
The Dynamic Nelson-Siegel Approach
for Yield Curve Modelling

Vivien Ziting Zhou

Supervisors: Gareth Peters

Maggie Jing Chen

A dissertation submitted in partial fulfillment for the degree of
Master of Science

Department of Statistical Science
University College London

4 September 2015

Abstract

The dissertation focuses on the yield curve modelling by using the dynamic
Nelson-Siegel approach. We discuss the yields-only model and propose a gen-
eral form of the extended model that can incorporate a set of macroeconomic
variables based on the work of Diebold and Li (2006). The main contribu-
tion of this dissertation is to implement and compare the gradient-based and
the EM-based estimation procedures for the state-space representation of the
model. We also derive a recursive method to find the optimal estimate of
the latent factors and associate it to the Kalman filter. According to our
simulation study, we find that the gradient descent method performs better
than the EM algorithm in term of stability and accuracy. We further test
the gradient method on the real data example, and get good results.

1

Declaration

I declare that this dissertation is my own work and that all sources have been
acknowledged.

2

Acknowledgement

I would like to sincerely thank my supervisor, Dr. Gareth Peters for his
guidance, patience and encouragement. I have learnt a lot this summer while
working on an interesting project under his supervision.

I would also like to thank my co-supervisor, Dr. Maggie Jing Chen, for her
support and suggestions during the project.

Finally, I would express a deep sense of gratitude to my parents for their love
and supports over the years.

3

Contents

1 Introduction 9

2 Related literature 13

3 Nelson-Siegel Approach for Modelling 15
3.1 Model without Macroeconomic Variables 15

3.1.1 Static Nelson-Siegel Model 15
3.1.2 Dynamic Nelson-Siegel and Diebold-Li Interpretation . 19
3.1.3 State-Space model representation 23

3.2 Yield Curve Model with Macroeconomic Variables 25

4 Model Estimation 27
4.1 Latent Factor Estimation . 27
4.2 Parameter Estimation . 33

4.2.1 Estimation via the Gradient Descent Algorithm 34
4.2.2 Estimation via the Newton–Raphson method 38
4.2.3 Estimation via the EM Algorithm 40

5 Simulation Study for Comparing Estimation Procedures 44
5.1 Test Case . 44
5.2 Synthetic Data Preparation 45
5.3 Results . 46
5.4 Discussion . 48

6 Application 53
6.1 Real Data Example . 53
6.2 Results and Discussion . 54

4

7 Conclusion 60

A Appendix 65
A.1 Tables . 65
A.2 Matlab Codes . 68

5

List of Figures

1.1 Three-dimensional plot of monthly yields of the U.S. Treasury
bills and bonds. The sample maturities are 3, 6, 12, 24, 36, 84
and 12 months. The sample period is from January 1990 to
August 2015. Data are from the U.S. Treasury Department. . 10

1.2 Three-dimensional plot of monthly yields of the UK govern-
ment bonds. The sample maturities are 5, 10 and 20 years.
The sample period is from January 2000 to August 2015. Data
are from Bank of England. 10

3.1 Some possible shapes of the Nelson-Siegel yield curve 18
3.2 Plot of factor loadings as functions of maturity (fix λ = 0.0598) 21
3.3 Plot of curvature loading against lambda (fix τ = 30 months) . 22
3.4 Plot of curvature loading against maturity (fix λ = 0.0609) . . 22

5.1 Plots of synthetic level, slope and curvature factors 46
5.2 Three-dimensional plot of synthetic yields 47
5.3 Box plots of sum of squared errors given by Gradient descent . 48
5.4 Box plots of sum of squared errors given by EM algorithm . . 49
5.5 Box plots of sum of squared errors given by EM algorithm

(except for the 7th parameter 49
5.6 Synthetic level and estimated level by gradient descent 50
5.7 Synthetic slope and estimated slope by gradient descent 50
5.8 Synthetic curvature and estimated curvature by gradient descent 51
5.9 Synthetic level and estimated level by EM algorithm 51
5.10 Synthetic slope and estimated slope by EM algorithm 52
5.11 Synthetic curvature and estimated curvature by EM algorithm 52

6.1 Synthetic curvature and estimated curvature for EM algorithm
on non-diagonal case . 55

6

6.2 Plots of actual and estimated yield of 3-month US Treasury . 55
6.3 Plots of actual and estimated yield of 6-month US Treasury . 56
6.4 Plots of actual and estimated yield of 1-year US Treasury . . . 56
6.5 Plots of actual and estimated yield of 2-year US Treasury . . . 57
6.6 Plots of actual and estimated yield of 3-year US Treasury . . . 57
6.7 Plots of actual and estimated yield of 5-year US Treasury . . . 58
6.8 Plots of actual and estimated yield of 7-year US Treasury . . . 58
6.9 Plots of actual and estimated yield of 10-year US Treasury . . 59

7

List of Tables

4.1 Dimensions of Matrices and Vectors 28

5.1 Indexes of the free parameters in the set of unknowns θ 45

6.1 Descriptive Statistics of the given U.S. Treasury yields data . 54
6.2 Estimated transition matrix of the state vector (Â) and their

means (µ̂) . 59
6.3 Estimated covariance matrix of the state vector (Q̂) 59

A.1 Estimates in the first 5 runs by gradient descent on synthetic
data . 66

A.2 Estimates of the first 5 runs by EM algorithm on synthetic data 67

8

Chapter 1

Introduction

The yield curve, also well-known as the term structure of interest rates, is
a very useful tool in the world of fixed income. At any particular time,
the yield curve illustrates the yields of various bonds across the maturity
spectrum. Not only the yield curve at a given time, but also the evolution of
the entire yield curve over time plays an important role in completing many
financial tasks, including pricing financial assets as discussed in Campbell
(1987) [3], conducting monetary policy as discussed in Campbell (1995) [2]
and predicting recessions as discussed in Estrella et al. (1996) [12]. Besides
being very important, the evolution of the yield curve is very complex as well,
because the shape of the yield curve is not unique, it can be normal, inverted,
flat and so on, and it does not remain the same over time. As a result,
studying the evolution of the yield curve is equivalent to studying a large
set of yield curves corresponding to different points in time and those curves
usually do not follow a common pattern, which is a challenging problem.
In Figure 1.1, as an example, we plots the U.S. Treasury bond yields in all
three dimensions, showing the yields both across a range of bond maturities
and over time. Due to the importance and complexity of the yield curve
dynamics, a dynamic yield curve model is required. Furthermore, the yield
curves are different across countries. For example, the yield curve of the
U.K. Government bonds shown in Figure 1.2 is not the same as the one of
the U.S. Treasury bonds shown in Figure 1.1. The dynamic model is therefore
required to have good adaptability so that it can be used for modelling the
yield curves in different countries.

9

Figure 1.1: Three-dimensional plot of monthly yields of the U.S. Treasury
bills and bonds. The sample maturities are 3, 6, 12, 24, 36, 84 and 12 months.
The sample period is from January 1990 to August 2015. Data are from the
U.S. Treasury Department.

Figure 1.2: Three-dimensional plot of monthly yields of the UK government
bonds. The sample maturities are 5, 10 and 20 years. The sample period is
from January 2000 to August 2015. Data are from Bank of England.

10

A variety dynamic term structure models have been proposed and devel-
oped from a large volume of finance and econometric literature. Most of
these models can be divided into two categories according to their differ-
ent approaches to modelling, and these two approaches are the equilibrium
approach and the arbitrage-free approach. The equilibrium models, includ-
ing the Vasicek model (1977) [25] and the Cox–Ingersoll–Ross model (1985)
[5], derive the yields of the bonds with longer maturities by using the as-
sumed stochastic process of the short rates. It is worth pointing out that
the equilibrium models have a significant shortcoming in addition to being
not arbitrary-free, which is the inconsistency between the equilibrium and
the actual term structure observed. The Ho-Lee model (1986) [16] is the
first no-arbitrage model that makes up for this shortcoming, as it can be
calibrated to the market data. Besides the Ho-Lee model (1986) [16], there
are more examples belonging to the category of arbitrage-free models, such
as the Hull–White model (1990) [17] and the Heath–Jarrow–Morton (HJM)
model (1992) [15]. The arbitrage-free models are the models that specify the
form of the yield curve at a given point in time to ensure that there are no
arbitrage opportunities at that time. In the past thirty years, a number of
researchers have made great contributions to these two approaches.

However, in this dissertation, we pay attention to neither the equilibrium
approach nor the arbitrage-free approach, but another one called dynamic
Nelson-Siegel approach. The models mentioned above are built by using
stochastic differential equations, while the models under the dynamic Nelson-
Siegel approach use time series. The Nelson-Siegel yield curve model [20] has
been commonly used since it was introduced in 1987, but it did not used
for modelling the dynamics of the yield curve until Diebold and Li (2006)
[8] incorporated dynamics into it with appropriate interpretations. The dy-
namic Nelson-Siegel (DNS) model generally refers to the Diebold-Li extension
(2006) [8]. This relatively new approach for dynamic yield curve modelling
has been widely researched over the past ten years, and many extended,
more complex models have been proposed. The aim of this dissertation is
to provide a comprehensive review of the DNS model, with an emphasis on
the model estimation under the state-space framework of the DNS model
introduced by Diebold et al. (2006) [10]. We implement two gradient-based
methods (the gradient descent algorithm and the Newton’s method), and the
expectation-maximization (EM) algorithm. After implementing the three al-
gorithms, we examine the performance of the gradient descent algorithm and

11

the EM algorithm by using the synthetic data.

The remainder of this dissertation is organized as follows: Chapter 2 discusses
the relevant literature and also briefly introduces the evolution of the dynamic
Nelson-Siegel approach since Diebold and Li (2006) [8] and Diebold et al.
(2006 [10] made a prominent contribution in this area. In Chapter 3, the
yield curve model itself is introduced with detailed explanation. We firstly
introduce the static Nelson-Siegel yield curve, and then move to its dynamic
extension by Diebold and Li (2006) [8], which is followed by the discussion
about the state space representation and the extended dynamic yield curve
model with the incorporated macroeconomic variables introduced by Diebold
et al. (2006) [10]. Subsequently, Chapter 4 implement several techniques
that can be used for model estimation under the state-space framework of
the DNS model. In Chapter 5, we perform a simulation study for comparing
two estimation procedures. Chapter 6 presents a real data example of the
DNS model. We model the U.S. Treasury bill and bond yields and discuss the
results. Chapter 7 provides some final conclusions and directions for future
work.

12

Chapter 2

Related literature

The study about the dynamic Nelson-Siegel yield curve modelling is highly
related to two important papers in the area: Diebold and Li (2006) [8] and
Diebold et al. (2006) [10]. Diebold and Li (2006) [8] extend the original
Nelson-Siegel yield curve (1987) [20] to a dynamic model, and interpret the
model as a dynamic factor structure. They also interpret the three time-
varying parameters in Nelson-Siegel as latent factors corresponding to the
level, slope and curvature of the entire yield curve. The approach for model
estimation introduced in Diebold and Li (2006) [8] is called two-step DNS.
They firstly fit the static Nelson-Siegel yield curve at each point in time
so that a three-dimensional times series of estimated factors and the corre-
sponding error terms can be obtained. After that, they model and estimate
autoregressive models for the factors. Following the work of Diebold and
Li(2006) [8], Diebold et al. (2006) [10] introduce a unified state-space rep-
resentation of the model. Moreover, under the state-space framework, they
introduce another model estimation procedure, known as the one-step ap-
proach. This approach estimates the state-space form of the DNS model
by using the Kalman filter together with a numerical method for maximum
likelihood estimation, which allows fitting the single yield curve and estimat-
ing the underlying dynamics of the factors at that point of time to be done
simultaneously.

In this dissertation, we pay our attention to the one-step estimation approach
and hence the study is related to the literature studying the likelihood-based
estimation procedures for state-space models. In Engle and Watson (1981)

13

[11], the maximum likelihood estimation is achieved by using the the Fisher’s
scoring algorithm, which is based on Newton’s method. Shumway and Stoffer
(1982) [23] propose a recursive procedure that uses EM algorithm [7] in con-
junction with the Kalman filter [18] for estimating the unknown parameters
in the state-space model by maximum likelihood. Watson and Engle (1983)
[27] present and compare these two methods, and suggest to use a mix of
EM and Scoring in practice.

Deibold and Li (2006) [8] and Diebold et al. (2006) [10] have been shifting
more attention back to the Nelson-Siegel approach for modelling the dynam-
ics of the yield curve, and there are a number of literature further studying
the extended models. Benefiting from the state-space structure of the DNS
model, Diebold et al. (2008) [9] extend the model to a global context, mod-
elling sets of yield curves corresponding different countries in a framework
that allows to capture both country-specific factors and global factors. Yu
and Zivot (2010) [28] extend the DNS model to a broader empirical prospec-
tive by including different ratings for corporate bonds. In order to enforce
absence of arbitrage, Christensen et al. (2011) [4] introduce a new class of
affine arbitrage-free models based on the dynamic Nelson-Siegel model, which
is the arbitrage-free Nelson-Siegel (AFNS) models. They argue that this new
class of models are not only empirically tractable but also theoretically rig-
orous.

Most recently, researchers have been trying to incorporate different macroe-
conomic variables to the DNS model. Diebold et al. (2006) [10] is the first
work in this area. They include manufacturing capacity, the federal funds
rate and the annual price inflation in the model, and find significant evidence
of the effect of these variables on the yield curve. Pooter et al. (2010) [6]
incorporate fifteen categories of macro factors to the model, and find that
the models incorporated with macroeconomic factors are more accurate in
and around recession periods.

14

Chapter 3

Nelson-Siegel Approach for
Modelling

This chapter introduces the dynamic Nelson-Siegel (DNS) model, including
the models with and without macroeconomic variables. In the section of the
model without macroeconomic variables, we start with the original Nelson-
Siegel yield curve model (1987) [20] for fitting a static yield curve at a fixed
time. By taking the time-varying environment into account, we then pro-
ceed to and focus on the dynamic representation of the Nelson-Siegel and its
interpretation by Diebold and Li (2006) [8]. This is followed by the construc-
tion of the state-space structure of the DNS model. After introducing the
yields-only model, we discuss the extended model that can incorporate the
macroeconomic variables. In this section, we give a general form of extended
state-space model based on the work of Diebold et al. (2006) [10].

3.1 Model without Macroeconomic Variables

3.1.1 Static Nelson-Siegel Model

At any fixed time, a large set of yields across different maturities for a type of
bond is available. Nelson and Siegel (1987) [20] propose a model for fitting a
smooth curve to such set of yields. This is the original Nelson-Siegel model,

15

and it has the following modified functional form which is commonly used in
the literature:

y(τ) = β1 + β2

(
1− e−λτ

λτ

)
+ β3

(
1− e−λτ

λτ
− e−λτ

)
, (3.1)

where y(τ) is the yield to maturity, τ is the maturity, and λ, β1, β2, β3 are
the parameters of the model.

