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Types of Convergence : Overview

e Almost Sure convergence : if IV is an event with v (N) = 0 and a statement
holds for all w € N then the statement is said to hold a.s.

— sequence {Xp} converges to X almost surely [Xn T X]
iff limp—o0o Xn = X a.s. ( that is for all sets/events N € € which are not
of zero measure)

e Convergence in Probability : { X} converges to X in probability [Xn EN X] iff
for every fixed € > 0 we have

im P(||Xn— X||>¢)=0

n—oo



e Convergence in Ly or rt" moment Xn L X] - iff forr > 0

im E||Xn— X||"=0

n—oo

e Weak Convergence in distribution [Fn = F} or measure [Pn = P} . iff for

each continuity point x of F' we have

lim Fp(x) = F (x)

n—oo

e Convergence in Law / Distribution [Xn LA X] : {Xn} converges to X in dis-

tribution or law iff Fy = Fx



e Convergence in probability, L, or almost sure convergence can be consid-
ered as techniques which analsyse, for large n, how well X;, and X approximate
each other as functions on the original probability space.

e Convergence in distribution or measure depends only on the distributions
Fx. and Fx or probability measures Px, and Py, which does not require that
Xpn and X are close in any sense. ( Xy and X do not even have to be defined
on same probability space )



Relationship between different forms of
Convergence

X, X1, X9, X3, ... are random k-vectors
o If X, %% X then X, & X
° IanﬂXforsomer>Othen XngX

o If X, B X then X,, % X



e Skorohod’s Theorem : If X, LA X then there are random vectors Y, Y7, Yo, ...

defined on a common probability space such that Py = Px, Py, = Px,
n=12..and Yy, 3Y

o If, for every € >0, X% ; P (|| Xn — X|| > ¢€) < oo, then X, “3' X

e If X;, & X then there is a subsequence {an,j =1,2, } such that Xy 5
X as j — oo

o If X, 4 X and P(X =c¢) = 1, where ¢ € R¥ is a constant vector, then

Xn£>c



e Suppose X, i X, then for any r > 0,
im_E || Xall] = B[ X} < oo

n—oo

iff {||Xnl],.} is uniformly integrable :

. , _
Jim supE (|1 Xnll7 Ty, >03) = O

Convergence Theorems : Overview

e Monotone Convergence Theorem

— {Xn} is sequence of Random Variables where { X} T X, then



e Bounded Convergence Theorem

— {Xn} is sequence of RV's with limp—c0 X = X and | Xp| < C' Vn with

e Fatou's Lemma

— E|liminfX,| < liminfE [X]

n—oo n—oo

e Dominated Convergence Theorem

— X, {Xn} are RV's and {Xn} — X w.p. 1 and if there is r.v. Y with
| Xn| <Y Vnand E[Y] < oo then |Iim E[X,] = E[X].

n—aoo



e Polya’'s Theorem : If F;, — F and F' is continous on Rk, then

lim sup |Fn(z)— F(x) =0

Fundamentals of CLT

e The first CLT was proven for symmetric and Bernoulli independent distributions
by De Moivre.

e Many extensions have been developed to deal with situations such as :

— Multidimensional models



— Symmetric Statistics sequences
— Empirical Process
— General classes of nonidentically distributed and dependent random variables

such as properly scaled random triangular arrays or Martingale sequences.

e Weak limit results can be determined from a given CLT using approximation
techniques such as

— Delta Method

— Slutsky’s technique



e Lindeberg's CLT (basic form) :

— Sequence of r.v.’s {X,} which are i.i.d. with mean p and variance o°.

— Consider normalised sum of random variables : S, = % (X1 +Xo+ ...+ Xn)

— Note : the pdf of Sy, invloves the convolution of the pdf's of X1, X5, ..., X},

If one takes for example the pdf of unit box and convolves it many times
then one sees the bell shape of the normal distribution and you obtain the
Gaussian distribution after renormalising.

