.1753
Ave. MAP k£ | 6.3

Table 12: True Parameter Values versus Parameter Values Estimated

The reconstructed signal using the estimated parameter values versus the true signal
and the noisy observations is presented in figure 15. It demonstrates visually how well

the algorithm is performing on this given simulation.
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Figure 15: True noise free signal: blue; Noisy observations: black; Reconstructed

estimate: red

The plot in figure 16, shows a histogram developed from the particle weights for the
marginal posterior for the model order p (kr|y1.7). In this example, again it is clear that
the correct model is selected with very high probability, greater than 0.9. When compared
to the previous example other model orders are assigned higher probabilities. However,
it is clear that the majority of particles are exploring the support of the posterior in the

correct model order.
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Figure 16: Histogram of estimated model order.
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The histogram of the marginal posterior of the translations and dilations,
p(ﬁ:k(T,MAP)v51:19(T,MAP) \k(r,mapy, Y1), at time 7" given the mode estimate of the model
order, k(r,amapy, is presented below. Again this is obtained by resampling one thousand
times from the renormalised weights associated to the model order k(7,1 4p), then plotting

a histogram of the results.
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Figure 17: Histogram of estimated parameters conditioned on MAP estimate of model

order. Left: translations, Right: dilations

It is clear from figure 17, that in this simulation the coalescence of the particle paths
has still occurred, but not to the same extent that was presented in the previous example.
The results presented here demonstrate that the correct model order is being selected
with a high probability and that the particle estimate is still maintaining a diverse set
of values at least within the range [t — A, #]. The results presented in figure 17 also help
to demonstrate that sample impoverishment is not a serious problem. Hence resampling

has been used to combat degeneracy in the particle weights and after resampling one
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can say that the sample estimate is not badly impoverished. However to ensure that
sample impoverishment is not an issue one may think about adding a MCMC step or
a RJIMCMC step to increase the diversity of the sample. This was not carried out in
these simulations as it will increase the variance of the estimates obtained, but could be
carried out if required.

The translations for the exponentials, used to create the data, were generated from
a Poisson distribution with rate 1/30. In practice this value is not known and must be
estimated, within a reasonable range. If the TDSMC algorithm is going to be effectively
applied in practice, it is important that the algorithm is fairly robust to poor choices of
user set parameters. The results in the next section demonstrate that varying user set
parameter \,, over the range [10,60], does not significantly effect model order selected.
In Figure 18, a range of histograms are plotted for the particle estimate of the marginal
posterior for the model order, p (k7|y1.1), for different values of A, and the same data set
and parameters used in simulation 2.

It is evident from the results presented in Figure 18 that as the mean for the model
order prior, denoted, A;, becomes close to the true rate, Agae = 1/30, used to generate
the data, then the correct model order becomes the most probable model. However, even
when there is a significant difference between the true rate Agqy, and the prior mean A4,
the correct model order is still highly probable. This demonstrates that the model order
selected is robust to the user set parameter A;, and although these results represent just
one simulation, in appendix 5 simulation 2 there are many more simulations to support
this finding.

Another point to mention is that the empirical estimate of the model order marginal
posterior is concentrated around the correct answer. This means that model averaging
can be performed with low computational cost. This is illustrated for example by the first
plot in Figure 18, where the empirical estimate for the model order is significantly con-
centrated on two model orders, the correct model order which is six and has probability

approximately 0.45 and model order seven with probability approximately 0.52.
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Figure 18: Histogram of estimated model order marginal posterior for different values

of parameter \,.

The next simulations that were carried out involved determining what effect the
window length, A, has on the robustness of the algorithm. The results of simulations in
which the window length is increased are presented in Figure 19. It is clear that as the
window length increases the probability of selecting the correct model order is increasing,
this makes sense as one is including more and more of the data and also allowing more
opportunity to adjust previous basis functions which can be changed or removed within
the window [t — A,t]. The simulations were carried out on the same data set presented
in Figure 14 and the parameters used for all the simulations were N = 500 particles,
a=02,b=0.5 XA =1/30, g =20, vg =y = 0.01, § = 10, 62, = 1 and the value of the

window length, A, used in each simulation is presented in the plots.
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Figure 19: Histogram of estimated model order marginal posterior for different values

of parameter A.

These results demonstrate what is already intuitive, as one increases the length of
the window A, the performance of the algorithm improves. Clearly a window of length
A = 10 is not sufficient as the most probable model order selected is wrong. When
one looks at the MMSE for this simulation, which can be found in Appendix 5, it is
evident that the correct translations are being selected, however some significant noise
spikes are also being selected. Then as the window length increases the algorithms
performance improves rapidly, since more of the observations are being included and
there is more opportunity for adjustment of the basis function parameters proposed, in
light of more observations. In simulation 1 presented above, the window length was
A = 20, this worked well for this simulation. One reason for this performance, even
though the window length was quite small, is due to the fact that more particles were
used, N = 5000 compared with N = 500. Hence, there will always be a computational

expense trade-off between the number of particles used and the length of the window.
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Simulation 3