The Nelson-Siegel yield curve model is one of the most popular model for
yield curve fitting in practice. There are several significant reasons for its
popularity. We firstly discuss it from a financial economics perspective. As
we know, the discount rate curve and the forward rate curve are two other
curves of interest in addition to the yield curve in finance, and both of them
can be produced from the corresponding yield curve. To study how well the
Nelson-Siegel yield curve performs from a financial economics perspective, we
analyze all these three curves under the Nelson-Siegel framework, especially
properties of their asymptotes. The discount curve is a line graph showing
the prices of discount bond across different time periods. The forward rate
curve shows the future yields on a bond over different time periods. We
denote the discount curve and forward rate curve at maturity τ by P (τ) and
r(τ) respectively.

In Nelson and Siegel (1987) [20], the corresponding forward rate curve is
given, and it is actually used to derive the Nelson-Siegel yield curve in con-
junction with the relationship between these two curves. The yield is an aver-
age of the corresponding forward rate, and this relationship can be written as
y(τ) = 1

τ

∫ τ
0
r(u)du by definition. The forward rate curve under Nelson-Siegel

framework is given by:

r(τ) = β1 + β2e
−λτ + β3λτe

−λτ . (3.2)

From equation 3.2, we can find that the initial value of the forward rate curve
is a constant, as f(0) = β1 + β2. This can be interpreted as the instanta-
neous short rate by definition, hence we can easily compute the short rate
if a Nelson-Siegel model is given, which is an advantage of the model. The
behaviour of the forward curve near infinity is also of our interest, because it
can be interpreted as the long-term interest rate, and thus it is expected to
be a constant. The limit of equation 3.2, as maturity approaches to infinity,

16

is evaluated with the help of L’Hopital’s rule, and the result is:

lim
τ→∞

f(τ) = β1 + β2 lim
τ→∞

1

eλτ
+ β3λ lim

τ→∞

τ

eλτ

= β1 + 0 + β3λ lim
τ→∞

1

λeλτ

= β1. (3.3)

The forward rate, as maturity becomes arbitrage large, is indeed a constant.
Based on these results and the relationship between yield curve and forward
rate curve, we know that the asymptotic results of the yield curve itself are
also constants as required. The corresponding limits are:

lim
τ→0

y(τ) = f(0) = β1 + β2, (3.4)

and
lim
τ→∞

y(τ) = lim
τ→∞

f(τ) = β1. (3.5)

The discount rate curve produced from the Nelson-Siegel yield curve can be
obtained by using the relationship between these two curves, which is ex-
pressed as P (τ) = e−τy(τ) by the definition of price of the discount bond.
The discount curve under Nelson-Siegel framework has the following expres-
sion:

P (τ) = exp

{
−τβ1−

β2
λ

(
1−exp(−λτ)

)
−β3
λ

(
1−exp(−λτ)−λτexp(−λτ)

)}
.

(3.6)
We can then calculate the initial value of the discount curve using equation
3.6, which is P (0) = 1. The limit of the discount rate, as maturity approaches
to infinity, can be easily found as well, which is limτ→∞ P (τ) = 0. Both of
these two results are the expected characteristics of a discount curve.

Hence we can see that the Nelson-Siegel yield curve itself and the related
curves derived from it all have some desirable properties of curves from the
view of finance and economics. This is one of the most appealing advantages
of the Nelson-Siegel model.

There are at least two more reasons why Nelson-Siegel is a popular and
widely-used model among financial institutions. One of the reasons is that
the shape of the Nelson-Siegel yield curve is controlled by the parameters

17

Figure 3.1: Some possible shapes of the Nelson-Siegel yield curve

λ, β1, β2 and β3, and with different values of these parameters, the shape
of the Nelson-Siegel curve can be any one of the typical shapes of the yield
curve, including normal, inverted, steep, flat and humped shape. Figure 3.1
shows some possible shapes of the Nelson-Siegel yield curve. Furthermore,
as discussed in the original paper of Nelson-Siegel (1987) [20], this yield
curve model is parsimonious, promoting desirable smoothness to the curve.
Providing parsimony with only four parameters is another big advantage of
Nelson-Siegel model.

Up until this point, we have discussed the static model for a single yield curve
across various maturities at a fixed time. In practice, there is a sequence of
curves over time and these curves move in a stochastic fashion. In the next
subsection, we will discuss the dynamic version of the Nelson-Siegel model,
with focus on its representation by Diebold and Li (2006) [8].

18

3.1.2 Dynamic Nelson-Siegel and Diebold-Li Interpre-
tation

The original dynamic Nelson-Siegel (DNS) model is constructed by simply
changing the static parameters in equation 3.1 to be time-varying, which is
given by:

yt(τ) = β1t + β2t

(
1− e−λtτ

λtτ

)
+ β3t

(
1− e−λtτ

λtτ
− e−λtτ

)
, (3.7)

where time t = 1, 2, . . . , T , maturity τ = τ1, τ2, . . . , τN , and yt(τ) is the yield
for maturity τ at time t. It is important to note that β1, β2 and β3 are acted
as both variables and parameters in the model, because they are time-varying
for any fixed maturity τ , but static across different maturities for any fixed
time t. The remaining λt is a parameter at time t that controls the second
and third components.

In Diebold and Li (2006) [8], the DNS model is interpreted as a dynamic
factor model with three dynamic, latent factors β1t, β2t. The parameter λt
is considered to a time-invariant parameter with a fixed value of 0.0609 in
their model, and we will discuss the value of it later. After simply dropping
t from λt, we can see that the structure of factor loading on each factor is
clearly shown in equation 3.7.

Based on the structure, Diebold and Li (2006) [8] also argue that the three
latent factors not only can be classified as long-term, short-term and medium-
term factors according to their relative effect on the yield at different matu-
rities, which is fairly common in the literature before Diebold and Li (2006),
but also can be interpreted as the level, the slope and the curvature according
to their impact on the shape of the overall yield curve.

The factor β1t is viewed as the level or long-term factor, because the loading
on it is 1, a constant, and therefore at time t, it loads equally on the yield
regardless of the maturity. This is also coincident with our discussion result in
the subsection 3.1.1, where we concludes that at a fixed time t, the horizontal
line at β1t is the asymptote of the forward curve near infinity and hence it is
linked to the long-term interest rate and the level of overall yield curve.

The second factor β2t is termed as the slope or short-term factor. The loading
on factor β2t is ((1−e−λτ)/λτ), which starts from infinitely near 1 and decays

19

monotonically to 0 as the maturity increases. The decay takes place at a fast
rate due to the exponential term, which means that the factor has more
impact on yields of the short-term bonds and determines the slope of the
whole yield curve.

The third factor β3t is interpreted as the curvature or medium-term factor.
((1− e−λτ)/λτ − e−λτ) is the loading on this factor. It has a humped shape,
starting at a point infinitely close to 0, increasing until it reaches the peak,
and then decaying back to 0. It has little impact on either short-term or
long-term yields, because it starts from 0 and finally decays to 0. While
looking at the overall yield curve instead of the range of maturities, it is the
factor that contributes to the determination of the curvature of the curve.
Figure 3.2 shows the shape of the three factor loadings, where λ is fixed at
0.0598. The value of λ will be discussed later.

In the rest of this dissertation, we focus on the Diebold-Li interpretation of
the DNS model [8], considering the latent factors as level, slope and curvature
factors. The equation 3.7 is modified a bit express this representation. The
Diebold-Li model [8] is displayed as follows:

yt(τ) = Lt + St

(
1− e−λτ

λτ

)
+ Ct

(
1− e−λτ

λτ
− e−λτ

)
, (3.8)

where Lt, St, Ct are the level, slope and curvature at time t respectively, and
λ is a time-invariant parameter.

As we can see, the constant parameter λ is an indispensable part of the
Diebold-Li model [8], because it not only governs the rates of decay of the
factor loading on the slope (the larger the value of λ, the faster the decay),
but also determines the maturity at which the factor loading on the cur-
vature is maximized. The estimated value of λ is concluded to be 0.0609
by Diebold and Li (2006) [8]. They argue that this is the value of λ that
maximizes the loading on the medium-term factor (the curvature) at exactly
30 months. The medium-term maturity is generally defined as the maturity
ranging from 1 year to 5 years. Hence setting the maturity τ at the averaging
2.5 years (30 months) is reasonable. However, 0.0609 is not the correct value
for the maximization. As shown in Figure 3.3, we can observe that the fac-
tor loading on the curvature has a unique maximum when λ approximately
equals to 0.0598 rather than 0.0609. Moreover, Figure 3.4 shows that the cor-
responding maturity to the λ value of 0.0609 is in fact less than 30 months,

20

Figure 3.2: Plot of factor loadings as functions of maturity (fix λ = 0.0598)

roughly 29.4 months instead. Paul Veerhusi (2011) [26] corrects and fixes the
value of λ in this case at 0.059776. In addition, it is worth mentioning that
although the fixed λ is advocated in many studies, the value of it is diverse
across different studies, mainly due to the differences in the maturity and the
unit of measurement they used. For example, the maturity of 23.3 months
is chosen by Diebold et al. (2006) [10], and they estimate the corresponding
λ to be 0.077. Changing the unit of measurement in maturity from month
to year, the estimates of λ are changed as well, even though the maturities
used have the same length of time, for instance, the estimated λ of 0.0598
and 0.7173 imply that the factor loading on the curvature is maximized at a
maturity of 30 months and a maturity of 2.5 years respectively.

To sum up, the dynamic Nelson-Siegel model retains the advantages of the
static Nelson-Siegel yield curve, and is applied for modelling the yield curve
in time-varying environment. By using Diebold-Li representation of the DNS
model [8], we can give interpretations to the latent factors, viewing them as
the level, slope and curvature of the overall yield curve, which is useful in
estimating the factors and forecasting the future yield curve.

21

Figure 3.3: Plot of curvature loading against lambda (fix τ = 30 months)

Figure 3.4: Plot of curvature loading against maturity (fix λ = 0.0609)

22

3.1.3 State-Space model representation

The dynamic Nelson-Siegel model can be specified and estimated by using
the state-space framework as presented in Diebold et al. (2006) [10]. In
generally, the state-space framework of a system is given by two equations:
the measurement equation and the transition equation. In the case of rep-
resenting the DNS model, the measurement equation should be an equation
that expresses the relationship between the observable yields and the three
unobservable latent factors. This equation can be constructed by adding
the maturity-specific error terms to the deterministic DNS model shown in
equation 3.8. We consider N different maturities, say τ1, τ2, . . . , τN , and their
corresponding errors, also known as the measurement noises, are denoted by
ε(τ1), ε(τ2), . . . , ε(τN). The measurement equation is written as:
yt(τ1)
yt(τ2)

...
yt(τN)

 =


1 1−exp(−τ1λ)

τ1λ
1−exp(−τ1λ)

τ1λ
− exp(−τ1λ)

1 1−exp(−τ2λ)
τ2λ

1−exp(−τ2λ)
τ2λ

− exp(−τ2λ)
...

...
...

1 1−exp(−τNλ)
τNλ

1−exp(−τNλ)
τNλ

− exp(−τNλ)


LtSt
Ct

+


εt(τ1)
εt(τ2)

...
εt(τN)

 .
(3.9)

The random vector of the observation errors is assumed to be homogeneous in
time, correlated to the space, and independently and identically distributed
in calendar time. The distribution of it is usually treated as normal, and we
will discuss this later.

As shown in equation 3.9, the three latent factors Lt, St and Ct remain the
same across maturities but are time-varying. The transition equation under
the state-space framework for the DNS model should then be an equation
that models the time series of these factors. In Diebold et al. (2006) [10],
the time series model is assumed to be a vector autoregressive model of order
1 (VAR(1)). This is not the only choice. For example, Boswijk (2013) [1]
uses the model with 2 lags (VAR(2)). Pooter et al. (2010) [6] examine AR
and VAR models with multiple lags, and find that using multiple lags give
nearly identical results compared to the models with one lag. In this disser-
tation, we select VAR(1) like Diebold et al. (2006) [10]. The reason to choose
VAR(1) is that any vector autoregressive model with other lag always has a
VAR(1) form as its alternative representation, and hence VAR(1) allows bet-
ter adaptability. In addition, we center the factors around the corresponding
time-invariant factor means, denoted by µL, µS and µC , so that we can drop

23

the constant term in the VAR(1) model. The factor dynamics is governed by
a time-invariant 3 × 3 matrix, denoted by the matrix A with entries = aij,
where i, j = 1, 2, 3. The error terms included in VAR(1) are denoted by
ηLt , ηSt and ηCt , and they are also known as process noises. The transition
equation can then be expressed by a VAR(1) model as follows:Lt − µLSt − µS

Ct − µC

 =

a11 a12 a13
a21 a22 a23
a31 a32 a33


 lt−1 − µLst−1 − µS
ct−1 − µC

+

ηLtηSt
ηCt

 . (3.10)

The assumptions about the measurement noises and the process noises are
essential in the state-space framework. Diebold et al. (2006) [10] make the
following standard assumptions about εt and ηt. Firstly, they assume that
both of the two noises are white noises and they are orthogonal to each other
and to the initial state f0 which is assumed to be known. Secondly, the
covariance matrix of εt is assumed to be a N ×N diagonal matrix, denoted
by H, which implies an assumption that the deviations of observed yields
at various maturities are uncorrelated. In contrast, ηt is assumed to be a
3× 3 non-diagonal matrix, denoted by Q, which implies the consideration of
the correlated shocks of the three factors. After making these assumptions,
the complete state-space model can then be summarized by writing both
equations 3.9 and 3.10 in vector and matrix notation. Using the state-space
form, the Diebold-Li representation of the dynamic Nelson-Siegel model is
represented as the following two equations:
measurement equation:

yt = Λ(λ)ft + εt, (3.11)

transition equation:
ft − µ = A(ft−1 − µ) + ηt, (3.12)

alternatively,
ft = Aft−1 + (I−A)µ + ηt, (3.13)

with assumptions: [
ηt
εt

]
∼ WN

([
0
0

]
,

[
Q 0
0 H

])
,

E(f0η
ᵀ
t) = 0, E(f0ε

ᵀ
t) = 0,

24

where the vectors are defined as:

yt =


yt(τ1)
yt(τ2)

...
yt(τN)

, ft =

LtSt
Ct

, µ =

µLµS
µC

, εt =


εt(τ1)
εt(τ2)

...
εt(τN)

, ηt =

ηLtηSt
ηCt

,

and the matrices are defined as:

Λ(λ) =


1 1−exp(−τ1λ)

τ1λ
1−exp(−τ1λ)

τ1λ
− exp(−τ1λ)

1 1−exp(−τ2λ)
τ2λ

1−exp(−τ2λ)
τ2λ

− exp(−τ2λ)
...

...
...

1 1−exp(−τNλ)
τNλ

1−exp(−τNλ)
τNλ

− exp(−τNλ)

, A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

.

Diebold et al.(2006) [10] do not make any assumption about the distributions
of the measurement noises and process noises themselves. In this dissertation,
we make additional assumptions of normality so that we can have a linear
Gaussian state-space framework of the DNS model. These assumptions are
required on the estimation problem that will be discussed in the next chapter.
We assume that each of the two noise terms identically and independently
follows a multivariate normal distribution respectively. The two distributions
are given by:

ηt
iid∼ N3(0,Q),

εt
iid∼ NN(0,H).