— Basically the CLT states that as the sum grows n — oo then the cdf of a
normalised version of .S), approaches the cdf of a Gaussian r.v. (convergence
in distribution)



— Uses fact that Characteristic function specifies distributions uniquely :

Characteristic Function of rv. X : oy (w) = E [ein} — 00 < w < o0

Levy's convergence theorem : Shows that this implies that if a sequence
of Characteristics functions converges to a limiting characteristic function,
then the corresponding sequence of distributions converge to the limiting

distribution.

Lindeberg Central Limit Theorem

Ve  lim Fy ()=

n—oo

e [

ﬁ\H



where

_ Sn — E (Sp)
\/Var (Sh)

Zn
Proof :

Using two properties of Characteristic functions

[eiw(X1+X2—|—...—|—Xn)} _ [

n
® OX1+ Xt Xy (W) = E o x; (W)

* vux (W) = px, (aw)



Therefore one gets :

Pl =P8 <ﬁ> B [gp(Xl_“) (W)]

=1

Now carry out a Taylor series expansion for F [ei"UX]
: X 2
Ele™X] = E [1 + ((wX) + (W;I ) ]

— 14 wE[X] - Z—?E X% +E [O (n—z)]



Hence one gets

. 2
w 2 1
— | = 1+ ——E X — E R
SO(Xl—,LL) (O’\/ﬁ) o 277/0' ( :U') —I_ [ n]
1
- 1—w—+ ~E[Rn]
2n n
Therefore

w? 1 "
vz, (W)= [1 —5. 7t ;E [Rn]]

and

,w2
n (‘PZn (w)) =mnln [1 5 + 1E [Rn]]

n



note :

22 23
n(l—2)=—|z4+—+—+... 1z| <1
2 3
now we make the following identity :
2 1
2= ZE[R]
2n n
hence
2 2 2
w 1 n |wc E[Ry]
| = ——— 4+ —FE|Rp| — — —
" <SOZ” (w)) " [ 2n i n [ ] 2 [277, n ] T

2 2 2
w n (w® E[Ry]
N R U [ i
> + E [Rn] 2<2n - ) +




now taking the limit as the sum of random variables grows :

2
. ] w
w2
— nII_>mOOQOZn (’lU) — e 2

this is the Characteristic function of N (0,1).

e This CLT holds when r.v.'s are i.2.d., when this is not the case on must use more
sophisticated CLT's such as Lyapunov's CLT



Lyaponov's CLT :

e — Sequence of independent r.v.’s { X} must satisfy :

— mean u,, < oo and variance 02 < 0o

_Bn:E|Xn_/an|3<OO

e Define :



L —
n C
If lim % — 0 then Vz :
n—aoohYn
. 1 2
im Fgz, () = ol 2dz
— 00

Martingale CLT

o Let { X} be a sequence of integrable random variables on probability space
(Q,F, P) and F1 C Fp... C Fis a sequence of o — fields such that o (X;,) C
Fn, n = 1,2,...



e Sequence { X, Fn :n =1,2,...} is a Martingale iff :

) [Xn+1|Fn] = Xn

Sigma field 7, has the interpretation of information available at time n and X,
denotes a random quantity whose value X, (w) is revealed at time n.

o If Xy, =20+ ...+ Zp, where {Z;} are i.i.d. with mean 0 and variance 1

e Classical CLT states : % = N (0,1)



General Martingales :
e A similar result also holds for more general martingales { X }.

o Let 7, = o (Xo, X1,.--, Xn) 0% = Var(Xg) and for n > 1 set 02 =
Var (Xn|fn—1) =L [(Xn - Xn—1)2 |'7:n—1] =Fk [X% o X?%,—llfn—l]

e Now by induction : F (X%) = kzi:OE [U%]

o F(Xp)= E(Xg) does not grow with n



n
If set the following stopping time random variable v = min<n > 0; > a% > t}
k=0

then for large t one has the following Martingale difference CLT

X
t — oo implies that —~ = N (0, 1)