The final simulation that will be presented in this chapter involves the data presented
in Figure 20. This example is presented as it demonstrates that the performance of the
algorithm is not affected by periods in which no basis functions are present in intervals
longer than the window length, A. The parameters used to perform this simulation

were; Agata = 1/40, N = 1000 particles, a = 0.2, b = 0.5, A, = 1/20, A = 30, g = 20,

vo =, =0.01,5 =10, 02 = 1.
8 T T
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Figure 20: Top: True sequence over time; Bottom: Noisy observations over time

The results of one simulation are presented in Table 13 and more extensive results
are again found in Appendix 5 under the section titled simulation 3. Again, the mean
RMSE averaged over 20 simulations and the standard deviation of the mean RMSE for
20 simulations is also presented in table 13. The results in table 13 again demonstrate
that the translations are being estimated well, and as was the case in many of the other

simulations it is more difficult to estimate the dilations.
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True o values | -5.8930 | -6.9228 | 9.7091
True 7 values | 45.6468 | 76.2097 | 89.1299
True § values | 0.4215 | 0.2529 | 0.3217
Estimated o | -6.4074 | -8.9307 | 9.3580
Estimated 7 | 45.3459 | 76.1242 | 89.5452
Estimated g | 0.4078 | 0.3265 | 0.2995
Ave. RMSE | 0.2573
Std. RMSE | 0.0541
Ave. MAP k£ | 3.6

Table 13: True Parameter Values versus Parameter Values Fstimated

The reconstructed signal versus the true signal and the noisy observations is presented
in figure 21. It provides a visual demonstration of how well the TDSMC algorithm can

perform in the presence of high noise levels.
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Figure 21: True noise free signal: blue, Noisy observations: black, Reconstructed

estimate: red
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The estimated marginal posterior histogram is not worth presenting as the correct
model order was selected with a very high probability, approximately 1. It can be con-
cluded, from this simulation and the many more found in Appendix 5 which analysed
this data set, that the effect of the long period between ¢ € [0, 45] in which there was no

basis functions has not had an adverse effect on the outcome of the simulations.

5.3 Summary

This chapter introduced two detailed applications of the TDSMC algorithm to perform
joint model order determination and parameter estimation using sequential data. The
first example, which involved estimation of the rate function of an inhomogeneous Pois-
son Process, demonstrated how the TDSMC algorithm could be used as a viable al-
ternative to RIMCMC. Simulations were carried out on some artificial simulated data,
which demonstrated that different functions used to generate the inhomogeneous Poisson
Process observation data could accurately be estimated using a simple function approxi-
mation in which the number of knot points, the knot point positions and intensity values
were estimated using the TDSMC algorithm. This algorithm was then applied to a real
data set which has been analysed several times in the literature, most notably by Green
in [52]. The data set involved coal mine disasters between 1851 and 1962. The analysis
of this data set involved a comparison between the TDSMC algorithm presented and
the RIMCMC algorithm. The results demonstrated that the TDSMC algorithm may be
considered as a viable alternative to RIMCMC, at least in situations which are sequential
in nature or in situations in which the data set is massive. Improvement could be made in
this analysis by including more complicated move types, however for the purpose of this
thesis the aim was to present simulations which demonstrate that the TDSMC algorithm
works well and to compare the TDSMC algorithm with existing algorithms in analysis

of a real data set.
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The second part of this chapter involved the presentation of an algorithm which allows
one to carry out basis function regression for the GLM. A generic algorithm is presented
which allows for the estimation of the number of basis functions and the parameters of
the basis functions "sequentially" in time. The moves used in this example are presented
in a general setting so that they may be applied to any application of this form with
the minimum of effort. Then an example is presented in which the basis functions used
are exponentials and the number and parameters are unknown. Estimation of the model
order, translations and dilations is performed for three different data sets. An analysis
of the effect of different user specified parameters is included to demonstrate that the

algorithm is robust to the choice of these parameters.

154



Chapter 6

Conclusions

Initially, the literature survey points out how one may formulate a Bayesian inference
problem, then in this context model selection is discussed. Different techniques which
can be considered as standard statistical methods for sampling from a target distribution
were presented along with guides as to when they can be used in practice. An account of
fundamental Monte Carlo theory was presented with explanation of why basic sampling
techniques such as inversion and rejection sampling are impractical when one has com-
plicated target distributions. Then the methodology of Markov Chain Monte Carlo was
presented, which included the Metropolis-Hastings algorithm and its many variants and
finally the methodology of Importance Sampling followed by Sequential Importance Sam-
pling and Sequential Monte Carlo were presented. The basic SMC algorithm was detailed
and a guide about practical issues regarding its implementation were presented. These
techniques were discussed in the context of estimation and inference in batch settings for
the MCMC and in sequential settings for the SMC.