3.2 Yield Curve Model with Macroeconomic

Variables

The state-space representation of the DNS model is extended to incorporate
the macroeconomic variables by Doebold et al. (2006) [10]. To be more
specific, they incorporate three key measures of the economy, which are the
manufacturing capacity utilization, the federal funds rate and the annual

25

price inflation. However, the macroeconomic factors incorporated to the
model should not be limit to these three variables, as many empirical and
theoretical studies in the finance literature have demonstrated that there are
another macroeconomic factors that are important drivers of the yield curve.
For example, Vargas (2005) [24] finds that real activity, budget deficit and
exchange rate have significant impact on the level and slope of the yield curve,
and budget deficit has significant impact on all the level, slope and curvature
of the yield curve. Longstaff et al. (2005) [19] find that the yield spread is
strongly related to measures of liquidity and credit quality. This implies that
liquidity and credit quality are the determinants of the yield curve as well.
Moreover, Piazzesi (2005) [22] believe that the Federal Reserve’s interest rate
is a key macroeconomic variable. Hence incorporating these variable to the
model may also improve the accuracy of the DNS model.

To provide more flexibility to the covariates in the model, we provide the
extended model that includes a set of macroeconomic variables. We denote
such set of covariates observed at time t by x, which is a p× 1 vector and p
is the number of macroeconomic variables included.

The incorporation is done by using link functions to relate the time-varying
covariates xt to the level, slope and curvature factors respectively. Hence the
latent factors µ in the yields-only model are no longer time-invariant in this
macro-yield model. The time-varying latent factors are expressed as:

µit = µi + βixt, i = L, S, C, (3.14)

where βis are 1× p parameter vectors.

The state-space structure of the extended model are almost the same as the
one of the model without macroeconomic variables. The only difference is
the transition equation, which is slightly modified as follows:

ft − µt = A(ft−1 − µt) + ηt, (3.15)

with
µt = µ + Bxt (3.16)

where B is a 3× p matrix of coefficients.

As we can see, benefiting from the powerful state-space structure, the dy-
namic Nelson-Siegel model can be easily extended to the one with macroe-
conomic variables.

26

Chapter 4

Model Estimation

This chapter introduces some procedures for estimating the dynamic Nelson-
Siegel model by using one-step DNS approach [10]. The estimation of all
unknowns are done simultaneously based on the state-space structure of the
DNS model presented in the previous chapter. The chapter is divided into
two sections. In the first section, we derive the optimal estimate of the
latent factor based on the property of linear unbiased, and then associate
this recursive fashion with the well-known Kalman filter [18]. In the second
section, we introduce three popular numerical methods, the gradient descent
algorithm, the Newton’s method and the EM algorithm. We implement
each of them in details for the purpose of finding the maximum likelihood
estimation of the unknown parameters in the DNS model.

4.1 Latent Factor Estimation

Given the observed yields and the assumed parameters, the unobservable,
latent factors Lt, St and Ct in the DNS model are need to be estimated.
As presented in the previous chapter, by making appropriate assumptions,
the dynamic Nelson-Siegel model has a linear Gaussian state-space repre-
sentation. The state ft is corresponding to the latent factors at time t. We
therefore only need to estimate the state for the given values of the parame-
ters and the observations (the yields data) under the state-space framework.
In this section, we assume that the parameters are known.

27

To begin with, we summarize the dimensions of matrices and vectors that are
involved in our discussion in Table 4.1. Some of them have been introduced in
Chapter 3, and the rest of them will be defined in this Chapter. In addition,
in this paper, we use ᵀ to represent the transpose in matrix operation.

Vector Dimension Matrix Dimension
yt N × 1 Λ N × 3
ft 3× 1 A 3× 3
µ 3× 1 Q 3× 3
εt N × 1 H N ×N
ηt 3× 1 Pt 3× 3
vt N × 1 Kt 3×N

Wt N ×N

Table 4.1: Dimensions of Matrices and Vectors

We do the estimation with minimum mean square error (MMSE). The opti-
mal estimate of the state ft, denoted by f̂t, is defined as the one that minimises
the expectation:

E[||ft − f̂t||2] = E[(ft − f̂t)
ᵀ(ft − f̂t)]. (4.1)

By differentiating equation 4.1 with respect to f̂t, setting the result to be zero
and doing second derivative test, we can obtain the expression of the MMSE
estimate of ft:

f̂t = E[ft]. (4.2)

The estimation of the state is based on the observations. We want to find
estimate of the state at time t by using all the available observations up to
time t, , y1,y2, . . . ,yt, which we denote by ft|t. This estimate is named as
the updated state, and it can be expressed as:

f̂t|t = E[ft|y1,y2, . . . ,yt]. (4.3)

From the state-space model shown in equation 3.11 and 3.12, we know that
it is possible to estimate the state at time t by using the observations up to
time t − 1, y1,y2, . . . ,yt−1. This estimate is the predicted state, which we
denote by f̂t|t−1, and based on the result in equation 4.2, the predicted state
has the following expression:

f̂t|t−1 = E[ft|y1,y2, . . . ,yt−1]. (4.4)

28

The predicted state can then be written in terms of the model parameters and
the updated state one step behind by using the equations 3.11, 4.3 and 4.4,
along with the assumption that the process noises ηt are Gaussian distributed
with zero mean and the fact that they are independent to the observations.
The expression is as follows:

f̂t|t−1 = E[ft|y1,y2, . . . ,yt−1]

= E[Aft−1 + (I−A)µ + ηt|y1,y2, . . . ,yt−1]

= AE[ft−1|y1,y2, . . . ,yt−1] + (I−A)µ + E[ηt|y1,y2, . . . ,yt−1]

= Af̂t−1|t−1 + (I−A)µ (4.5)

Furthermore, we need to determine the covariance matrix of errors. The
covariance matrices that correspond to the predicted state ft|t−1 and the
updated state ft|t are denoted by Pt|t−1 and Pt|t respectively, namely the
predicted covariance matrix and the updated covariance matrix. They are
given by the expressions below:

Pt|t−1 = E[(ft − f̂t|t−1)(ft − f̂t|t−1)
ᵀ], (4.6)

Pt|t = E[(ft − f̂t|t)(ft − f̂t|t)
ᵀ]. (4.7)

The expression of predicted covariance matrix Pt|t−1 can be derived from
equations 3.11, 4.3 4.5 and 4.6. We use the fact that the process noises ηt
are uncorrelated to the states, and they are assumed to follow a multivariate

normal distribution, ηt
iid∼ NN(0,Q). It can written as follows:

Pt|t−1 = E[(ft − f̂t|t−1)(ft − f̂t|t−1)
ᵀ]

= E[(Aft−1 + ηt −Af̂t−1|t−1)(Aft−1 + ηt −Af̂t−1|t−1)
ᵀ]

= AE[(ft−1 − f̂t−1|t−1)(ft−1 − f̂t−1|t−1)
ᵀ]Aᵀ + E[ηtη

ᵀ
t]

= APt−1|t−1A
ᵀ + Q. (4.8)

We are not satisfied to just obtain the predicted state f̂t|t−1, because in ad-
dition to the observations up to and including at time t− 1, the observation
at time t is also observed. Including the available observations as more as
possible will increase the precision in estimation. Hence, the updated state
f̂t|t is more desirable and should be the one used as the estimate of the state

29

that we are looking for. Under the state-space framework, at time t, both
the observation yt and the predicted state f̂t|t−1 are related to the updated

state f̂t|t. We then make a reasonable assumption that f̂t|t is a linear weight

sum of yt and f̂t|t−1. This relationship is given by:

f̂t|t = K′f̂t|t−1 + Kyt, (4.9)

where K′ and K are two different weights.

The optimal values K′ and K are to be determined. We achieve these by using
the unbiased property of the MMSE estimator. Being an unbiased estimator,
the updated state must has the expectation that f̂t|t that satisfy:

E[̂ft|t] = E[ft]. (4.10)

We now derive the expectation of the updated state f̂t by using the results
shown in equations 3.11, 3.12, 4.3, 4.5, 4.9, and the assumption that the mea-
surement noises εt are Gaussian distributed with zero mean. The expression
is derived as follows:

E[̂ft|t] = E[K′f̂t|t−1 + K(Λft + εt)]

= K′E[̂ft|t−1] + KΛE[ft] + KE[εt]

= K′E[̂ft|t−1] + KΛE[ft]

= K′E[Af̂t−1|t−1 + (I−A)µ] + KΛE[f]t

= K′{AE[̂ft−1|t−1] + (I−A)µ}+ KΛE[ft]

= K′E[ft] + KΛE[ft]

= (K′ + KΛ)E[ft]. (4.11)

Combing equations 4.10 and 4.11, we can find that the two weights K′ and
K must have a certain relationship, and this relationship is unique, which
is:

K′ = I−KΛ. (4.12)

Now we can modify the equation 4.9, expressing the predicted state in terms
of only one weight K as follows:

f̂t|t = (I−KΛ)̂ft|t−1 + Kyt

= f̂t|t−1 + K(yt −Λf̂t|t−1). (4.13)

30

The optimal value of K will be determined later.

Before proceeding to the updated covariance matrix of Pt|t, we firstly find

the difference between the true state ft and the updated state f̂t|t by using
the results in equations 3.11 and 4.13:

ft − f̂t|t = ft − f̂t|t−1 −K(yt −Λf̂t|t−1)

= ft −Kyt − (I−KΛ)̂ft|t−1

= ft −K(Λft + εt)− (I−KΛ)̂ft|t−1

= (I−KΛ)(ft − f̂t|t−1)−Kεt. (4.14)

The updated covariance matrix Pt|t can then be derived based on equa-
tions 4.7 and 4.14, along with the assumption that the Gaussian distributed
measurement noises εt is orthogonal to the state. The derivation is as fol-
lows:

Pt|t = E[(ft − f̂t|t)(ft − f̂t|t)
ᵀ]

= E{[(I−KΛ)(ft − f̂t|t−1)−Kεt][(I−KΛ)(ft − f̂t|t−1)−Kεt]
ᵀ}

= (I−KΛ)E[(ft − f̂t|t−1)(ft − f̂t|t−1)
ᵀ](I−KΛ)ᵀ + KE[εtε

ᵀ
t]K

ᵀ

= (I−KΛ)Pt|t−1(I−KΛ)ᵀ + KHKᵀ. (4.15)

The weight K is still undetermined at this stage, and we need to find the
optimal value of it. As mentioned earlier, our estimator should be a MMSE
estimator, minimizing the expression in equation 4.1. Equivalently, the opti-
mal K should minimize the trace of the updated covariance matrix Pt|t. The
trace of Pt|t can be expressed as follows:

tr(Pt|t) = tr((I−KΛ)Pt|t−1(I−KΛ)ᵀ + KHKᵀ)

= tr(Pt|t−1 −KΛPt|t−1 −Pt|t−1Λ
ᵀKᵀ + KΛPt|t−1Λ

ᵀKᵀ + KHKᵀ)

= tr(Pt|t−1 + KΛPt|t−1Λ
ᵀKᵀ + KHKᵀ)− 2tr(KΛPt|t−1). (4.16)

The derivative of the trace given above with respect to K is:

2KΛPt|t−1Λ
ᵀ + 2KH− 2Pt|t−1Λ

ᵀ = 0. (4.17)

By equating equation 4.17 to zero and solving it, the optimal K is then
obtained, which has the following expression:

K = Pt|t−1Λ
ᵀ(ΛPt|t−1Λ

ᵀ + H)−1. (4.18)

31

We can determine this K is the optimal one that minimizes the trace instead
of maximizing it, as we can easily find that the second derivative of the trace
with respect to K is always greater than zero. Moreover, as we can see, the
optimal K at time t depends on the predicted covariance matrix Pt|t at that
time, it therefore time-varying. We denote it by Kt instead.

Multiplying both sides of equation 4.18 by (ΛPt|t−1Λ
ᵀ+H)Kᵀ, then we have

the equation:
Kt(ΛPt|t−1Λ

ᵀ + H)Kᵀ
t = Pt|t−1Λ

ᵀKᵀ
t . (4.19)

By substituting the result in equation 4.19 into the equation 4.15, we can
have a simplified expression of the updated covariance matrix Pt|t, which
is:

Pt|t = Pt|t−1 −KtΛPt|t−1 −Pt|t−1Λ
ᵀKᵀ

t + KtΛPt|t−1Λ
ᵀKᵀ

t + KtHKᵀ
t

= Pt|t−1 −KtΛPt|t−1 −Pt|t−1Λ
ᵀKᵀ

t + Pt|t−1Λ
ᵀKᵀ

t

= Pt|t−1 −KtΛPt|t−1. (4.20)

Now we can summarize the algorithm that we can use to estimate the state at
each discrete time point. A known initial predicted estimate of the state and
a known predicted covariance matrix, denoted by f̂1|0 and P1|0 are required
to start the algorithm and there are two stages involved. The algorithm is
defined as follows:

Prediction stage:
f̂t|t−1 = Af̂t−1|t−1 + (I−A)µ (4.21)

Pt|t−1 = APt−1|t−1A
ᵀ + Q (4.22)

Update stage:
f̂t|t = f̂t|t−1 + Kt(yt −Λf̂t|t−1) (4.23)

Pt|t = Pt|t−1 −KtΛPt|t−1 (4.24)

This is actually a form of the well-known Kalman filter algorithm [18]. Com-
pared with the original form of the algorithm, we just drop t off the parame-
ters, because our parameters µ, Λ, A, Q and H are all time-invariant.

Kalman filtering is an optimal recursive data processing algorithm that is
typically used for smoothing noisy data and producing estimates of parame-
ters of interest for linear systems with Gaussian distributed error. The filter

32

was invented and preliminarily developed in the work of Kalman [18], and
hence is named after Rudolf E. Kalman.

It has been more than 50 years since the Kalman filter is first described, and
it is still one of the most important algorithms for linear quadratic estimation
nowadays. The Kalman filter is computationally efficient due to its elegant
recursive structure, and it is also proved to be the optimal estimator in the
sense that it minimises both mean square error of the estimated parame-
ters and estimated covariance matrix given that all noises in the system are
Gaussian distributed.

4.2 Parameter Estimation

As discussed in the previous section, the latent yield factors in the state-space
representation of the DNS model can be estimated by using the Kalman filter
with given parameters. However, these parameters that are necessary to run
the algorithm are unknown in reality and need to be estimated. Maximizing
the log-likelihood function is the method that we use to find the estimation.
We denote this set of parameters with θ, where θ = {µ, Λ, A, Q, H}.

The log-likelihood function is constructed based on the assumption that the
prediction errors are multivariate Gaussian distributed. We firstly write the
vector of prediction errors at time t, vt, by definition as follow:

vt = yt − ŷt|t−1 = yt −Λf̂t|t−1. (4.25)

The covariance matrix of vt is denoted by Wt, and it can be written in terms
of the measurement noises defined in equation 3.11 and covariance matrix of
the predicted state, which is given by:

Wt = Var(vt)

= Var(yt −Λf̂t|t−1)

= H + ΛPt|t−1Λ
ᵀ. (4.26)

Since the prediction error vector is assumed to be Gaussian distributed, the
distribution of the random variable yt conditional on the given value of pre-
diction, which we denote by yt|t−1, is Gaussian as well. The distribution is

33

given by:

yt|yt|t−1
d∼ N (Λf̂t|t−1,Wt) (4.27)

Based on this conditional distribution, we can now compute the log-likelihood
function of θ by computing the joint density of yt|yt−1|t, t = 1, 2, . . . , T .