Vit

Del Moral and others tend to use a Martingale difference array to establish a
CLT

let { X}, : n € N} be a Martingale written as a sum of increments

Xn:=Xo+& +8&+ .. +&,

{&,,} are Martingale differences if they satisfy integrability condition and
a.s.
E[&n|Fn-1] =0



— For each n in N let {fnj 7 =0, ,kn} be a Martingale difference array,
with respect to filtration {Fnj} for which the following hold

1. > 5%]- — 1 in probability
2. max; ‘fnj‘ — 0 in probability

3. sup, P max; 5%]- < 00

then one has the following Martingale triangular array CLT

ijnjgN(O,l) as n — oo



e 5o the above provided tools to prove the existence of a CLT for a given sequence
of r.v.'s. However what is more useful to practitioners is a method of obtaining
an expression for the variance of the assymptotic Gaussian as a function of the
number of terms in the sum n.

Delta Method

e Used as a method of obtaining a recursive relationship for the assymptotic vari-
ance in a CLT

— Kunsch, Chopin and Del Moral use this technique in the papers mentioned.



1-D Case

Have some function denoted :
é: R - RY
want distribution of

VN (¢(Sn) = ¢ (1))

Delta method states that if :

VN (SN = ty(e)) " =7 2~ N (0,07,

N
where S = %.;1?? (Xi) and B¢ (X;)] = Hap(X5)



then
VN (6(SN) = ¢ (1y()) = ¢ (1) VN (SN = b))

= 2o N (0,0 (my() o))
Multi-dimensional Case

Have a function denoted
¢ : RF - R™
O (X1, Xo,...., X)) = (Y1,Y2,...,Ym)

have

SN & Rk SN:<SN,1>SN,27---75N,k>

SNi = %j]é% (Xj )



and

then as before get

Hap(z) = (%(x)a Hapy(z)r - "%k(w))

VN (6(S8) = ¢ (hy())) =~ @' (Hy(@)) VN (SN = b))

where

C11 .-

i Ckl

1 {(SN,Z' - “%(fﬁ)) (SNJ - “%(37))] - {

Cik

Ckk |

— Zs~ Np, (0, & (1)) T ¢ (Mw(:c))T>

2 ..
J%‘(w) t=J

Coalay () © 7



and

& () % (@) 5 ()
Hy(a)) = ' .
?Tnf (N¢(m)) gqﬁT"]z (N¢(m))

Brief Review of Aspects of SMC

e Sequential Monte Carlo SMC methods are a general class of iterative algo-
rithms provideing empirical Monte Carlo estimates of a sequence of distributions

{Wn}ne./\/"



e Brief mention of algorithmic aspects of SMC developed :
— Sequential Importance Sampling (SIS)
— Resampling (SIR) ( Gordon, Kitigawa)
— Resample and Move (Gilks and Berzuinni)
— multinomial, residual and stratefied resampling
— auxiliary particle filtering (Pitt and Shephard, Davy and Doucet)
— Rao Blackwellised particle filtering (Doucet and Liu)

— Smoothing (Godsill, Doucet and West)



— PHD filters (Vo, Singh and Doucet)
— SMC samplers (DelMoral, Doucet and Peters)

— More general formulations often known as Interacting Particle Systems ( Del-
Moral) which provide a mean field particle approximation of a general class
of Feynman-Kac path measures.

e Most people are familiar with basic aspects of Particle Filters or Sequential Monte
Carlo :

— Posterior distribution of a state is approximated by a large set of Dirac-delta
masses (samples/particles) that evolve randomly in time according to the
dynamics of the models and the observations.



— An interacting particle method is a sequential simulation method, where
particles explore the state space by mimicking the evolution of an underlying
random process.

— They learn the environment by evaluating a fitness function, and interact so
only the most successful particles, survive and get offspring.

— This is termed as Mutation and Selection stages which have the effect of
concentrateing particles in regions of interest in the state space.When think-
ing of particle filtering each particle represents a possible hidden state, and is
multiplied or discarded at the next generation on the basis of its consistency
with the current observation, as measured by the likelihood function.