The new methodology introduced in this thesis demonstrated how the analysis of
batch data could be carried out sequentially, and when such an approach would be
beneficial. This involved comparison between the existing batch analysis strategies and
the new sequential strategies developed in the thesis. The Reversible Jump Markov

Chain Monte Carlo algorithm was also presented and it was explained how this can
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be used to perform both parameter estimation and model selection. The RJMCMC
algorithm is an important part in the thesis as a comparative tool, since a sequential
methodology to perform model selection and parameter estimation was presented. In
this context, in the same sense that Reversible Jump Markov Chain Monte Carlo can
be considered as an extension of Markov Chain Monte Carlo methodology to sample
from target distributions defined on spaces which include both the model order and
the associated model parameters, one may analogously consider the Trans-Dimensional
Sequential Monte Carlo algorithm as a natural extension of Sequential Monte Carlo
Samplers methodology. These ideas were discussed and detailed analysis which involved
theoretical justifications were presented in order to develop efficient generic algorithms
for both the Sequential Monte Carlo Samplers methodology and its Trans-Dimensional
variant.

The next section motivated the basic premise of this thesis which was to present a class
of methods which allow one to sample from a sequence of distributions which are defined
on the same space. The sequence of distributions can be very general, as long as they
can be evaluated pointwise up to a normalizing constant, which makes the techniques
presented applicable to a broad range of problems. The thesis highlights some examples
where this methodology could be used. The examples mentioned included, optimisation,
sampling from an easy to sample distribution and moving to a target distribution of
interest through a sequence of intermediate distributions, which is similar to Annealed
Importance Sampling. Also, sequential Bayesian inference of a sequence of posterior
distributions conditional on the data till some time ¢, where ¢ is growing with each
iteration was presented as a problem which could be tackled with the SMC Samplers
methodology. After motivating the need for this new methodology, the construction of
the framework used to create SMC Samplers methodology is presented with justification,
for certain settings in the framework, coming in the form of theoretical analysis. The
theoretical results presented involved obtaining the optimal selection of auxiliary kernels

which would minimise the variance of the importance weights for the particle estimates.
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This optimal solution was found to be difficult to evaluate in practice and hence clever
approximations and alternatives were developed. In this regard several links to existing
algorithms were made, in particular links to the Annealed Importance Sampling algorithm
and the ISIS algorithms were presented.

An application was presented which involved Bayesian variable selection. Two sim-
ulations were presented, the first involved moving from an easy to sample distribution
to the target posterior of the indicator variables, for basis functions in the model, condi-
tioned on the data, via a sequence of intermediate distributions. This example involved
comparison to existing batch techniques such as MCMC, which would usually be used to
perform such a batch analysis problem. There was also a comparison performed between
AIS and the SMC Samplers methodology. The SMC Samplers approach to this problem
was shown to be a very effective means of sampling from such a target distribution, com-
putationally efficiently and with low variance in the importance weights. It was shown
in all simulations performed that the resampling step introduced in the SMC Samplers
methodology produced a reduction in the variance, cheaply. This reduction was demon-
strated to be most prominent when the difference between adjacent distributions in the
sequence of distributions was large, which confirms what one would intuitively expect.

The second example demonstrated optimisation of the posterior distribution. Com-
parison between parallel non-interacting Simulated Annealing and a long chain Simulated
Annealing simulation was presented. It was found that the SMC Samplers algorithm out-
performed both of these algorithms and this was again most apparent when the difference
between adjacent distributions in the sequence of distributions was significant. This ba-
sically corresponds to situations in which few steps are used in the annealing schedule.
This behaviour, as before, can be attributed to the resampling steps introduced by the
SMC Samplers methodology which allowed the parallel Markov chains to interact in a
principled manner.

The next section presented the new framework for Trans-Dimensional Sequential

Monte Carlo. The methodology presented in this section allowed for the development of a
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generic TDSMC algorithm which is non-iterative, and based on a generalisation of impor-
tance sampling to spaces of variable dimension. The ideas behind the TDSMC algorithm
were developed and several move types described. A straightforward asymptotic analysis
of the variance of the Importance weights was presented which was a direct application
of the results presented for SMC Samplers. T'wo examples were analysed using TDSMC
and comparisons to existing batch techniques were made. The first example involved a
simulated data set and the second application involved the Boston Housing data set.

These examples were used to demonstrate sequential kernel regression on a batch
data set and hence provided an example of sequential analysis being used to solve batch
estimation problems. The results of the TDSMC algorithm were comparable with a
variety of batch algorithms. This is remarkable considering the fact that the TDSMC
algorithm is non-iterative, and only requires a single pass over the data.

The final section involved the detailed development of two applications of the TDSMC
framework. The first example involved estimation of the rate of an inhomogeneous Pois-
son Process using a simple piecewise constant approximation in which the number of
knot points, the positions of the knot points and the amplitude of the constant rate
segments were the unknowns to be estimated. This problem could be framed as one in
which the posterior takes support on a disjoint union of subspaces and it is required to
estimate the model order and parameters. Analysis was carried out for some simulated
data using different types of rate functions such as exponential and sinusoidal. Then an
analysis of a real data set was performed, the data in question was for coal mine disasters
from 1851-1962, this allowed for a direct comparison between the RIMCMC algorithm
and the TDSMC algorithm developed. The results of this simulation demonstrated that
TDSMC could be implemented successfully as an alternative to RIMCMC for batch
analysis problems.