`(θ) = log
T∏
t=1

{
1

(2π)N/2|Wt|1/2
exp

(
−(yt −Λf̂t|t−1)

ᵀW−1
t (yt −Λf̂t|t−1)

2

)}

= log
T∏
t=1

{
1

(2π)N/2|Wt|1/2
exp

(
−vt

ᵀW−1
t vt

2

)}

=
T∑
t=1

{
− N

2
log 2π − 1

2
log|Wt| −

1

2
vt

ᵀW−1
t vt

}

= −NT
2

log 2π − 1

2

T∑
t=1

log|Wt| −
1

2

T∑
t=1

vt
ᵀWt

−1vt. (4.28)

Analytical solution that maximizes this log-likelihood function is not avail-
able. Hence we use numerical methods to find the maximum likelihood esti-
mation. There are many iterative methods which have be developed to the
optimization problem. In this paper, we discuss and implement two popular
approaches: the gradient-based method and the expectation-maximization
(EM) algorithm. Both the gradient descent algorithm and the Newton-
Raphson method will be explained when we discuss the gradient-based meth-
ods, and we mainly focus on the former.

4.2.1 Estimation via the Gradient Descent Algorithm

The first method we discuss and implement is the gradient descent algorithm.
Gradient descent algorithm, also known as steepest descent algorithm, is a
numeric iterative method to find the nearest local minimum of a function that
has a computable gradient. It is based on the observation that a function
will decrease fastest if its variable moves from a given value in the direction
of the negative gradient of the function at that value.

The algorithm starts with a initial value of the targeted variable x, denoted by
x0, and the given function f(x) is presumed to be defined and differentiable

34

at this point. Then it calculates the negative gradient of the function at
the point x0, −∇f(x0). After that, this negative gradient is used to find
a updated value of x, x1, where f(x1) 6 f(x0). The updated value of
x is then used as the initial value, the above steps are repeated until the
approximate minimum to the predefined accuracy is found. The algorithm
takes the following form of iteration:

x(n+1) = x(n) − γn∇f(x(n)), n > 0, (4.29)

where γn is the chosen step size at iteration n, x(n) is the approximate at
iteration n, and f(x(n+1)) 6 f(x(n)).

We want to do the maximum log-likelihood estimation, equivalently, we need
to find the minimum of the negative log-likelihood function. Moreover, the
gradient of the log-likelihood `(θ) with respect to θ is also called the score
for θ, which is denoted by S(θ). We then modify the form in equation 4.29
so that we have a specific form of the gradient descent algorithm for our case
of maximizing log-likelihood function. The approach that approximates the
local maximum of a function is also known as gradient ascent. The form of
each iteration for our case is:

θ(n+1) = θ(n) + γS(θ(n)), n > 0. (4.30)

where γ is the preset step size for all iterations, θ(n) is the approximation of
θ at iteration n, and θ(n+1) is a better approximation obtained at iteration
n+ 1 compared with θ(n).

Now we need to calculate the score function S(θ). From the expression
in equation 4.28, we can find that the log-likelihood function `(θ) can be
decomposed into T parts:

`(θ) =
T∑
t=1

`t(θ), (4.31)

where each part has the expression:

`t(θ) = −N
2

log 2π − 1

2
log|Wt| −

1

2
vt

ᵀWt
−1vt t = 1, 2, . . . , T. (4.32)

Finding the first derivative of `t(θ) is still not trivial. However, we can
compute it by using the method presented in the book of Harvey (1990) [14].

35

The derivatives of the determinant and the inverse of the symmetric matrix
will be frequently used in the later discussion. We use the results given in the
Matrix Cookbook by Petersen and Pedersen [21]. For any symmetric matrix
M, the derivatives of the determinant and the inverse of it with respect to a
variable x, are given by:

∂|M|
∂x

= |M| tr
[
M−1∂M

∂x

]
, (4.33)

and
∂M−1

∂x
= −M−1∂M

∂x
M−1. (4.34)

Differentiating the equation 4.32 with respect to a component of θ, denoted
by θi, i = 1, 2 . . . , 5, we can obtain the first derivative of the log-likelihood
at time t. We use the derivative results in equations 4.33 and 4.34 and then
take trace of the non-trace term in order to get simpler expression:

∂`t(θ)

∂θi
= −1

2

1

|Wt|
∂|Wt|
∂θi

− 1

2

∂(vt
ᵀWt

−1vt)

∂θi

= −1

2
tr

[
W−1

t

∂Wt

∂θi

]
− 1

2

[
∂vᵀ

t

∂θi
W−1

t vt + vᵀ
t

∂W−1
t

∂θi
vt + vᵀ

tW
−1
t

∂vt
∂θi

]
= −1

2
tr

[
W−1

t

∂Wt

∂θi

]
+

1

2
tr

[
vᵀ
tW

−1
t

∂Wt

∂θi
W−1

t vt

]
−
(
∂vt
∂θi

)ᵀ

W−1
t vt

= −1

2
tr

[[
W−1

t

∂Wt

∂θi

]
[I−W−1

t vtv
ᵀ
t]

]
−
(
∂vt
∂θi

)ᵀ

W−1
t vt.

(4.35)

As we can see, the derivatives of vt and Wt with respect to the vector θi
are needed in the computation. These two derivatives can be obtained by
differentiating the equations 4.26 and 4.25 respectively, which are:

∂Wt

∂θi
=
∂Λ

∂θi
Pt|t−1Λ

ᵀ + Λ
∂Pt|t−1

∂θi
Λᵀ + ΛPt|t−1

∂Λᵀ

∂θi
+
∂H

∂θi
, (4.36)

and
∂vt
∂θi

= −Λ
∂ f̂t|t−1
∂θi

− ∂Λ

∂θi
f̂t|t−1. (4.37)

36

From equations 4.36 and 4.37, we know that the expression for the derivatives
of f̂t|t−1 and Pt|t−1 with respect to the vector θi are also needed. These two
derivatives can be obtained based on the equations involved in the Kalman
filter algorithm described in the previous section, to be more specific, the
equations 4.21 to 4.24. They have the following expressions:

∂ f̂t|t−1
∂θi

=
∂A

∂θi
f̂t−1|t−1 + A

∂ f̂t−1|t−1
∂θi

+
∂µ

∂θi
− ∂A

∂θi
µ−A

∂µ

∂θi
, (4.38)

and

∂Pt|t−1

∂θi
=
∂A

∂θi
Pt−1|t−1A

ᵀ + A
∂Pt−1|t−1

∂θi
Aᵀ + APt−1|t−1

∂Aᵀ

∂θi
+
∂Q

∂θi
, (4.39)

where the updated derivatives of f̂t|t and Pt|t with respect to the vector θi
are given by:

∂ f̂t|t
∂θi

=
∂ f̂t|t−1

∂θi
+

∂Pt|t−1

∂θi
ΛᵀW−1

t vt + Pt|t−1
∂Λᵀ

∂θi
W−1

t vt

−Pt|t−1Λ
ᵀ ∂W−1

t

∂θi
vt + Pt|t−1Λ

ᵀW−1
t

∂vt

∂θi

=
∂ f̂t|t−1

∂θi
+

∂Pt|t−1

∂θi
ΛᵀW−1

t vt + Pt|t−1
∂Λᵀ

∂θi
W−1

t vt

−Pt|t−1Λ
ᵀW−1

t
∂Wt

∂θi
W−1

t vt + Pt|t−1Λ
ᵀW−1

t
∂vt

∂θi
, (4.40)

and

∂Pt|t

∂θi
=

∂Pt|t−1

∂θi
− ∂Pt|t−1

∂θi
ΛᵀW−1

t ΛPt|t−1 −Pt|t−1
∂Λᵀ

∂θi
W−1

t ΛPt|t−1

− Pt|t−1Λ
ᵀ ∂W−1

t

∂θi
ΛPt|t−1 −Pt|t−1Λ

ᵀW−1
t

∂Λ
∂θi

Pt|t−1

−Pt|t−1Λ
ᵀW−1

t Λ
∂Pt|t−1

∂θi

=
∂Pt|t−1

∂θi
− ∂Pt|t−1

∂θi
ΛᵀW−1

t ΛPt|t−1 −Pt|t−1
∂Λᵀ

∂θi
W−1

t ΛPt|t−1

+ Pt|t−1Λ
ᵀW−1

t
∂Wt

∂θi
W−1

t ΛPt|t−1

−Pt|t−1Λ
ᵀW−1

t
∂Λ
∂θi

Pt|t−1 −Pt|t−1Λ
ᵀW−1

t Λ
∂Pt|t−1

∂θi
. (4.41)

The required initial derivatives ∂ f̂1|0/∂θi and ∂P1|0/∂θi can be calculated

based on the given known initial predicted estimate of the state f̂1|0 and the
initial predicted covariance matrix P1|0. If the initial value is independent to
θi, then the derivative is zero.

37

For now, most of the derivatives required for the computation of the first
derivative of the log-likelihood function have been derived, except for the
first-order derivative of the parameters µ, Λ, A, Q and H. These deriva-
tives are straightforward, as they simply depend on the structure of the
parameters.

After driving all derivatives needed, we can write the expression for the score
vector S(θ) as follows:

S(θ) =
∂`(θ)

∂θ
, (4.42)

where

∂`(θ)

∂θi
=

T∑
t=1

{
− 1

2
tr

[[
W−1

t

∂Wt

∂θi

]
[I−W−1

t vtv
ᵀ
t]

]
−
(
∂vt
∂θi

)ᵀ

W−1
t vt

}
,

for i = 1, 2, . . . , 5. The book of Harvey (1990) [14] provides a simplified
expression of the Fisher’s information, and the Fisher’s information is just
the expectation of the observed information. The expression in equation 4.48
can then be simplified based on the result given by Harvey [14].

4.2.2 Estimation via the Newton–Raphson method

The gradient descent algorithm uses gradient information for optimization,
we now introduce another gradient-based method, which uses the informa-
tion about the derivative of the gradient, the curvature information. This
approach is called the Newton–Raphson method, which is named after Isaac
Newton and Joseph Raphson and also known as the Newton’s method. It
is a algorithm for finding the root of the derivative of a twice-differentiable
function], and it is based on successive approximations to the root by using
Taylor’s theorem.

The algorithm starts with a initial guess of the variable x, denoted by x0.
By using Taylor’s theorem, the approximation of the function f(x) has the
following expression:

f(x) ≈ f(x0) +∇f(x0)(x− x0) +
1

2
(x− x0)

ᵀHf (x0)(x− x0), (4.43)

where ∇f(x0) is the gradient of the function f(x) at x = x0, and Hf (x0) is
the matrix of second-order partial derivatives of the function f(x) at x = x0,

38

which is also known as the Hessian matrix. Differentiating the right-hand
side of the equation (4.38) with respect to x−x0 and setting it to zero vector,
the following can be obtained:

∇f(x0) +Hf (x0)(x− x0) = 0. (4.44)

Based on equation 4.44, a better approximation of x can be calculated, and
it is used as an initial value in the next iteration. Iterations are run until
the approximation with sufficient accuracy is found. The algorithm takes the
following form of iteration:

x(n+1) = x(n) − [Hf (x
(n))]−1∇f(x(n)), n > 0, (4.45)

In our case for maximizing the log-likelihood, we need to find an approxima-
tion of θ that can let the score function equal to zero:

S(θ) = 0. (4.46)

In addition, the negative Hessian matrix of the log-likelihood is known as the
observed Fisher information, denoted by J (·). We then rewrite the iteration
expression of Newton’s method for our case:

θ(n+1) = θ(n) + [J (θ(n))]−1S(θ(n)). (4.47)

where θ(n) is the approximation of θ at iteration n, and θ(n+1) is a better
approximation obtained at iteration n+ 1 compared with θ(n).

The score can be calculated by using the same method presented in the sub-
section of the gradient descent, and the observed information can be calcu-
lated by definition once the second derivatives of the log-likelihood are known.
The component of the second derivative at time t, `t(θ), is obtained by fur-
ther differentiating equation 4.35 with respect to θj, j = 1, 2, . . . , 5:

∂2`t(θ)

∂θi∂θj
= −1

2
tr

[(
∂
[
W−1

t
∂Wt

∂θi

]/
∂θj

)[
I−W−1

t vtv
ᵀ
t]

]
−1

2
tr

[[
W−1

t
∂Wt

∂θi

](
∂
[
I−W−1

t vtv
ᵀ
t]
/
∂θj

)]
− ∂2vᵀ

t

∂θiθj
W−1

t vt − ∂vᵀ
t

∂θi

∂W−1
t

∂θj
vt − ∂vᵀ

t

∂θi
W−1

t
∂vt

∂θj
. (4.48)

for i = 1, 2, . . . , 5. The book of Harvey (1990) [14] provides a simplified
expression of the Fisher’s information, and the Fisher’s information is just
the expectation of the observed information. The expression in equation 4.48
can then be simplified based on the result given by Harvey [14].

39

4.2.3 Estimation via the EM Algorithm

The Expectation-Maximization (EM) algorithm, introduced by Dempster,
Laird, and Rubin (1977) [7], is the third approach that we will present in
this section, which is different from the gradient-based methods. The EM
algorithm is a recursive method for computing maximum likelihood and it
performs two steps in each iteration: an expectation (E) step and a maxi-
mization (M) step. On the E step, the expectation of the log-likelihood will
be calculated by using the current estimates for the unknown parameters.
On the M step, the parameters that maximize the expected value of the log-
likelihood on the E step will be found and extracted, and then these updated
parameters will be used as the current estimates on the E step of next iter-
ation. Both E step and M step are repeated alternately until the difference
between two successive values of the log-likelihood falls within the targeted
range.

The EM algorithm can be used for parameter estimation in the space-state
models, and Shumway and Stoffer (1982) [23] and Watson and Engle (1983)
[27] have proposed the way to use it. Hence we can apply the EM algorithm
for estimating the parameters of the DNS model expressed in the state-space
form. Now we will explain how this algorithm works in details.

To start the EM algorithm for our case, we need to provide some relevant
inputs, which are the observations of yields y, an initial predicted estimate
of the state f1|0, a initial predicted covariance matrix P1|0, initial guess of the

unknown parameters, denoted by θ(0), the maximum number of iterations
allowed and the targeted percentage of the log-likelihood difference between
two successively iterations. Described below are the two main stages of the
algorithm:

• Modified E step:
The E step for our case should not be exactly the same as the one
involved in the original expression of EM algorithm. In a typical E
step, the expected value of the log-likelihood is calculated under the
current estimate of parameters, which can be expressed as:

Q(θ|θ(n)) = Ez|h,θ(n) [`(θ; z,h)] =

∫
Ω

`(θ; z,h)g(z|h,θ(n))dz, (4.49)

where z is a sequence of yield curves, z = [y1, . . . ,yT], h is a sequence

40

of states, h = [f1, . . . , fT], Ω is the support of the density function of
z, θ(n) is the current estimate of parameters, and the function g(·) is
the conditional density of z given h and θ(n). However, the state se-
quence f1, f2, . . . , fT in our state-space model is unknown and unobserv-
able in reality. On our E step, instead of calculating the expectation
in equation 4.49, we extract the estimated state sequence optimally.
For the given observations y and the current estimate of the unknown
parameters θ(n), this extraction can be done by using the Kalman fil-
ter iteratively, starting with the provided f1|0 and P1|0. We denote the

extracted state sequence as f
(n)
1 , f

(n)
2 , . . . , f

(n)
T .