Convergence Results Obtained for SMC
Methodology

1. A survey of Convergence Results on Particle Filtering Methods for Practitioners,
Dan Crisan and A. Doucet

2. Recursive Monte Carlo Filters : Algorithms and Theoretical Analysis, Hans R.
Kunsch

3. Feynman-Kac Formulae : Genealogical and Interacting Particle Systems with
Applications,Pierre Del Moral.



4. Central Limit Theorem for Sequential Monte Carlo Methods and its Applications
to Bayesian Inference, N. Chopin

e Key point to make : Since the particles are interacting one can not straightfor-
wardly apply standard classical limit theorems which rely on statistically inde-

pendent samples.

e \When considering convergence analysis, as pointed out in 1, we should ask ques-

tions such as :

— Does the particle filter converge asymptotically, in the number of particles
N or in time n or in both, to the optimal filter and in what sense does this

convergence occur 7



— Do the standard rates established for Monte Carlo techniques apply ?

— Does the error accumulate with time and what effect does this have on
convergence 7

— Can asymptotic results such as CLT, Berry Essen, Bias, Propogation of Chaos
and Large deviations be established and in what forms of SMC algorithm are
they valid 7

e The mathematical justification of SMC algorithms generally focuses on the simple
result of the strong law of large numbers, which states for a measurable test
function () it can be shown that

/Spn (ml:n) 7/"\'7”LN (dxl:n) N%Soo /SDn (ml:n) Tn (dxl:n)



where 72 (dx1.,,) is the empirical estimate of the target measure 7y, (d1.p,).

e This SLLN result is important to practitioners but not of very much practical use
as it does not provide a rate of convergence of the estimate or a variance for the
estimate.

e Majority of convergence results in engineering literature focuss on the filtering
formulation in which the target distribution 7y, (dxy1.,) is interpreted as the
conditional distribution P (dx1.,,|y1:,) of an unobserved state sequence X7.p,
which evolves according to a nonlinear state space model.

e The conditioning is made on a noisy observation process Y7.,, = y1., Which is
assumed fixed and is generally a known nonlinear function of the state variable
and a noise sequence.



Review of Almost Sure Convergence Results
(Reference 1)

e Preliminary Definitions : Notation consistent with paper usefull for later read-
ing....

— State space - E endowed with a metric d to make metric space (E, d)
— (an)p—q1 and (bn),; 21 are sequences of continous functions an,b, : £ — E

— kp, and k1., are functions defined as

kn
kl:n

A
= anobn
FAN

knok,_10..0kq



e In a filtering context we now associate these abstract mappings to the SMC
framework :

— E will be defined as P (R™*) which is the space of all probability measures
over ng-dimensional Euclidean space

— bn is considered as the map taking 7, 1,1 — Tp|p_1 ( ie. prediction /
mutation mapping)

— an is the correction map which takes 7, 1 — 7, via Bayes rule

— kn is now the map from 7, 1), 1 = 7,

— k1.pis the map from T0l0 = Tnln



— ¢V is the (not necessarily continous) discreteization /selection mapping from

E — FE.

e Now the discreteization / selection stage must be considered. This is introduced
as a perturbation cfy to the above mappings, as follows

Z’ﬁf = cgoanocgobn
A

kY KN okN jo...0ky
Effectively c,,]y takes a measure to a random empirical measure, of N samples,
which approximates the original measure.

e In paper 1 some constraints are placed on the mapping c,jy. At a given time n it

is required that as N — oo then an must converge in a UNIFORM manner to

the identity mapping ie.