The second application was to basis function regression for the General Linear Model.
This example was developed using a different approach to the example presented in

Chapter 4. New generic move types were presented which allowed for approximation of
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the optimal auxiliary transition kernel in the TDSMC framework. These moves may be
applied in many different problems, they were then used to formulate a generic algorithm
for the TDSMC method. An analysis was carried out on simulated data which involved an
unknown number of exponential functions in the presence of significant additive Gaussian
noise. The estimation involved inference from the target posterior on the number of
exponential basis functions present and the translation, dilation and amplitudes of these
basis functions conditional on the noisy observations. The results demonstrated that the
technique performed well in the presence of significant noise levels and that the algorithm
was robust to the choice of user set parameter values.

The future work that could be considered as a result of this thesis can be split into
two categories. The first involves algorithmic improvements to the SMC Sampler and
TDSMC methodologies. This might include designing smarter moves such as split and
merge for the TDSMC algorithm, designing problem specific approximations to optimal
transition kernels and corresponding auxiliary kernels. The second category involves
SMC Samplers in the context of moving from an easy to sample distribution to a target
posterior through a sequence of intermediate distributions. It is important to either
determine an optimal schedule for this progression or alternatively, the development of
an adaptive schedule. Such an approach would ideally allow one to adjust the target
posterior at the next iteration to allow for the fact that the transition kernel used at
a particular level in the schedule was not effective in placing the particles in regions
of high posterior mass for the new target distribution in the sequence. Finally, for a
fixed computational complexity, there is a trade-off between the number of particles and
the length of runs. If the transition kernels are mixing well, the algorithm should favour
shorter runs with many particles whereas if they mix slowly longer runs with less particles
should be used. It could be interesting to devise quantitative measures for this behaviour

to decide between longer runs with less particles or short runs with more particles.
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Chapter 7

Appendix

7.1 Appendix 1

Proof of Proposition 1. The expression 3.6 comes from the delta method. Expression
3.7 is obtained via rewriting the variance expression of (Del Moral, 2004; section 9.4, pp.
300-306); sece also (Chopin, 2004; theorem 1) for an alternative derivation. Using the

notation of Chopin (2004). The variance is given by

U%‘N[O,t (SO) =L, [w%é‘gzt (SO — b, (30))} + Z Er, k. [wggSQJrl:t (90 — b, (90))} (7-1>

where &1, (30) = ¢,
gs+1:t (SO) = €s+1 6:++0 gt (SO)

and

E () (2-1) = Pry(ae 1) [We (21, Xi) 0 (Xi)]

where wy (+,-) is defined in 3.4. The expression given by 7.1 is not easily interpreted as

it has no obvious intuitive meaning. However after rearranging this expression as will be

160



shown below, an intuitive interpretation shall be obtained. The key is to notice that

E (@) (1) = Pryee 1) [0 (T0-1, Xe) 0 (X3)]
_ /Kt (xtih xt) Uy’ (CEt) Li (CEt, $t71> )80 (%) dz,
1

Tg—1 (mtfl) K; (xtfla Tt
= m / 2 (ZUt) Tt (ZEt) Ly (lﬂt; ﬂft—l) dzy.

_ M/gp(xt)%t(xt|xt1)d$t

T—1 (xtfl)

Similarly, one obtains

E-14 ()
= &1 (& (p)) (T1-2)

= Ik, i@ o) W1 (Te240-1) & () (21-1)]

X Tg—1 (xtfl) Li s (ZUtfl; $t72) dri_1.

_ / < / o () %1 (20 14| T0s) d:vtl:t) oo (z09) day 1.

Tt—2 ($t72)
%t (l‘t,

_ 172)/¢<$t)%t<$ty$t2)dmt

T2 ($t72)

and, by induction, one gets

Esri (@) = T (1%) /-../90<£Ut)7rt (ZUt)HLi (i, Ti—1) dTsi1:4- (7.2)
_ 7 () N (ol o) da
B Ws(xs)/SO( ¢) T (x| 5) day.

The expression of O'%A,[C’t (), given 3.7, follows now directly from 7.2 and 7.1.
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7.2 Appendix 2

Proof of Proposition 2. Utilising the variance decomposition formula
var [w (Xy4)] = E var [w (X14)| X¢]] + var [B [w (X1.4)| X¢]] - (7.3)

The second term on the right hand side of (7.3) is independent of 7, (1.4 1| ;) as

e (X3)
Ky (Xt)

Blw (X14)| Xe] =

whereas var [w (X1.¢)| X;] is equal to zero if using (3.12). It is straightforward to check
that (3.12) admits the form (3.2) for {L;} given by (3.13), i.c.

t

iy (1) [T Ko (o 1,0) = g () [ 2222 @S;) f( )( re) (7.4)

Note that (7.4) is simply the forward-backward formula for Markov processes.
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7.3 Appendix 3