• Modified M step;
Like the M step in a typical EM algorithm, we want to find the updated
estimate of the unknown parameters on our M step. The updated
estimate θ(n+1) has the following expression:

θ(n+1) = argmax
θ

Q(θ|θ(n)). (4.50)

For our state-space model, this step is straightforward once we know the
estimated state sequence from the previous modified E step. Firstly,
based on equation 3.11, the new estimates of Λ and H, denoted by

Λ̂
(n+1)

and Ĥ(n+1), can be obtained by running the seemingly unrelated
regression, which is defined as follows:

yt = Λf̂
(n)
t + εt, t = 1, 2, . . . , T, (4.51)

where yt is the tth column of y, yt and εt are N × 1 vectors, f̂
(n)
t is a

3 × 1 vector, Λ is a N × 3 matrix and the covariance matrix of εt is
the N × N matrix H. The expression of the updated estimate of λ is
given by:

λ̂(n+1) = max
0≤λ≤1

T∑
t=1

N∑
n=1

[
yt(τn)−Λn·f̂

(n)
t

]2
, (4.52)

where Λn· is the nth nth row of the matrix Λ. The derivative of the

41

summation term in equation 4.52 with respect to λ is:

T∑
t=1

N∑
n=1

{
exp(−λτn)

(
λτn − exp(λτn) + 1

)
λ2τn

Ŝ
(n)
t

+

[
exp(−λτn)

(
λτn − exp(λτn) + 1

)
λ2τn

+ τnexp(−λτn)

]
Ĉ

(n)
t

}
.

(4.53)

The optimal λ can be found by letting equation 4.53 equal to 0 and
then solve the equation. However, it is difficult to solve it analytically.
Simplifying the problem, we use numerical method to deal with it, find-
ing λ that maximizes the least squares by grid search. As discussed in
Section 3.1.2, the suggested value of λ is small and has to be positive,
and based on the data in the literature and our own data, we have
reason to believe that it should be greater than 0 and smaller than 0.1
given that the maturity is measured in months. We therefore set 0.01
and 0.2 as the initial grid limits in the implementation of the algorithm.
Given grid spacing of 0.001, the grid will contain 191 grid points. The

updated estimate Λ̂
(n+1)

can then be obtained by substituting λ̂(n+1)

into the expression of the parameter matrix in measurement equation
shown in equation 3.11. Furthermore, the estimate Ĥ(n+1) can be up-
dated by finding the covariance

Ĥ(n+1) =
1

T − 1

T∑
t=1

{[
yt − Λ̂

(n+1)
f̂
(n)
t

][
yt − Λ̂

(n+1)
f̂
(n)
t

]ᵀ}
. (4.54)

Secondly, the updated estimate of µ̂(n+1) can be easily found by taking
an average of the current estimates of each factor over without constant
term, which has the following form:

µ̂(n+1) =
1

T

T∑
t=1

f̂
(n)
t . (4.55)

The remaining updated estimates of A, and Q, denoted by A(n+1),
µ(n+1) and Q(n), can be gotten based on equation 3.12, by running the
vector autoregression of first order, which is defined as follows:

f̂
(n)
t − µ̂(n+1) = A

(
f̂
(n)
t−1 − µ̂(n+1)

)
+ ηt, t = 1, 2, . . . , T. (4.56)

42

The estimate of the autoregressive matrix A is the updated Â(n+1), and
the estimated covariance matrix of the vector of serially uncorrelated
innovations ηt is the updated Q̂(n+1).

The updated parameter estimates µ̂(n+1), Â(n+1), Λ̂
(n+1)

, Q̂(n+1) and Ĥ(n+1)

are then used to find the state extraction f̂
(n+1)
1 , f̂

(n+1)
2 , . . . , f̂

(n+1)
T in the next

iteration. These two stages will be repeated until the difference of change
between the parameters update becomes small enough as defined before-
hand.

43

Chapter 5

Simulation Study for
Comparing Estimation
Procedures

As discussed in the previous chapter, applying different numerical methods
together with the Kalman filter can constitute a procedure to estimate both
the latent factors and the parameters in the state-space form of the DNS
model. This chapter will discuss and compare the performance of the gradi-
ent descent method and the EM algorithm. The state-space model is assumed
to be linear Gaussian, and the estimation procedures we discussed all rely
on this assumption. We therefore use synthetic data, which is more appro-
priate compared with real data for the purpose of simulation study. This
chapter is divided into four sections: test case, data preparation, results and
discussion.

5.1 Test Case

We test both gradient descent and EM algorithm on the diagonal case. We
restrict the transition matrix A and the covariance matrices Q and H to be
diagonal, setting their off-diagonal entries all equal to zero. These settings
imply that not only the the deviations of the observed yields across maturities
are uncorrelated, but also the three factors are independent to each other and

44

governed by their own dynamics. The transition equation shown in equation
3.10 is now replaced by:Lt − µLSt − µS

Ct − µC

 =

a11 0 0
0 a22 0
0 0 a33


 lt−1 − µLst−1 − µS
ct−1 − µC

+

ηLtηSt
ηCt

 . (5.1)

On this case, the set of unknowns θ has 20 free parameters in total. The mean
factor vector µ contains 3 parameters (µL, µS, µC), the measurement matrix
Λ contains one parameter (λ), the transition matrix A contains 3 free pa-
rameters (a11, a22, a33) and the transition covariance matrix also Q contains
3 parameters (q11, q22, q33). Given that there are ten maturities, the measure-
ment covariance matrix H contains 10 free parameters (h11, . . . , h1010). We
use index to represent each free parameter θi. The indexes are list in Table
5.1.

Index 1 2 3 4 5 6 7 8 9 10
θi µL µS µC λ a11 a22 a33 q11 q22 q33

Index 11 12 13 14 15 16 17 18 19 20
θi h11 h22 h33 h44 h55 h66 h77 h88 h99 h1010

Table 5.1: Indexes of the free parameters in the set of unknowns θ

5.2 Synthetic Data Preparation

Twenty sets of synthetic data are used in the case study, and each set of
data contains synthetic yields at 100 discrete points in time for ten different
maturities. These sets are generated by using the same set of parameters,
θ = {µ, Λ, A, Q, H}. These parameters are determined by a set of fixed
values, namely the seed values. Each seed value corresponds to one free
parameter θi, and it is set randomly within a appropriated range based on
the observations in the literature. For example, the seed value of the decay
rate λ must be positive, and based on the observations in the literature
and our observed data, it is reasonable to set it less than 1 given that the
maturities are measured in months. To generate such set of synthetic yields,
we firstly generate a set of synthetic factors by using the given parameters

45

Figure 5.1: Plots of synthetic level, slope and curvature factors

based on the transition equation shown in equation 3.13. The initial state
f0 is required, and we set it equal to the seed values for µ. After that, we
use this set of synthetic factors and the given parameters to generate a set of
synthetic yields based on the measurement equation shown in equation 3.11.
Figure 5.1 and 5.2 shows the plots of the synthetic factors and the synthetic
yields respectively. As shown in the figures, the synthetic data generated are
within the appropriate ranges. Moreover, in the later discussion, we regard
the test on one set of synthetic data as one run.

5.3 Results

First of all, we find that the gradient descent is extremely sensitive to the
initial values of the parameters and the value of step size. Given that the
initial values of the parameters are set ideally, close to the seed values, the
gradient descent converges only if the value of step size is sufficiently small.
After trying different values, we find that a value of 10−4 is appropriate one
on the diagonal case. Such small value of the step size results in a very low
speed of convergence, especially on the case that the initial values of the
parameters are far away from the seed values.

In EM algorithm, we use the grid as defined in Section 4.2.3 to find the

46

Figure 5.2: Three-dimensional plot of synthetic yields

best estimate of λ in each iteration. It is worth mentioning that the grid
search within the EM algorithm does slow down the speed of convergence,
but this impact is greatly reduced by using matrix operations instead of
loops. As expected, the EM algorithm converges faster than the gradient
descent regardless of the initial values of the parameters, although its rate of
convergence is slow as well.

We now discuss their performance in term of accuracy. Both methods provide
reasonable results. The sum of squared errors (SSE) for each parameter θi
is good measure of accuracy, which is defined as the sum of the squares of
the differences between the parameter estimate and the corresponding seed
value. According to the box plots of SSE shown in Figures 5.3-5.5, we can see
that the gradient descent gives very small values of SSE for all parameters
and these values do not change a lot when different sets of synthetic data are
used, while the EM algorithm gives large values for some parameters on some
sets of data, such as the parameter θ7 (a33). Hence the gradient methods is
more stable in convergence and has more accurate estimates. By using the
estimated parameter, the estimates of the level, slope and curvature factors
can be obtained. The relevant plots are given in Figures 5.6-5.11. We can see

47

Figure 5.3: Box plots of sum of squared errors given by Gradient descent

that both gradient descent and EM algorithm provide good estimates to the
level and slope with small uncertainly. However, both of perform worse on
the curvature estimation. The EM algorithm fails to estimate it accurately
as shown in Figure. The gradient method is better, providing good estimate
although the 95% confidence interval of it is large.

The estimates and the total sum of the SSE of all the parameters provided
by the two methods in the first five runs are summarized in Tables A.1 and
A.2 respectively in Appendix.

5.4 Discussion

It is not surprising that using numerical methods for maximum likelihood
estimation of the state-space framework of the DNS model may be a chal-
lenging task, because the log-likelihood, as shown in equation 4.28, is a highly
non-linear function and may have many local optimum. However, based on
our simulation study, we find that this task is achievable by either using the
gradient descent method or the EM algorithm. Given appropriate initial set-
tings, we conclude that the gradient descent method is more favourable than
the EM algorithm in term of accuracy and stability.

48

Figure 5.4: Box plots of sum of squared errors given by EM algorithm

Figure 5.5: Box plots of sum of squared errors given by EM algorithm (except
for the 7th parameter

49

Figure 5.6: Synthetic level and estimated level by gradient descent

Figure 5.7: Synthetic slope and estimated slope by gradient descent

50

Figure 5.8: Synthetic curvature and estimated curvature by gradient descent

Figure 5.9: Synthetic level and estimated level by EM algorithm

51

Figure 5.10: Synthetic slope and estimated slope by EM algorithm

Figure 5.11: Synthetic curvature and estimated curvature by EM algorithm

52

Chapter 6

Application

In this chapter, we present a real world application of the dynamic Nelson-
Siegel model, modelling the yields of the U.S. Treasury bills and bonds. The
U.S. Treasury yield curve is one of the most important yield curve both
from theoretical and practical perspectives as discussed in Gurkaynak et al.
(2007) [13]. It is commonly used in interest rate risk management, design
of the interest rate hedging products, and considered as a benchmark for
pricing other securities and assets in the market, because the U.S. Treasury
market is the largest and most liquid government securities market in the
world, and the U.S. Treasury securities are almost default-free. We build a
yields-only model for the data. The model estimation is achieved by using
the gradient descent method together with the Kalman filter. Unlike the
simulation study in Chapter 5, we assume that the transition matrix A and
covariance matrices Q and H in the state-space form of the DNS model
are all non-diagonal. The chapter will start with the data section, which is
followed by the results and discussion section.

6.1 Real Data Example

The data for the U.S. Treasury yields is taken from the U.S. Treasury database
on Quandl, and the data is validated by the U.S. Treasury Department. We
use end-of-month yields of bills and bonds with maturities of 3, 6, 12, 24, 36,
60, 84 and 120 months. The sample period is from January 1990 to August

53

2015. Early in Chapter 1, we have plotted the data in three dimensions in
Figure 1.1. The descriptive statistics of the data is given in Table 6.1.

Maturity (months) Mean Std. Dev. ρ̂(1) ρ̂(12)
3 3.0277 2.3428 0.9857 0.7176
6 3.1603 2.3786 0.9863 0.7212
12 3.2938 2.3780 0.9864 0.7366
24 3.6170 2.3804 0.9852 0.7599
36 3.8523 2.3069 0.9840 0.7695
60 4.2828 2.1303 0.9824 0.7779
84 4.6083 1.9936 0.9812 0.7734
120 4.8619 1.8351 0.9794 0.7634

Table 6.1: Descriptive Statistics of the given U.S. Treasury yields data

6.2 Results and Discussion

The estimates of the transition matrix A and the factor means µ are given
in Table 6.2. The values in the diagonal entries of A are 0.7858, 0.6278 and
0.6584, which are much larger compared with the values in the off-diagonal
entries. This indicates that the value of each factor is mainly governed by
its own dynamics. However, the off-diagonal values are not small enough to
be ignored, which implies the possibility of correlation between factors. The
estimate of the covariance matrix of the process noises Q is given in Table
6.3.

Furthermore, the estimates of the level, slope and curvature factor over time
are plotted in Figure 6.1. It is clearly show that the estimated level factor has
a deceasing trend, and the estimated slope and curvature have similar shape.
In order to see how well the model performs, we plot both the estimated yield
and the actual yield over time in one figure for each maturity. The plots are
shown in Figure 6.2-6.9. As we can see from the plots, the model fits the
data very well for the bonds with maturities of 10-year, 7-year and 3-month.
For the rest of the bonds, the model is still acceptable, because it captures
main movements of the yields.

54

Figure 6.1: Synthetic curvature and estimated curvature for EM algorithm
on non-diagonal case

Figure 6.2: Plots of actual and estimated yield of 3-month US Treasury

55

Figure 6.3: Plots of actual and estimated yield of 6-month US Treasury

Figure 6.4: Plots of actual and estimated yield of 1-year US Treasury

56

Figure 6.5: Plots of actual and estimated yield of 2-year US Treasury

Figure 6.6: Plots of actual and estimated yield of 3-year US Treasury

57

Figure 6.7: Plots of actual and estimated yield of 5-year US Treasury

Figure 6.8: Plots of actual and estimated yield of 7-year US Treasury

58

Â Lt−1 St−1 Ct−1 µ̂
Lt 0.7858 -0.1345 -0.1278 0.1817
St -0.1822 0.6278 0.0714 0.9644
Ct -0.1503 0.0983 0.6584 0.2804

Table 6.2: Estimated transition matrix of the state vector (Â) and their
means (µ̂)

Q̂ Lt St Ct

Lt 0.8674 0.1977 -0.0036
St -0.1977 0.5899 0.3284
Ct -0.0036 0.3284 0.0865

Table 6.3: Estimated covariance matrix of the state vector (Q̂)

Figure 6.9: Plots of actual and estimated yield of 10-year US Treasury

59

Chapter 7

Conclusion

The dissertation studies the dynamic Nelson-Siegel approach for yield curve
modelling and focuses on the model estimation based on the state-space
structure of the DNS model. The motivation to use the state-space frame-
work is that the DNS model can be easily extended to incorporate macroe-
conomic variables under this framework. Following the work of Diebold et.
al (2006) [10], we have provided a general form of the extended model that
can include a set of macroeconomic variables.