Vn and Vey,e € E we have lim ey =e= lim c. (ex) =e
N—o0 N—o0

If these assumptions are satisfied then one may establish the following almost sure
convergence result :

lim kY =k, and lim ki = ki, (1)

N —o0 N—o0

and kY and k{vn satisfies the following :

I = lim kL =
Aim en e = Nl‘nookn (en) = kn (e)

im ey = e= lim ki (en) = k1. (€) (2)
N—o0 N—oo ™



e The proof of these statements follows by proving 2 since this implies 1. An
induction argument on n is used and also the fact that an, b, are continous
mappings and we have assumed that c,,]y converges in a Uniform manner to the

identity, assymptotically in N.

e Before studying the Central Limit Theorem it is useful to present how most of
the analysis is developed :

e This will start with more overview of the models and then present an important
mathematical break down of the models (briefly mentioned above) which allows
the CLT to proceed.



Description of Models

e Have a sequence of target distributions (7 (dzg.p,)),,c s defined on Ep, = E™,
each admiting a density 7y, (xq.5,) With respect to dominating measure dzg.,,.

e Assumed that these densities may be evaluated pointwise upto a normalising
constant.

e At time n — 1 we have the weighted particles {W(Z)l, X§7’2L_1} which approx-

imate 7,1 (dzg.,—1) using the empirical measure

N

7?7]:[—1 (dzg.p—1) = Z VV(Z)l(S (()z) . (dr1:n—1)
=1 n—



e Interacting particle method, used to approximate these target distributions, is
presented in three stages.

(4)

— Mutation stage involves mutation of the particles X5.” _; by a Markov kernel
My, (X(()i),b_l, d:com> to obtain new paths X((;’?)%

— In the Bayesian filtering formulation this kernel may depend on y1.,.

— The new particles are distributed according to

Tn (dZUO:n) = /7Tn—1 (de:n—l) M, (xO:n—la dwO:n)

— Correction stage involves importance sampling to produce a consistent em-
pirical estimate which corrects for the difference between the sampling dis-
tribution 7y, (dxq.,) and target distribution 7y, (dxg.;,).



— The unnormalised incremental importance weight is given by

™ (X6n) _ ™ (X)

(¢) _ (%)
Wn™ =W Xo:n > ) o 7 ) 7
) L (380) ™ s (580 e (05 )

(3)

which produces the weighted empirical measure.

SN)

T (dzon) = Y Wa''8 (5 (dzo:n) (4)

i=1 O:n

Where the normalised importance weights are given by

O o W o, < x40 ) Z i) —



— Resampling stage is where the weighted particles are resampled to obtain
)
N> 0 (-

e If you read Del Moral's work he considers SMC algorithms in a more general

framework which involves two stages of mutation and selection.

e Selection stage is represented by the updating Markov transition on FE,, which
maps the space of probability distributions P (Ey) into itself :

N (i)

S, ( Xgi),d,zﬂ) = a5 (dzn)—|—<1 _ enw(z)) » 0 @)
1= ]_1

where €y, represents any possibly null constant such that ||enwn)|| <1.



e This version of update and resampling stages is interpreted as having qui) —
(4)

X,,(;’ll with weight epwsy,”, which means particle ¢ remains in its current position
after mutation at time n — 1 or particle ¢ may be resampled multinomially with

weight (1 — enwf,(li)).

e Advantage of this is explained by fact that if a particle is in a position in the state
space which lends considerable support to the posterior of interest 7y, (dxy), as
shown by the incremental weight wg) then it should not have to take part in the
resampling stage.

e Hence one obtains a reduction in the variance as demonstrated in the CLT proofs
established by DelMoral, Doucet and Peters.



e Another point to mention is that the resampling stage, although required to
provide the interactions within the particle system, should be carried out as in-
frequently as possible in order to help reduce the variance of the particle weights.

e There are also many resampling schemes which have been developed, as men-
tioned earlier, some have the advantage of being minimum variance whilst others
are easy to implement.

e The minimum variance resampling is stratefied or systematic resampling which
ensures the variance of any empirical estimates obtained after resampling is min-
imised.



e Proofs of CLT variance have only been carried out successfully to this date for
multinomial resampling although Chopin in 4 has made attempts at such proofs
for residual resampling.

End of Part 1