This section provides the results for the simulations carried out for the sequential kernel
regression problem using the sinc data set. The results are averaged over 50 simulations

for each value of N. The number of kernels presented here is the weighted average number

of kernels.
Number of Particles N | RMSE | crarsr | Number of Kernels
A=1
10 0.1932 | 0.0904 | 1.9
50 0.1443 | 0.0771 | 3.5
100 0.1334 | 0.0762 | 3.8
250 0.0999 | 0.0435 | 4.4
500 0.0911 | 0.0395 | 4.3
1000 0.0880 | 0.0433 | 4.1
A=
10 0.1609 | 0.0759 | 3.4
50 0.0999 | 0.0581 | 4.7
100 0.0932 | 0.0601 | 5.0
250 0.0851 | 0.0563 | 5.1
500 0.0821 | 0.0456 | 5.0
1000 0.0821 | 0.0456 | 4.8
A=
10 0.1288 | 0.0673 | 4.1
50 0.1035 | 0.0554 | 5.6
100 0.0823 | 0.0360 | 5.7
250 0.0737 | 0.0293 | 6.0
500 0.0761 | 0.0309 | 5.6
1000 0.0691 | 0.0276 | 5.3
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Number of Particles N | RMSE | ograse | Number of Kernels
A=4
10 0.0969 | 0.0453 | 5.1
50 0.0715 | 0.0290 | 6.2
100 0.0697 | 0.0310 | 6.4
250 0.0700 | 0.0312 | 6.2
500 0.0648 | 0.0252 | 6.5
1000 0.0708 | 0.0302 | 5.6
A=5
10 0.0894 | 0.0455 | 6.0
50 0.0728 | 0.0365 | 6.6
100 0.0669 | 0.0231 | 7.1
250 0.0607 | 0.0216 | 7.1
500 0.0595 | 0.0178 | 7.1
1000 0.0563 | 0.0121 | 7.0
=6
10 0.0825 | 0.0310 | 6.1
50 0.0663 | 0.0304 | 7.5
100 0.0604 | 0.0192 | 7.4
250 0.0587 | 0.0173 | 7.6
500 0.0609 | 0.0206 | 7.5
1000 0.0586 | 0.0157 | 6.9
=7
10 0.0799 | 0.0448 | 6.9
50 0.0648 | 0.0264 | 7.8
100 0.0687 | 0.0310 | 8.0
250 0.0589 | 0.0149 | 8.4
500 0.0587 | 0.0198 | 7.9
1000 0.0197 | 7.4

0.05§EA




Number of Particles N | RMSE | ograse | Number of Kernels
A=38

10 0.0687 | 0.0247 | 7.9

50 0.0606 | 0.0266 | 8.4

100 0.0649 | 0.0294 | 8.5

250 0.0544 | 0.0155 | 9.1

500 0.0565 | 0.0136 | 8.3

1000 0.0587 | 0.0136 | 7.8
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7.4 Appendix 4

This section provides the results for the simulations carried out for the sequential kernel
regression problem using the Boston housing data set. The results are averaged over 10
simulations for each value of A, with each simulation having a random partitioning of the
data set into 300 training / 206 test data points and the number of particles N = 250 was
used. The A parameter is the mean for the truncated Poisson prior used for the model
order. The number of kernels presented here is the weighted average number of kernels

and the error range is one standard deviation.

A value | Test Error ave. Number of Kernels
5 8.34541+0.4922 | 3.8+£0.81

10 8.0409£0.5815 | 5.2641.00

15 7.96251£0.6615 | 8.60£2.39

20 7.7367£0.4995 | 13.81+1.70

25 7.6094+0.3543 | 16.401+2.60

30 7.652840.4439 | 19.9942.02
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7.5 Appendix 5

All of these experiments present the MMSE results for the parameters after conditioning
on the model order k(1,a4p) as was carried out in Chapter 5. The following gives a guide

as to what is contained in the tables of results.

e « - True Amplitude

e 7 - True translations

5 - True dilations
e 0 - Estimated amplitudes
e 7 - Estimated translations

° /B - Estimated dilations

7.5.1 Simulation 1: Chapter 5

Experiment 1: Parameters N = 100 particles, a = 0.2, b = 0.5, A, = 1/20, A = 30,
g =20, v9=",=0.01,6 =10, 0% = 1.

e

-5.3227

7.0514

5.3895

-5.9342

-9.30565

-9.0064

6.3609

17.6266

44.4703

61.5432

73.8207

79.1937

82.1407

92.1813

™ |

0.2596

0.2046

0.4240

0.3335

0.4795

0.3398

0.3256

0.9565

17.1536

44.9302

51.7504

73.3591

79.4929

82.7980

92.3751

)| D

0.3077

0.2546

0.3896

0.2800

0.2499

0.3214

0.3457

0.3424
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Experiment 2: Parameters N = 500 particles, « = 0.2, b = 0.5, A\, = 1/20,

A=30,g=20,vy=",=0.01,0=10,02 = 1.