On model estimation, we have derived the optimal estimation of the latent
factors in a recursive fashion and associated it to the well-known Kalman
filter algorithm [18]. We have also completed the implementation of the
gradient-based methods and the EM algorithm for maximum likelihood esti-
mation of the unknown parameters in the state-space model. After that, we
have performed a simulation study demonstrating that the gradient descent
method is a better approach on the compared with the EM algorithm in
term of the accuracy of the estimation and the stability of the convergence.
We have also applied the gradient descent method to estimate the dynamic
Nelson-Siegel model of the U.S. Treasury yield curve. The model fits the
data quite well, which further demonstrates the appropriateness of the dy-
namic Nelson-Siegel model and also the practicability of gradient descent
method.

The low speed of convergence is significant weakness of our gradient descent
method. We believe that it is the constant, extremely small step size that

60

leads to the low rate. We can foresee that the gradient descent may not
work well or take a extremely long time when there are much larger set of
parameters in the model. One possibility to speed up the gradient descent
would be using the time-varying step size instead of the fixed one. In addition,
it would be also interesting to implement the EM algorithm without using
the grid search method. Using the grid search method to estimate the rate
of decay is a straightforward, however, some smarter and more accurate
methods may be available, which would improve the performance of the EM
algorithm.

61

Bibliography

[1] H Peter Boswijk. “Cointegration analysis of the dynamic Nelson-Siegel
model using the wild bootstrap”. In: Aenorm 21.81 (2013), pp. 30–34.

[2] John Y Campbell. “Some lessons from the yield curve”. In: (1995).
[3] John Y Campbell. “Stock returns and the term structure”. In: Journal

of financial economics 18.2 (1987), pp. 373–399.
[4] Jens HE Christensen, Francis X Diebold, and Glenn D Rudebusch.

“The affine arbitrage-free class of Nelson–Siegel term structure mod-
els”. In: Journal of Econometrics 164.1 (2011), pp. 4–20.

[5] John C Cox, Jonathan E Ingersoll, and Stephen A Ross. “A theory
of the term structure of interest rates”. In: Econometrica 53.2 (1985),
pp. 385–407.

[6] Michiel De Pooter, Francesco Ravazzolo, and Dick JC Van Dijk. “Term
structure forecasting using macro factors and forecast combination”. In:
FRB International Finance Discussion Paper 993 (2010).

[7] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum
likelihood from incomplete data via the EM algorithm”. In: Journal of
the royal statistical society. Series B (methodological) (1977), pp. 1–38.

[8] Francis X Diebold and Canlin Li. “Forecasting the term structure of
government bond yields”. In: Journal of econometrics 130.2 (2006),
pp. 337–364.

[9] Francis X Diebold, Canlin Li, and Vivian Z Yue. “Global yield curve dy-
namics and interactions: a dynamic Nelson–Siegel approach”. In: Jour-
nal of Econometrics 146.2 (2008), pp. 351–363.

[10] Francis X Diebold, Glenn D Rudebusch, and S Boragan Aruoba. “The
macroeconomy and the yield curve: a dynamic latent factor approach”.
In: Journal of econometrics 131.1 (2006), pp. 309–338.

62

[11] Robert Engle and Mark Watson. “A one-factor multivariate time se-
ries model of metropolitan wage rates”. In: Journal of the American
Statistical Association 76.376 (1981), pp. 774–781.

[12] Arturo Estrella and Frederic S Mishkin. “The yield curve as a predictor
of US recessions”. In: Current Issues in Economics and Finance 2.7
(1996).

[13] Refet S Gürkaynak, Brian Sack, and Jonathan H Wright. “The US
Treasury yield curve: 1961 to the present”. In: Journal of Monetary
Economics 54.8 (2007), pp. 2291–2304.

[14] Andrew C Harvey. Forecasting, structural time series models and the
Kalman filter. Cambridge university press, 1990.

[15] David Heath, Robert Jarrow, Andrew Morton, et al. “Bond pricing and
the term structure of interest rates: A new methodology for contingent
claims valuation”. In: Econometrica 60.1 (1992), pp. 77–105.

[16] Thomas SY Ho and Sang-Bin Lee. “Term structure movements and
pricing interest rate contingent claims”. In: Journal of Finance (1986),
pp. 1011–1029.

[17] John Hull and Alan White. “Pricing interest-rate-derivative securities”.
In: Review of financial studies 3.4 (1990), pp. 573–592.

[18] Rudolph Emil Kalman. “A new approach to linear filtering and predic-
tion problems”. In: Journal of Fluids Engineering 82.1 (1960), pp. 35–
45.

[19] Francis A Longstaff, Sanjay Mithal, and Eric Neis. “Corporate yield
spreads: Default risk or liquidity? New evidence from the credit default
swap market”. In: The Journal of Finance 60.5 (2005), pp. 2213–2253.

[20] Charles R Nelson and Andrew F Siegel. “Parsimonious modeling of
yield curves”. In: Journal of business (1987), pp. 473–489.

[21] Kaare Brandt Petersen, Michael Syskind Pedersen, et al. “The matrix
cookbook”. In: Technical University of Denmark 7 (2008), p. 15.

[22] Monika Piazzesi. “Bond yields and the Federal Reserve”. In: Journal
of Political Economy 113.2 (2005), pp. 311–344.

[23] Robert H Shumway and David S Stoffer. “An approach to time series
smoothing and forecasting using the EM algorithm”. In: Journal of
time series analysis 3.4 (1982), pp. 253–264.

[24] Gregorio A Vargas. “Macroeconomic Determinants of the Movement
of the Yield Curve”. In: (2005).

[25] Oldrich Vasicek. “An equilibrium characterization of the term struc-
ture”. In: Journal of financial economics 5.2 (1977), pp. 177–188.

63

[26] Paul Veerhuis. “Arbitrage free Nelson Siegel yield curve modelling: An
application to assess unconventional monetary policy”. In: (2011).

[27] Mark W Watson and Robert F Engle. “Alternative algorithms for the
estimation of dynamic factor, mimic and varying coefficient regression
models”. In: Journal of Econometrics 23.3 (1983), pp. 385–400.

[28] Wei-Choun Yu and Eric Zivot. “Forecasting the term structures of trea-
sury and corporate yields: Dynamic nelson-siegel models evaluation”.
In: International Journal of Forecasting, Forthcoming (2010).

64

Appendix A

Appendix

A.1 Tables

65

Table A.1: Estimates in the first 5 runs by gradient descent on synthetic
data
Parameter Seed Run 1 Run 2 Run 3 Run 4 Run 5

muL 3.300500 3.287002 3.286026 3.304652 3.270966 3.307992
muS -0.373100 -0.384877 -0.379122 -0.361052 -0.368788 -0.369788
muC 0.815500 0.812668 0.822000 0.820519 0.813916 0.826176

lambda 0.068900 0.056770 0.073876 0.064927 0.069880 0.091881
a11 0.120200 0.124882 0.150336 0.120859 0.139182 0.090376
a22 0.571200 0.551297 0.551031 0.570048 0.561581 0.610474
a33 0.412800 0.416339 0.413878 0.409435 0.411208 0.413454
q11 0.987000 0.995510 0.991587 0.971882 0.979287 0.994210
q22 0.759600 0.728859 0.731841 0.720402 0.730234 0.746043
q33 0.657200 0.654293 0.654944 0.654062 0.656400 0.655387
h11 0.603900 0.535649 0.535572 0.552871 0.534038 0.543267
h22 0.176900 0.000188 0.012597 0.015197 -0.001281 -0.002099
h33 0.307500 0.108621 0.076527 0.146431 0.146492 0.164139
h44 0.713180 0.668365 0.666790 0.703779 0.663343 0.675899
h55 0.595400 0.535137 0.526401 0.533483 0.539919 0.532873
h66 1.046800 1.059474 1.046171 1.053730 1.030323 1.043505
h77 0.198000 0.037436 0.030027 0.032693 0.028959 0.023033
h88 0.327700 0.132851 0.134231 0.122093 0.139791 0.150292
h99 0.238300 0.056349 0.052950 0.054939 0.055975 0.061013

h1010 0.229600 0.054284 0.065291 0.050900 0.039992 0.059026
SSE n/a 0.210760 0.221349 0.195812 0.203737 0.187574

66

Table A.2: Estimates of the first 5 runs by EM algorithm on synthetic data
Parameter Seed Run 1 Run 2 Run 3 Run 4 Run 5

muL 3.300500 3.184170 3.223801 3.264512 3.062920 3.417821
muS -0.373100 -0.560267 -0.614724 -0.031318 -0.267500 -0.346331
muC 0.815500 0.860076 0.980913 0.892600 0.857178 0.581014

lambda 0.068900 0.041800 0.100000 0.043200 0.065800 0.100000
a11 0.120200 0.159306 0.267162 0.132787 0.133428 -0.058474
a22 0.571200 0.424823 0.371992 0.505335 0.485447 0.684414
a33 0.412800 0.000012 0.149691 0.332479 0.157551 0.355739
q11 0.987000 1.060286 1.025415 0.829306 0.917839 1.072921
q22 0.759600 0.498631 0.594907 0.523702 0.615049 0.746581
q33 0.657200 0.000028 0.000266 0.000004 0.000001 0.000000
h11 0.603900 0.319575 0.394623 0.386281 0.326597 0.371895
h22 0.176900 0.024040 0.000000 0.018172 0.004351 0.000000
h33 0.307500 0.112337 0.081869 0.111809 0.132935 0.145034
h44 0.713180 0.468665 0.477821 0.700884 0.448682 0.521508
h55 0.595400 0.447656 0.344191 0.359369 0.393313 0.358640
h66 1.046800 1.244902 1.063380 1.202943 0.910638 1.020927
h77 0.198000 0.020800 0.000000 0.066552 0.004415 0.000000
h88 0.327700 0.109796 0.140428 0.112118 0.132408 0.138102
h99 0.238300 0.060842 0.092036 0.089817 0.072956 0.089026

h1010 0.229600 0.057979 0.113667 0.016366 0.069230 0.090605
SSE n/a 1.152969 1.037147 0.970445 0.994766 0.879624

67

A.2 Matlab Codes

%%%%% Generate s y n t h e t i c data %%%%%
clear a l l
clear
clc

randn(’ seed ’ , 3)
rand (’ seed ’ , 3)

f i l ename = ’ seeds . x l sx ’ ;
seeddata = x l s r e ad (f i l ename) ;

s eeds = seeddata (: , 1) ;
tau = seeddata (1 : 1 0 , 2) ;
tau = tau ’ ;

% number o f m a t u r i t i e s
N = length (tau) ;
% number o f f a c t o r s
nf = 3 ;
% number o f parameters
np = 20 ;
T = 100 ;

% genera te s y t h e t i c parameter
mu = seeds (1 : 3) ;
l = seeds (4) ;
L = calc Lambda3 (seeds (4) , tau ,N) ;
A = diag (s eeds (5 : 7)) ;
Q = diag (s eeds (8 : 1 0)) ;
H = diag (s eeds (1 1 : np)) ;

runs = 20 ;
StoreSynthf = c e l l (runs , 1) ;
for r =1: runs

68

% genera te s y t h e t i c s t a t e f
synth f = zeros (nf ,T) ;
synth f (: , 1) = seeds (1 : nf) ;
for i =2:T

synth f (: , i) = A∗ synth f (: , i −1)+(eye (nf)−A)∗mu
+normrnd (0 , diag (Q)) ;

end
StoreSynthf { r} = synth f ;

end

StoreSynthy = c e l l (runs , 1) ;
for r =1: runs

% genera te s y t h e t i c data y
synthy = zeros (N,T) ;
for j =1:T

synthy (: , j) = L∗StoreSynthf { r } (: , j)
+ normrnd (0 , diag (H)) ;

end
StoreSynthy{ r} = synthy ;

end

pf1 = seeds (1 : 3) ;
pP1 = diag (s eeds (5 : 7)) ;
theta0 . l = l ;
theta0 . L = L ;
theta0 .A = A;
theta0 .Q = Q;
%t h e t a 0 .Q = 0.4∗ eye (nf) ;
theta0 .H = H;
theta0 .mu = mu;

%%%%% EM and g r a d i e n t method on s y n t h e t i c data %%%%%
StoreGD = c e l l (runs , 1) ;
StoreEM = c e l l (runs , 1) ;
for r =1: runs

69

d i sp l ay (r)
GD synth = GradientDescent (StoreSynthy{ r } ,

tau , pf1 , pP1 , theta0 , 0 . 0 0 0 0 1 ,
0 . 0 0 1 , 1 0 0 0) ;

StoreGD{ r} = [GD synth .mu; GD synth . l ;
diag (GD synth .A) ;
diag (GD synth .Q) ;
diag (GD synth .H)] ;

EM synth = ExpectationMaximization (StoreSynthy{ r } ,
tau , pf1 , pP1 , theta0 ,
0 . 0001 , 1000) ;

StoreEM{ r} = [EM synth .mu; EM synth . l ;
diag (EM synth .A) ;
diag (EM synth .Q) ;
diag (EM synth .H)] ;

end

StoreGD matrix = reshape (ce l l 2mat (StoreGD) , 2 0 , 2 0) ;
StoreEM matrix = reshape (ce l l 2mat (StoreEM) , 2 0 , 2 0) ;

s e eds mat r ix = repmat (seeds , 1 , 2 0) ;
% sum of squared error
GD sse = sum(((StoreGD matrix − s e eds matr ix) . ˆ 2) , 1) ;
EM sse = sum(((StoreEM matrix − s e eds matr ix) . ˆ 2) , 1) ;

%%%%% Implementation o f g r a d i e n t descent (d i a g o n a l) %%%%%
function theta = GradientDescent (Y, tau , p f i n i t , pP in i t ,

t h e t a i n i t , s t e p s i z e , l t o l , maxiter , l t o l 2)

% d e f i n e dimensions
T = s ize (Y, 2) ;
N = s ize (Y, 1) ;

% number o f l a t e n t f a c t o r s
nf = s ize (p f i n i t , 1) ;

70

np = nf + 1 + nf + nf + N;

% i n i t i a l i z e the unknown parameters
theta . l = t h e t a i n i t . l ;
theta . L= t h e t a i n i t . L ;
theta .A = t h e t a i n i t .A;
theta .mu = t h e t a i n i t .mu;
theta .H = t h e t a i n i t .H;
theta .Q = t h e t a i n i t .Q;

% i n i t i a l i z e the unknown component
param .mu = theta .mu;
param . l = theta . l ;
param .A = diag (theta .A) ;
param .Q = diag (theta .Q) ;
param .H = diag (theta .H) ;

% i n t i a l i z e the parameter components in v e c t o r
po = [param .mu’ , param . l , param .A’ , param .Q’ , param .H ’] ;
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;
Lo=LogLike l ihood (Y, storeKF .W, storeKF . e) ;
Ln=2∗Lo ;

% i n i t i a l i z e the score
s = Score (Y, tau , param . l , p f i n i t , pP in i t , theta) ;
pn = po + s t e p s i z e ∗ s ;

% implementat ion o f g r a d i e n t descent
n i t e r = 1 ;
t ic ;
while abs (Ln−Lo) > l t o l 2 && norm(pn−po) > l t o l

&& (n i t e r<=maxiter) ,
d i sp l ay (norm(pn−po)) ;
po = pn ;
Lo = Ln ;

theta .mu = po (1 : 3) ’ ;
theta . l = po (4) ;

71

theta . L= calc Lambda3 (po (4) , tau , N) ;
theta .A = diag (po (5 : 7)) ;
theta .Q = diag (po (8 : 1 0)) ;
theta .H = diag (po (1 1 : np)) ;
%d i s p l a y (t h e t a) ;
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;
Ln = LogLike l ihood (Y, storeKF .W, storeKF . e) ;

s = Score (Y, tau , po (4) , p f i n i t , pP in i t , theta) ;

pn = po + s t e p s i z e ∗ s ;
d i sp l ay (n i t e r) ;
n i t e r = n i t e r + 1 ;

end
toc ;
param = pn ;
mu = param (1 : 3) ’ ;
d i sp l ay (mu) ;
l = param (4) ;
d i sp l ay (l) ;
L = calc Lambda3 (param (4) , tau , N) ;
d i sp l ay (L) ;
A = diag (param (5 : 7)) ;
d i sp l ay (A) ;
Q = diag (param (8 : 1 0)) ;
d i sp l ay (Q) ;
H = diag (param (1 1 : np)) ;
d i sp l ay (H) ;
return

%%%%% Implementation o f the EM (d i a g o n a l) %%%%%
function theta = ExpectationMaximization (Y,

tau , p f i n i t , pP in i t , t h e t a i n i t , l t o l , maxiter)

% d e f i n e dimensions
T = s ize (Y, 2) ;

72

N = s ize (Y, 1) ;

% number o f l a t e n t f a c t o r s
nf = s ize (p f i n i t , 1) ;

% i n i t i a l i z e the unknown parameters
theta . l = t h e t a i n i t . l ;
theta . L= t h e t a i n i t . L ;
theta .A = t h e t a i n i t .A;
theta .mu = t h e t a i n i t .mu;
theta .H = t h e t a i n i t .H;
theta .Q = t h e t a i n i t .Q;

% i n i t i a l i z e the log− l i k e l i h o o d
storeKF = StoreKF (Y, p f i n i t , pP in i t , t h e t a i n i t) ;
Ln = LogLike l ihood (Y, storeKF .W, storeKF . e) ;
Lo = 2∗Ln ;

% EM algor i thm
n i t e r = 0 ;
t ic ;
while (abs (100∗(Ln−Lo)/Lo)> l t o l) && (n i t e r<=maxiter) ,
%n i t e r
%pause (0 . 1)

% e x t r a c t s t a t e v e c t o r o p t i m a l l y us ing Kalman f i l t e r
%(r o u g l y the E−s t e p)
%d i s p l a y (t h e t a .A) ;
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;
fmatr ix = zeros (nf ,T) ;

for t =1:T
f = storeKF . f { t } ;
fmatr ix (: , t) = f ;
end
%d i s p l a y (f m a t r i x) ;

% c o n d i t i o n a l on the e x t r a c t s t a t e vec tor , run
% seeming ly u n r e l a t e d r e g r e s s i o n and v e c t o r

73

% a u t o r e g r e s s i o n to update the unknown parameters
% (rough ly the M s t e p)
grid = 0 . 0 1 : 0 . 0 0 0 1 : 0 . 1 ;
[lambda , L ,H] = GridSearchLambda (Y, tau , grid , fmatr ix) ;

theta . l = lambda ;
%d i s p l a y (t h e t a . l) ;
theta . L = L ;
theta .H = H;
theta .H = diag (diag (theta .H)) ;
%d i s p l a y (t h e t a . L) ;
%d i s p l a y (t h e t a .H)

% run v e c t o r a u t o r e g r s s i o n
theta .mu = mean(fmatr ix , 2) ;
% e s t i m a t e s parameters o f VAR model by
% using maximum l i k e l i h o o d e s t i m a t i o n
SpecX = vgxset (’n ’ , 3 , ’nAR ’ , 1) ;
%d i s p l a y (SpecX) ;
Covartype = ’ d iagona l ’ ;
f = fmatr ix − repmat (theta .mu, 1 ,T) ;
EstSpec = vgxvarx (SpecX , f ’ , Covartype) ;
%v g x d i s p (EstSpec) ;

% update A,Q and mu
theta .A = EstSpec .AR{1} ;
theta .A = diag (diag (theta .A)) ;
%d i s p l a y (t h e t a .A) ;
theta .Q = EstSpec .Q;
theta .Q = diag (diag (theta .Q)) ;
%d i s p l a y (t h e t a .Q) ;
%d i s p l a y (t h e t a) ;

% update the log− l i k e l i h o o d
Lo = Ln ;
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;
%d i s p l a y (storeKF .W{1}) ;
Ln = LogLike l ihood (Y, storeKF .W, storeKF . e) ;

74

%pause (0 . 1)
%f i g = g c f ;
%p l o t (n i t e r , Ln)
d i sp l ay (Ln) ;
d i sp l ay (n i t e r)
n i t e r = n i t e r + 1 ;

end
toc ;
% return the maximum log− l i k e l i h o o d
l = theta . l ;
d i sp l ay (l) ;
L = theta . L ;
d i sp l ay (L) ;
A = theta .A;
d i sp l ay (A) ;
mu = theta .mu;
d i sp l ay (mu) ;
H = theta .H;
d i sp l ay (H) ;
Q = theta .Q;
d i sp l ay (Q) ;
d i sp l ay (n i t e r −1);
d i sp l ay (Ln) ;

return

%%%%% Implementation o f g r a d i e n t descent (f u l l) %%%%%
function theta = GradientDescentFul l (Y, tau , p f i n i t ,

pP in i t , t h e t a i n i t , s t e p s i z e , l t o l , maxiter)

% d e f i n e dimensions
T = s ize (Y, 2) ;
N = s ize (Y, 1) ;

% number o f l a t e n t f a c t o r s
nf = s ize (p f i n i t , 1) ;

75

np = nf + 1 + 9 + 6 + N + (N∗N−N) / 2 ;

% i n i t i a l i z e the unknown parameters
theta . l = t h e t a i n i t . l ;
theta . L= t h e t a i n i t . L ;
theta .A = t h e t a i n i t .A;
theta .mu = t h e t a i n i t .mu;
theta .H = t h e t a i n i t .H;
theta .Q = t h e t a i n i t .Q;

% i n i t i a l i z e the unknown components
param .mu = theta .mu;
param . l = theta . l ;
param .A = [diag (theta .A) ’ , diag (theta .A, 1) ’ ,

diag (theta .A, 2) ’ , diag (theta .A,−1) ’ ,
diag (theta .A, −2) ’] ;

param .Q = [diag (theta .Q) ’ , diag (theta .Q, 1) ’ ,
diag (theta .Q, 2) ’] ;

param .H = diag (theta .H) ’ ;
for i =1:N−1

param .H = [param .H, diag (theta .H, i) ’] ;
end

% i n t i a l i z e the parameter components in v e c t o r
po = [param .mu’ , param . l , param .A, param .Q, param .H] ;
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;
%Lo = LogLike l ihood (Y, storeKF .W, storeKF . e) ;
LogLike l ihood (Y, storeKF .W, storeKF . e)
% i n i t i a l i z e the score
s = ScoreFu l l (Y, tau , param . l , p f i n i t , pP in i t , theta) ;
pn = po + s t e p s i z e ∗ s ;
%Ln = 1.1∗Lo ;

% implementat ion o f g r a d i e n t descent
n i t e r = 1 ;
t ic ;
while norm(pn−po) > l t o l && (n i t e r<=maxiter) ,

d i sp l ay (norm(pn−po)) ;

76

po = pn ;
%Lo = Ln ;

theta .mu = po (1 : 3) ’ ;
theta . l = po (4) ;
theta . L= calc Lambda3 (po (4) , tau , N) ;
theta .A = diag (po (5 :7))+ diag (po (8 : 9) , 1)

+diag (po (10) ,2)+ diag (po (11:12) ,−1)
+diag (po (13) ,−2) ;

theta .Q = diag (po (14 :16))+ diag (po (1 7 : 1 8) , 1)
+diag (po (19) ,2)+ diag (po (17:18) ,−1)
+diag (po (19) ,−2) ;

h = po (2 0 : np) ;
c = N: −1 :1 ;
h c e l l = mat2ce l l (h , 1 , c) ;
theta .H = diag (h c e l l {1}) ;
for j =1:N−1

theta .H = theta .H + diag (h c e l l { j +1} , j)
+ diag (h c e l l { j +1},− j) ;

end

%d i s p l a y (t h e t a) ;
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;
%Ln = LogLike l ihood (Y, storeKF .W, storeKF . e) ;
LogLike l ihood (Y, storeKF .W, storeKF . e)

s = ScoreFu l l (Y, tau , po (4) , p f i n i t , pP in i t , theta) ;

pn = po + s t e p s i z e ∗ s ;
d i sp l ay (n i t e r) ;
n i t e r = n i t e r + 1 ;

end
toc ;
param = pn ;
mu = param (1 : 3) ’ ;
d i sp l ay (mu) ;
l = param (4) ;
d i sp l ay (l) ;

77

L = calc Lambda3 (param (4) , tau , N) ;
d i sp l ay (L) ;
A = diag (param (5 :7))+ diag (param (8 : 9) , 1)

+diag (param (10) ,2)+ diag (param (11:12) ,−1)
+diag (param (13) ,−2) ;

d i sp l ay (A) ;
Q = diag (param (14 :16))+ diag (param (1 7 : 1 8) , 1)

+diag (param (19) ,2)+ diag (param (17:18) ,−1)
+diag (param (19) ,−2) ;

d i sp l ay (Q) ;
h = param (2 0 : np) ;
c = N: −1 :1 ;
h c e l l = mat2ce l l (h , 1 , c) ;
H = diag (h c e l l {1}) ;
for j =1:N−1

H = H + diag (h c e l l { j +1} , j) + diag (h c e l l { j +1},− j) ;
end
d i sp l ay (H) ;

return

%%%%% Implementation o f d i s c r e t e Kalman F i l t e r %%%%%
function Store = StoreKF (y , p f i n i t , pP in i t , theta)

% number o f d i s c r e t e time p o i n t s
T = s ize (y , 2) ;

% i n i t i a l i z e the s e t s f o r s t o r i n g r e s u l t s
Store . pf = c e l l (T, 1) ;
Store . pf {1} = p f i n i t ;

Store . pP = c e l l (T, 1) ;
Store . pP{1} = pP in i t ;

Store . f = c e l l (T, 1) ;
K = pP in i t ∗ theta . L ’∗ inv (theta . L∗ pP in i t ∗ theta . L’+ theta .H) ;
f = p f i n i t + K∗(y (: , 1) − theta . L∗ p f i n i t) ;

78

Store . f {1} = f ;

Store .P = c e l l (T, 1) ;
P = pP in i t − K∗ theta . L∗ pP in i t ;
Store .P{1} = P;

Store .W = c e l l (T, 1) ;
Store .W{1} = theta .H + theta . L∗ pP in i t ∗ theta . L ’ ;

Store . e = c e l l (T, 1) ;
Store . e{1} = y (: , 1) − theta . L∗ p f i n i t ;

for t =2:T
% P r e d i c t i o n s t a g e
f = theta .A∗ f
+ (eye (length (f))− theta .A)∗ theta .mu;
P = theta .A∗P∗ theta .A’ + theta .Q;
% Store the p r e d i t i v e r e s u l t s
Store . pf { t} = f ;
Store . pP{ t} = P;
Store .W{ t} = theta .H + theta . L∗P∗ theta . L ’ ;
Store . e{ t} = y (: , t) − theta . L∗ f ;

% Compute Kalman gain f a c t o r :
K = P∗ theta . L ’∗ inv (theta . L∗P∗ theta . L’+ theta .H) ;

% Measurement update s t a g e
f = f + K∗(y (: , t) − theta . L∗ f) ;
P = P − K∗ theta . L∗P;
% Store the updated r e s u l t s
Store . f { t} = f ;
Store .P{ t} = P;

end
return

%%%%% Computation o f Log− l i k e l i h o o d %%%%%
function L = LogLike l ihood (Y, W store , e s t o r e)

79

% d e f i n e dimensions
N = s ize (Y, 1) ;
T = s ize (Y, 2) ;

% i n i t i a l i z e the log− l i k e l i h o o d
l = 0 ;

for t =1:T
l = l −0.5∗(N∗ log (2∗pi)+
log (abs (det (W store{ t })))
+e s t o r e { t } ’∗ inv (W store{ t })∗ e s t o r e { t }) ;

end
L = l ;
return

%%%%% Computation o f Score (d i a g o n a l)%%%%%
function s= Score (Y, tau , lambda , p f i n i t , pP in i t , theta)

N = s ize (Y, 1) ;
T = s ize (Y, 2) ;
nf = length (p f i n i t) ;
np = nf + 1 + nf + nf + N;

% d e r i v a t i v e s o f the unknown parameters
dmu = calc dmu (nf , np) ;
dL = ca lc dL (tau , lambda , nf , np) ;
dA = calc dA (nf , np) ;
dQ = calc dQ (nf , np) ;
dH = calc dH (N, np , nf) ;

% r e s u l t s o f Kalman f i l t e r
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;
s t o r e f = storeKF . f ;
s to r e P = storeKF .P;
s t o r e p f = storeKF . pf ;
s tore pP = storeKF . pP ;

80

store W = storeKF .W;
s t o r e e = storeKF . e ;

s t o r e d p f = c e l l (T, 1) ;
store dpP = c e l l (T, 1) ;
s t o r e d f = c e l l (T, 1) ;
s tore dP = c e l l (T, 1) ;
store dW = c e l l (T, 1) ;
s t o r e d e = c e l l (T, 1) ;
s t o r e d l = c e l l (T, 1) ;