e

-5.3227

7.0514

5.3895

-5.9342

-9.30565

-9.0064

6.3609

17.6266

44.4703

61.5432

73.8207

79.1937

82.1407

92.1813

™ |

0.2596

0.2046

0.4240

0.3335

0.4795

0.3398

0.3256

0.0795

17.6793

44.5014

55.1400

73.5754

79.6666

82.5891

92.2663

)| D

0.4004

0.3702

0.2401

0.4259

0.3277

0.3095

0.2963

0.3036

Experiment 3: Paramecters N = 1000 particles,

A =30, g =20, vo =", =0.01, 6§ =10, 02 = 1.

a =02 b=05 A\ = 1/20,

e

-5.3227

7.0514

5.3895

-5.9342

-9.30565

-9.0064

6.3609

17.6266

44.4703

61.5432

73.8207

79.1937

82.1407

92.1813

™ | 2

0.2596

0.2046

0.4240

0.3335

0.4795

0.3398

0.3256

0.0424

17.6489

44.8620

61.8219

73.3552

79.5678

82.7316

92.5202

)| D

0.4857

0.3057

0.3113

0.3438

0.3104

0.3546

0.3367

0.2799
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The next section presents some of the 20 simulations carried out for the data set
presented in Chapter 5, simulation 1.

Experiment 4: Parameters N = 5000 particles, ¢ = 0.2, b = 0.5, A, = 1/20,
A =30,g=20,v9=r,=0.01,5=10,02 = 1.

a | -5.3227 7.0514 | 5.3895 | -5.9342 | -9.3055 | -9.0064 | 6.3609
17.6266 44.4703 | 61.5432 | 73.8207 | 79.1937 | 82.1407 | 92.1813

B 1 0.2596 0.2046 | 0.4240 | 0.3335 | 0.4795 | 0.3398 | 0.3256
Simulation 1

7 1 0.3605 17.2828 | 44.1214 | 73.1710 | 79.5342 | 82.3799 | 92.5556

[Ai’ 0.3088 0.3274 | 0.4860 | 0.2660 | 0.3589 | 0.3106 | 0.2341

a | 0.7444 -5.4727 | 10.2127 | -5.5037 | -6.2764 | -8.0488 | 5.4133
Simulation 2

7 | 0.5242 17.8963 | 44.8125 | 60.7365 | 73.4909 | 79.7005 | 82.4310 | 92.0023

B 0.4124 0.4485 | 0.3494 | 0.2779 | 0.2286 | 0.4392 | 0.3400 | 0.2569

a | 0.7243 -5.0380 | 6.6235 | 3.7716 | -4.8515 | -6.0534 | -8.6771 | 6.4236
Simulation 3

7 1 0.0251 17.5585 | 44.3268 | 73.5493 | 79.8679 | 82.5602 | 92.3994

B 0.3897 0.4914 | 0.4416 | 0.3238 | 0.3623 | 0.3246 | 0.2779

a | 0.8786 -6.1195 | 8.8206 | -5.3927 | -5.8525 | -7.9113 | 6.0374
Simulation 4

T | 17.1872 44.6980 | 60.1263 | 73.8326 | 79.3749 | 82.5157 | 92.7360

[Ai’ 0.4017 0.2040 | 0.2070 | 0.2525 | 0.3338 | 0.3705 | 0.2183

a | -6.4484 5.4898 | 3.6494 | -4.7851 | -6.3720 | -8.2190 | 4.9060
Simulation 5

7 | 17.7909 44.2141 | 60.7540 | 73.1880 | 79.5596 | 82.4615 | 92.5171

B 0.4445 0.4401 | 0.3738 | 0.3048 | 0.3298 | 0.3094 | 0.2835

a | -5.2639 9.2486 | 4.0533 | -5.9103 | -6.2368 | -7.6901 | 5.9640
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7.5.2 Simulation 2: Chapter 5

Changing the )\, parameter

Experiment 5: Parameters N = 500 particles, a = 0.2, b = 0.5, A,= 1/10,
g=20,v9=r,=0.01,6 =10, 0% = 1.

e

5.8813

-5.3227

7.1514

5.2895

-5.9342

-9.3055

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

™ |

0.2608

0.2596

0.3811

0.2817

0.2596

0.2046

1.2320

21.9405

45.1096

61.9936

79.4947

82.5977

92.5164

)| D

0.3800

0.4878

0.4232

0.3190

0.3891

0.2526

0.2912

Experiment 6: Parameters N = 500 particles, a = 0.2, b = 0.5, A,= 1/15, A = 30,

g=20,v9=r,=0.01,6 =10, 02 = 1.

e

5.8813

-5.3227

7.1514

5.2895

-5.9342

-9.3055

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

™ | 2

0.2608

0.2596

0.3811

0.2817

0.2596

0.2046

1.2320

21.9405

45.1096

61.9936

79.4947

82.5977

92.5164

)| D

0.3800

0.4878

0.4232

0.3190

0.3891

0.2526

0.2912

Experiment 7: Parameters N = 500 particles, a = 0.2, b = 0.5, A,= 1/25, A = 30,

g=20,v9=",=0.01,6 =10, 0% = 1.

5.8813

e

-5.3227

7.1514

5.2895

-5.9342

-9.3055

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

0.2608

™ | M

0.2596

0.3811

0.2817

0.2596

0.2046

1.0759

20.4043

44.9558

61.9425

83.4822

92.2399

0.3529

)| D

0.4336

0.2919

0.4223

0.4336

0.2708
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Experiment 8: Parameters N = 500 particles, a = 0.2, b = 0.5, A,= 1/30, A = 30,

g=20,v9=",=0.01,6 =10, 0% = 1.

e

5.8813

-5.3227

7.1514

5.2895

-5.9342

-9.3055

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

™ | M

0.2608

0.2596

0.3811

0.2817

0.2596

0.2046

1.8234

20.9505

44.0814

61.5498

83.3535

92.4162

)| D

0.3849

0.2991

0.3468

0.3514

0.3602

0.2672

Experiment 9: Parameters N = 500 particles, a = 0.2, b = 0.5, A,= 1/35, A = 30,

g=20,v9=r,=0.01,6 =10, 02 = 1.

e

5.8813

-5.3227

7.1514

5.2895

-5.9342

-9.30565

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

™ | N

0.2608

0.2596

0.3811

0.2817

0.2596

0.2046

1.4324

21.5712

44.0802

61.4281

82.3485

92.5969

@) D

0.3097

0.3739

0.3262

0.3792

0.2780

0.2715

Experiment 10: Parameters N = 500 particles, a = 0.2, b = 0.5, A,= 1/40, A = 30,

g=20,v9=",=0.01,6 =10, 0% = 1.

e

5.8813

-5.3227

7.1514

5.2895

-5.9342

-9.3055

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

™ | M

0.2608

0.2596

0.3811

0.2817

0.2596

0.2046

1.0479

19.2023

44.3825

61.4312

83.9596

92.5199

)| D

0.4509

0.2219

0.2178

0.2998

0.3524

0.2851
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Experiment 11: Parameters N = 500 particles, a = 0.2, b = 0.5, A,= 1/60, A = 30,

g=20,v9=",=0.01,6 =10, 0% = 1.

e

5.8813

-5.3227

7.1514

5.2895

-5.9342

-9.3055

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

™ | M

0.2608

0.2596

0.3811

0.2817

0.2596

0.2046

1.4653

44.4220

61.4833

92.6219

@) M

0.2746

0.4908

0.3126

0.2923
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The next section presents some of the 20 simulations carried out for the data set
presented in Chapter 5, simulation 2.

Experiment 12: Parameters N = 500 particles, « = 0.2, b = 0.5, A\, = 1/30,
A =30,g=20,v9=r,=0.01,6 =10, 02 = 1..

a | 5.8813 -5.3227 | 7.1514 | 5.2895 | -5.9342 | -9.3055
1.8504 44.4703 | 61.5432 | 79.1937 | 82.1407 | 92.1813

8| 0.2608 0.2596 | 0.3811 | 0.2817 | 0.2596 | 0.2046
Simulation 1

T | 1.8848 28.6636 | 44.2774 | 61.8130 | 83.0805 | 92.3412

B 0.2817 0.4534 | 0.2475 | 0.3484 | 0.4576 | 0.2848

a | 7.0916 0.0737 | -5.8581 | 6.3260 | -5.9055 | -10.8045
Simulation 2

7 | 1.4160 24.4461 | 44.8328 | 61.8240 | 79.6521 | 82.3793 | 92.1517

3 0.3220 0.4117 ] 0.2781 | 0.4374 | 0.2823 | 0.2646 | 0.2742

a | 8.7066 1.7513 | -5.3751 | 6.8699 | 4.1443 | -5.7309 | -10.9084
Simulation 3

T | 1.3374 44.1720 | 61.8716 | 79.4339 | 82.3907 | 92.2135

3 0.3315 0.2697 | 0.2662 | 0.3365 | 0.2953 | 0.2431

a | 9.0770 -6.3403 | 5.4538 | 4.6777 | -5.7004 | -10.1214
Simulation 4

7 | 1.9976 44.4055 | 61.4049 | 79.6414 | 82.6427 | 92.6755

B 0.4158 0.3009 | 0.3044 | 0.4475 | 0.3092 | 0.2454

a | 7.8095 -6.3160 | 6.6725 | 4.8818 | -4.9071 | -9.0970
Simulation 5

7 | 1.6730 24.6536 | 44.2181 | 61.9679 | 83.1435 | 92.5191

[Ai’ 0.2669 0.2910 | 0.2349 | 0.4123 | 0.3769 | 0.2914

a | 7.3292 1.2474 | -5.7585 | 6.3836 | -5.0774 | -10.3102
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Changing the A parameter

Experiment 13: Parameters N = 500 particles, a = 0.2, b = 0.5, A, = 1/30,

g=20,v9=",=0.01,5 =10, 02 = 1.

a | 5.8813 | -5.3227 | 7.1514 | 5.2805 | -5.9342 | -9.3055
7 | 1.8504 | 44.4703 | 61.5432 | 79.1937 | 82.1407 | 92.1813
B10.2608 | 0.2596 | 0.3811 | 0.2817 | 0.2596 | 0.2046
7| 1.5028 | 6.0644 | 19.7134 | 26.9303 | 29.0260 | 44.8597 | 61.3547
B10.2669 | 0.3192 | 0.2267 | 0.3838 | 0.2038 | 0.2637 | 0.4272
7 | 78.3035 | 82.5512 | 92.2035
B 0.2466 | 0.4354 | 0.3076