% at time=1
s t o r e d p f {1} = zeros (3 , 1 , np) ;
store dpP {1} = zeros (3 , 3 , np) ;

de i = zeros (N, 1 , np) ;
for i =1:np

de i (: , : , i) = c a l c d e (s t o r e d p f { 1 } (: , : , i) ,
dL (: , : , i) , theta . L , s t o r e p f {1}) ;

end
s t o r e d e {1} = de i ;

dWi = zeros (N,N, np) ;
for i =1:np

dWi (: , : , i) = calc dW (dL (: , : , i) ,
s tore dpP { 1 } (: , : , i) ,dH (: , : , i) ,
theta . L , s tore pP {1}) ;

end
store dW{1} = dWi ;

d f i = zeros (nf , 1 , np) ;
for i =1:np

d f i (: , : , i) = c a l c d f (s t o r e d p f { 1 } (: , : , i) ,
s tore dpP { 1 } (: , : , i) , dL (: , : , i) , store dW { 1 } (: , : , i) ,
s t o r e d e { 1 } (: , : , i) , theta . L , s t o r e e {1} ,
store W {1} , s tore pP {1}) ;

end

81

s t o r e d f {1} = d f i ;

dPi = zeros (nf , nf , np) ;
for i =1:np

dPi (: , : , i) = ca lc dP (store dpP { 1 } (: , : , i) ,
dL (: , : , i) , store dW { 1 } (: , : , i) , theta . L , store W {1} ,
s tore pP {1}) ;

end
s tore dP {1} = dPi ;

d l i = zeros (1 , 1 , np) ;
for i =1:np

d l i (: , : , i) = −0.5∗ trace (inv (store W {1})
∗ store dW { 1 } (: , : , i)
∗(eye (N)−inv (store W {1})∗ s t o r e e {1}∗ s t o r e e {1} ’))
−s t o r e d e { 1 } (: , : , i) ’∗ inv (store W {1})∗ s t o r e e {1} ;

end
s t o r e d l {1} = d l i ;

for t =2:T
for i =1:np

store dpP { t } (: , : , i) = calc dpP (dA (: , : , i) ,
s tore dP {t −1} (: , : , i) ,
dQ (: , : , i) , theta .A, s to r e P {t−1});
s t o r e d p f { t } (: , : , i) = c a l c d p f (dA (: , : , i) ,
s t o r e d f {t −1} (: , : , i) ,
dmu (: , : , i) , theta .A, s t o r e f {t−1} , theta .mu) ;
store dW{ t } (: , : , i) = calc dW (dL (: , : , i) ,
s tore dpP { t } (: , : , i) ,dH (: , : , i) ,
theta . L , s tore pP { t }) ;
s t o r e d e { t } (: , : , i) = c a l c d e (s t o r e d p f { t } (: , : , i) ,
dL (: , : , i) , theta . L , s t o r e p f { t }) ;
s t o r e d l { t } (: , : , i) = −0.5∗ trace (inv (store W{ t })
∗ store dW{ t } (: , : , i)∗ (eye (N)−inv (store W{ t })
∗ s t o r e e { t }∗ s t o r e e { t } ’))− s t o r e d e { t } (: , : , i) ’
∗ inv (store W{ t })∗ s t o r e e { t } ;

s tore dP { t } (: , : , i) = ca lc dP (store dpP { t } (: , : , i) ,

82

dL (: , : , i) , store dW{ t } (: , : , i) , theta . L ,
store W{ t } , s tore pP { t }) ;
s t o r e d f { t } (: , : , i) = c a l c d f (s t o r e d p f { t } (: , : , i) ,
s tore dpP { t } (: , : , i) ,
dL (: , : , i) , store dW{ t } (: , : , i) ,
s t o r e d e { t } (: , : , i) , theta . L , s t o r e e { t } ,
store W{ t } , s tore pP { t }) ;

end
end

d l i m a t r i x = zeros (T, np) ;
for j =1:T

d l i m a t r i x (j , :) = s t o r e d l { j } ;
end

% sum up each column of d l t to o b t a i n d l
s = sum(d l i mat r i x , 1) ;
return

%%%%% Implementation o f Score (F u l l) %%%%%
function s= ScoreFu l l (Y, tau , lambda , p f i n i t , pP in i t , theta)

N = s ize (Y, 1) ;
T = s ize (Y, 2) ;
nf = length (p f i n i t) ;
np = nf + 1 + 9 + 6 + N + (N∗N−N) / 2 ;

% d e r i v a t i v e s o f the unknown parameters
dmu = calc dmu (nf , np) ;
dL = ca lc dL (tau , lambda , nf , np) ;
dA = ca lc dAFul l (nf , np) ;
dQ = ca lc dQFul l (nf , np) ;
dH = ca lc dHFul l (N, np , nf) ;

% r e s u l t s o f Kalman f i l t e r
storeKF = StoreKF (Y, p f i n i t , pP in i t , theta) ;

83

s t o r e f = storeKF . f ;
s to r e P = storeKF .P;
s t o r e p f = storeKF . pf ;
s tore pP = storeKF . pP ;
store W = storeKF .W;
s t o r e e = storeKF . e ;

s t o r e d p f = c e l l (T, 1) ;
store dpP = c e l l (T, 1) ;
s t o r e d f = c e l l (T, 1) ;
s tore dP = c e l l (T, 1) ;
store dW = c e l l (T, 1) ;
s t o r e d e = c e l l (T, 1) ;
s t o r e d l = c e l l (T, 1) ;

% at time=1
s t o r e d p f {1} = zeros (3 , 1 , np) ;
store dpP {1} = zeros (3 , 3 , np) ;

de i = zeros (N, 1 , np) ;
for i =1:np

de i (: , : , i) = c a l c d e (s t o r e d p f { 1 } (: , : , i) , dL (: , : , i) ,
theta . L , s t o r e p f {1}) ;

end
s t o r e d e {1} = de i ;

dWi = zeros (N,N, np) ;
for i =1:np

dWi (: , : , i) = calc dW (dL (: , : , i) , s tore dpP { 1 } (: , : , i) , d
H(: , : , i) , theta . L , s tore pP {1}) ;

end
store dW{1} = dWi ;

d f i = zeros (nf , 1 , np) ;
for i =1:np

d f i (: , : , i) = c a l c d f (s t o r e d p f { 1 } (: , : , i) ,
s tore dpP { 1 } (: , : , i) , dL (: , : , i) , store dW { 1 } (: , : , i) ,

84

s t o r e d e { 1 } (: , : , i) , theta . L ,
s t o r e e {1} , store W {1} , s tore pP {1}) ;

end
s t o r e d f {1} = d f i ;

dPi = zeros (nf , nf , np) ;
for i =1:np

dPi (: , : , i) = ca lc dP (store dpP { 1 } (: , : , i) ,
dL (: , : , i) , store dW { 1 } (: , : , i) , theta . L , store W {1} ,
s tore pP {1}) ;

end
s tore dP {1} = dPi ;

d l i = zeros (1 , 1 , np) ;
for i =1:np

d l i (: , : , i) = −0.5∗ trace (inv (store W {1})
∗ store dW { 1 } (: , : , i)∗ (eye (N)−inv (store W {1})
∗ s t o r e e {1}∗ s t o r e e {1} ’))− s t o r e d e { 1 } (: , : , i) ’
∗ inv (store W {1})∗ s t o r e e {1} ;

end
s t o r e d l {1} = d l i ;

for t =2:T
for i =1:np

store dpP { t } (: , : , i) = calc dpP (dA (: , : , i) ,
s tore dP {t −1} (: , : , i) ,
dQ (: , : , i) ,
theta .A, s to r e P {t−1});

s t o r e d p f { t } (: , : , i) = c a l c d p f (dA (: , : , i) ,
s t o r e d f {t −1} (: , : , i) ,
dmu (: , : , i) , theta .A,
s t o r e f {t−1} , theta .mu) ;

store dW{ t } (: , : , i) = calc dW (dL (: , : , i) ,
s tore dpP { t } (: , : , i) ,
dH (: , : , i) , theta . L , s tore pP { t }) ;

s t o r e d e { t } (: , : , i) = c a l c d e (s t o r e d p f { t } (: , : , i) ,
dL (: , : , i) , theta . L , s t o r e p f { t }) ;

s t o r e d l { t } (: , : , i) = −0.5∗ trace (inv (store W{ t })

85

∗ store dW{ t } (: , : , i)
∗(eye (N)−inv (store W{ t })
∗ s t o r e e { t }∗ s t o r e e { t } ’))
−s t o r e d e { t } (: , : , i) ’
∗ inv (store W{ t })∗ s t o r e e { t } ;

s tore dP { t } (: , : , i) = ca lc dP (store dpP { t } (: , : , i) ,
dL (: , : , i) , store dW{ t } (: , : , i) ,
theta . L , store W{ t } , s tore pP { t }) ;
s t o r e d f { t } (: , : , i) = c a l c d f (s t o r e d p f { t } (: , : , i) ,
s tore dpP { t } (: , : , i) , dL (: , : , i) ,
store dW{ t } (: , : , i) , s t o r e d e { t } (: , : , i) ,
theta . L , s t o r e e { t } , store W{ t } , s tore pP { t }) ;

end
end

d l i m a t r i x = zeros (T, np) ;
for j =1:T

d l i m a t r i x (j , :) = s t o r e d l { j } ;
end

% sum up each column of d l t to o b t a i n d l
s = sum(d l i mat r i x , 1) ;
return

%%%%% g r i d search f o r lambda %%%%%
% Y i s a N x T matrix ; g r i d i s a row v e c t o r ;
% f m a t r i x i s a 3 x T matrix
function [lambda , L ,H] =GridSearchLambda (Y, tau , grid , fmatr ix)
T = s ize (Y, 2) ;
N = s ize (Y, 1) ;
Ydesign = reshape (Y,N∗T, 1) ;
f d e s i g n = reshape (fmatr ix ,3∗T, 1) ;
g r i d s i z e = length (grid) ;
s toreL = c e l l (g r i d s i z e , 1) ;
s t o r e l q = zeros (g r i d s i z e , 1) ;

86

for g=1: g r i d s i z e
L = calc Lambda3 (grid (g) , tau , N) ;
s toreL {g}= L ;
Ldesign = designL (L ,T) ;
dmatrix = (Ydesign − Ldesign∗ f d e s i g n) . ˆ 2 ;
s t o r e l q (g) = sum(dmatrix (:)) ;

end
[M, I] = min(s t o r e l q) ;

%pause (0 . 1)
%d i s p l a y (M)
%d i s p l a y (I)
lambda = grid (I) ;
L = storeL (I) ;
L = L{1} ;
e = Ydesign − Ldesign∗ f d e s i g n ;
e = reshape (e ,N,T) ;
H = (1/T) . ∗ e∗e ’ ;
end

%%%%% Other Functions %%%%%

% f u n c t i o n to c a l c u l a t e Lambda f o r 3 f a c t o r DNS
function va l=calc Lambda3 (lambda , tau , N)
c1 = ones (N, 1) ;
c2 = (1−exp(−lambda .∗ tau)) . / (lambda .∗ tau) ;
c3 = c2 − exp(−lambda .∗ tau) ;

va l = [c1 c2 ’ c3 ’] ;
return

% c a l c u l a t e the d e r i v a t i v e o f A
function dA = calc dA (nf , np)
r e s = zeros (nf , nf , np) ;
i = nf + 1 + 1 ;
j = nf + 1 + nf ;
for k=i : j

87

r e s (k−i +1,k−i +1,k) = 1 ;
end
dA = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f Lambda
function dL = ca lc dL (tau , lambda , nf , np)
N = s ize (tau , 2) ;
r e s = zeros (N, nf , np) ;

dx1lT = (exp(−lambda .∗ tau) .∗
(lambda .∗ tau − exp(lambda .∗ tau) + 1))
. / (lambda .ˆ2 .∗ tau) ;
dx2lT = dx1lT + tau .∗ exp(−lambda .∗ tau) ;
i = nf + 1 ;
r e s (: , : , i) = reshape ([zeros (N, 1) dx1lT ’ dx2lT ’] , N, nf) ;
dL = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f mu
function dmu = calc dmu (nf , np)
r e s = zeros (nf , 1 , np) ;
m = eye (nf) ;
for i =1: nf

r e s (: , : , i) = m(: , i) ;
end
dmu = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f A (d i a g o n a l case)
function dA = calc dA (nf , np)
r e s = zeros (nf , nf , np) ;
i = nf + 1 + 1 ;
j = nf + 1 + nf ;
for k=i : j

r e s (k−i +1,k−i +1,k) = 1 ;
end
dA = r e s ;

88

end

% c a l c u l a t e the d e r i v a t i v e o f A (non−d i a g o n a l case)
function dA = ca lc dAFul l (nf , np)
r e s = zeros (nf , nf , np) ;
i = nf + 1 + 1 ;
j = nf + 1 + nf ;
for k=i : j

r e s (k−i +1,k−i +1,k) = 1 ;
end
r e s (1 , 2 , j +1) = 1 ;
r e s (2 , 3 , j +2) = 1 ;
r e s (1 , 3 , j +3) = 1 ;
r e s (2 , 1 , j +4) = 1 ;
r e s (3 , 2 , j +5) = 1 ;
r e s (3 , 1 , j +6) = 1 ;
dA = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f Q (d i a g o n a l case)
function dQ = calc dQ (nf , np)
r e s = zeros (nf , nf , np) ;
i = nf + 1 + nf +1;
j = nf + 1 + nf + nf ;
for k=i : j

r e s (k−i +1,k−i +1,k) = 1 ;
end
dQ = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f Q (non−d i a g o n a l case)
function dQ = calc dQFul l (nf , np)
r e s = zeros (nf , nf , np) ;
i = nf + 1 + nf + 6 + 1 ;
j = nf + 1 + nf + 6 + nf ;
for k=i : j

r e s (k−i +1,k−i +1,k) = 1 ;
end

89

% f o r 3 f a c t o r case on ly
r e s (1 , 2 , j +1) = 1 ;
r e s (2 , 1 , j +1) = 1 ;
r e s (2 , 3 , j +2) = 1 ;
r e s (3 , 2 , j +2) = 1 ;
r e s (1 , 3 , j +3) = 1 ;
r e s (3 , 1 , j +3) = 1 ;
dQ = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f H
function dH = calc dH (N, np , nf)
r e s = zeros (N,N, np) ;
i = nf + 1 + nf + nf + 1 ;
j = nf + 1 + nf + nf + N;
for k=i : j

r e s (k−i +1,k−i +1,k) = 1 ;
end
dH = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f H
function dH = ca lc dHFul l (N, np , nf)
r e s = zeros (N,N, np) ;
i = nf + 1 + nf + 6 + nf + 3 + 1 ;
j = nf + 1 + nf + 6 + nf + 3 + 1 + N − 1 ;
for k=i : j

r e s (k−i +1,k−i +1,k) = 1 ;
end
c = N−1:−1:1;
i = j +1;
for t =1: length (c)

j = i + c (t)−1;
for k=i : j

r e s (k−i +1,k−i+1+N−c (t) , k) = 1 ;
r e s (k−i+1+N−c (t) , k−i +1,k) = 1 ;

end
i = j + 1 ;

90

end
dH = r e s ;
end

% c a l c u l a t e the d e r i v a t i v e o f p r e d i c t i o n error (v)
function de = c a l c d e (dpf , dL , L , pf)
de = −L∗dpf − dL∗pf ;
end

% c a l c u l a t e the d e r i v a t i v e o f W
function dW = calc dW (dL , dpP ,dH, L , pP)
dW = dL∗pP∗L ’ + L∗dpP∗L ’ + L∗pP∗dL ’ + dH;
end

% c a l c u l a t e the d e r i v a t i v e o f p r e d i c t e d f
function dpf = c a l c d p f (dA, df ,dmu,A, f ,mu)
dpf = dA∗ f + A∗df + dmu − dA∗mu − A∗dmu;
end

% c a l c u l a t e the d e r i v a t i v e o f p r e d i c t e d P
function dpP = calc dpP (dA, dP ,dQ,A,P)
dpP = dA∗P∗A’ + A∗dP∗A’ + A∗P∗dA’ + dQ;
end

% c a l c u l a t e the d e r i v a t i v e o f updated f
function df = c a l c d f (dpf , dpP , dL ,dW, de , L , e ,W, pP)
df = dpf + dpP∗L’∗ inv (W)∗ e + pP∗dL ’∗ inv (W)∗ e

− pP∗L’∗ inv (W)∗dW∗ inv (W)∗ e + pP∗L’∗ inv (W)∗ de ;
end

% c a l c u l a t e the d e r i v a t i v e o f updated P
function dP = calc dP (dpP , dL ,dW, L ,W, pP)
dP = dpP − dpP∗L’∗ inv (W)∗L∗pP − pP∗dL ’∗ inv (W)∗L∗pP

+ pP∗L’∗ inv (W)∗dW∗ inv (W)∗L∗pP
− pP∗L’∗ inv (W)∗dL∗pP − pP∗L’∗ inv (W)∗L∗dpP ;

end

91