Experiment 14: Parameters N = 500 particles, a = 0.2, b = 0.5, A, = 1/30,
A =20,g=20,v9=r,=001,6 =10, 02 = 1.

o | 5.8813 | -5.3227 | 7.1514 | 5.2895 | -5.9342 | -9.3055
7 | 1.8504 | 44.4703 | 61.5432 | 79.1937 | 82.1407 | 92.1813
81 0.2608 | 0.2596 | 0.3811 | 0.2817 | 0.2596 | 0.2046
7 | 1.5249 | 20.3420 | 39.5349 | 44.4066 | 61.8383 | 79.2332 | 81.1197 | 92.3447
/B 0.4474 | 0.3595 | 0.3641 | 0.3093 | 0.3848 | 0.2840 | 0.3291 | 0.2664

Experiment 15: Parameters N = 500 particles,

A =40, g =20,v9=7,=001,6 =10, 02 = 1.

a =02 b=05 A = 1/30,

e

5.8813

-5.3227

7.1514

5.2895

-5.9342

-9.3055

1.8504

44.4703

61.5432

79.1937

82.1407

92.1813

™ | N

0.2608

0.2596

0.3811

0.2817

0.2596

0.2046

1.3114

44.1248

61.5732

79.7834

82.9595

92.3883

@) D

0.3428

0.2396

0.3136

0.4292

0.3210

0.2575
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Experiment 16: Paramecters N = 500 particles, a = 0.2, b = 0.5, A, = 1/30,

A =50,9=20,v9=",=001,8§ =10, 02 =1.

o | 5.8813 | -5.3227 | 7.1514 | 5.2895 | -5.9342 | -9.3055
7 | 1.8504 | 44.4703 | 61.5432 | 79.1937 | 82.1407 | 92.1813
£10.2608 | 0.2596 | 0.3811 | 0.2817 | 0.2596 | 0.2046
7 | 1.3083 | 44.0173 | 61.9223 | 79.5733 | 82.3892 | 92.4223
3 0.2278 | 0.2588 | 0.4387 | 0.3637 | 0.2929 | 0.2484
Experiment 17: Parameters N = 500 particles, a = 0.2, b =
A =60,g=20,v9=r,=001,6 =10, 02 = 1.
o | 5.8813 | -5.3227 | 7.1514 | 5.2895 | -5.9342 | -9.3055
7 | 1.8504 | 44.4703 | 61.5432 | 79.1937 | 82.1407 | 92.1813
£10.2608 | 0.2596 | 0.3811 | 0.2817 | 0.2596 | 0.2046
7 | 1.3591 | 44.7666 | 61.8504 | 79.4904 | 82.5570 | 92.7994
E 0.3291 | 0.2355 | 0.3696 | 0.4091 | 0.2823 | 0.2750
Experiment 18: Parameters N = 500 particles, a = 0.2, b =
A =70 9g=20,v9=",=001,86 =10,02 =1.
o | 5.8813 | -5.3227 | 7.1514 | 5.2895 | -5.9342 | -9.3055
7 | 1.8504 | 44.4703 | 61.5432 | 79.1937 | 82.1407 | 92.1813
£10.2608 | 0.2596 | 0.3811 | 0.2817 | 0.2596 | 0.2046
7 | 1.2119 | 44.5536 | 61.7973 | 79.1753 | 82.6995 | 92.3016
3 0.2872 | 0.3155 | 0.4054 | 0.4416 | 0.3423 | 0.2628
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7.5.3 Simulation 3: Chapter 5

Experiment 19: Parameters N = 1000 particles, a = 0.2, b = 0.5, A, = 1/20, A = 30,
g=20,v9=",=0.01,5 =10, 02 = 1.

a | -5.8930 -6.9228 | 9.7091
45.6468 76.2097 | 89.1299
B 1 0.4215 0.2529 | 0.3217
Simulation 1
7 | 45.7088 76.3257 | 89.1208
31 0.4011 0.2765 | 0.4331
a | -5.4700 -7.6559 | 13.3961
Simulation 2
7 | 45.0873 76.6406 | 89.3285
B 0.3875 0.2926 | 0.2837
a | -6.8140 -7.2062 | 9.7516
Simulation 3
T | 45.7088 76.3257 | 89.1208
B 0.4011 0.2765 | 0.4331
a | -5.4700 -7.6559 | 13.3961
Simulation 4
7 | 0.2753 18.2579 | 45.6903 | 76.5512 | 89.9041
31 0.3391 0.2851 | 0.4525 | 0.2116 | 0.3002
a | -0.6215 1.9638 | -5.9269 | -6.2944 | 8.7384
Simulation 5
T | 45.9387 76.5382 | 89.4400
B 0.4726 0.3396 | 0.3085
a | -5.4041 -7.9351 | 9.7879
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