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Abstract

In this thesis, we consider three different commodity models that take into account the

mean reverting nature of commodity prices. The first model is a simple one-factor model

based on the one proposed in [9]. In this model, the convenience yield and interest rate are

assumed to be constant. The second model is the two-factor model developed in [21]. This

model involves two factors: the short-term deviation and the equilibrium price level. The

last model is a three-factor model proposed in [22]. We mainly focus on the second and third

models since the first model and the second one are equivalent in general.

We study these three models based on two aspects: discretization and filtering. For the

first study, we observe and compare theoretically and empirically two well-known discretiza-

tion schemes, namely, the Euler scheme and the Milstein scheme. This study turns out to be

useful for the filtering aspect. Indeed, once a model has been put in a state space form which

can be obtained by using a discretization technique, then this enables filtering techniques to

be applied to solve the filtering recursion problem for the model.

The second study aims to observe and compare the performance of the three well-known

filtering techniques, namely, the Kalman filter, the Extended Kalman filter and the Particle

filter. We implement these three filters for the second and third models via using Matlab.

In addition, the data utilised to test the models involve futures contracts, since in most

commodity markets the futures price is more flexible and easily observed than the spot price

of a commodity.
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1 Introduction

The study of commodity prices is an important issue for many application areas such in business

and finance. There have been many commodity models constructed to imitate the stochastic

behaviours of commodity prices. In this thesis, the study focuses on three types of commodity

models which take into account the mean reverting nature of commodity prices. The first model

is a one-factor model which was developed in [20]. The second model is a two-factor model

proposed by [21], and the last model is a three-factor model constructed by [22].

We mainly focus on two aspects for these three models: filtering and estimation. Particu-

larly, we concentrate on the discrete time state space approach to filtering and estimating the

models. Under discrete time formulation, we present and compare two common discretization

schemes, namely the Euler scheme and the Milstein scheme. The Milstein scheme is shown to be

computationally and theoretically efficient for simulating the stochastic process for each of these

three models. However, when the discretization interval is chosen to be very small, then the

Euler and Milstein schemes appear to produce similar performance. Hence, we conclude that

Milstein scheme provides a significant computational saving in these models. Especially in the

three factor model, in which Milstein scheme takes a simple form. Moreover, we also examine

the statistical properties of these schemes in terms of strong and weak convergence.

We then develop novel state space models and derive the observation equation for the futures

price - followed by the state space model for each model under Milstein and Euler schemes.

For the filtering aspect, we present the filtering recursion problem, and then discuss and com-

pare the performance of a few well-known filtering techniques: the Kalman filter, the Extended

Kalman filter and the SIR Particle filter. The Kalman filter is optimal for the Gaussian and

linear assumptions on the state space model. Specifically, the Kalman filter generates optimal

estimators for the state space model at each discrete time point. However, when the state space

model is no longer linear, such as the three-factor model, but still keeps the Gaussian assump-

tion, then the EKF can be applied to achieve a good filtering result. For the nonlinear and

non-Gaussian case, since the KF and EKF cannot be utilised, the Particle filter appears to give

the solution for the filtering recursion problem.

Moreover, the data used to implement these filters involve five future contracts on a basis

of daily observations. It should be noted that in most exchange markets, the spot price of

a commodity is usually uncertain and not observed frequently, and so it cannot be used to
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implement the filters. Due to this reason, the corresponding futures contract closest to maturity

is utilised as a proxy for the spot price. Indeed, futures contracts are normally traded on many

exchanges and hence their prices can be easily observed. Furthermore, for the models 1, 2 and

3, closed form solution for the futures price can be obtained, which may greatly simplify the

comparative statics and empirical estimation.

The content of the thesis is organized as follows. The basic econometric concepts and models are

introduced in section 3. The simulation study for the Euler and Milstein schemes are presented

in sections 4 and 5. In sections 6 and 7, we introduce the state space model framework and state

the filtering recursion problem as well as the assumptions on the state space model. In sections

8 and 9, we present filtering issues including techniques and empirical results, as well as study

some impacts of futures contracts and the models on the performance of filtering techniques.

Finally, section 10 concludes.
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2 Notation and definitions

In this thesis, the following notations will be used:

• Capital letters represent stochastic processes. For identifying purpose, in sections 6, 7

and 8, we use bold type to account for random variables, and normal type to represent

realisations or deterministic quantities.

• k (or t): discrete time.

• N: the set of natural numbers.

• R: the set of real numbers.

• (.)T : transpose of a matrix. For example, MT where M is a matrix.

• p(.) is the probability density function, while p(.|.) is the conditional probability density

function.

• E[x] is the expectation of a random variable x.

• Var[x] is the variance of a random variable x.

• Cov[x] is the covariance of a random variable x.

• Std[x] is the standard deviation of a random variable x.

• N (x; m, P) is a Gaussian density with argument x, mean m, and covariance P.

• δ̃(.) is a Dirac delta measure1.

• x1:k = {xi, i = 1, ..., k} is the set of all states up to time k.

• z1:k = {zi, i = 1, ..., k} is the set of all measurements up to time k.

• wi
k is the normalized weight of the ith particle at time k, while w∗i

k is referred to as the

“true weight”.

1A Dirac delta can be thought of as a function on the real line which is zero everywhere except the origin,

where it is infinite, δ̃ (x) =

{

+∞,x=0

0, x 6= 0

}

and which is also constrained to satisfy the identity
∫∞

−∞
δ̃ (x) dx = 1

9



• Supppose the state space at time k consists of discrete states xik, i = 1, ..., Ns. For each

state xik, let the conditional probability of that state, given measurements up to time k be

denoted by wi
k|k, that is, Pr(xk = xik|z1:k) = wi

k|k. Similarly, we denote the conditional

probability of the state xi
k, given measurements up to time k - 1, by wi

k|k−1 (i.e. Pr(xk =

xik|z1:k−1) = wi
k|k−1).

Notation for Euler and Milstein schemes

• △, △k or △t: the time step length or the time interval.

• △W is the increment of a Wiener process W.

• X0: the initial state of the true stochastic process X, Y
△
0 : the initial state of the simulation

process Y based on the step length △.

• p is the truncation which is provided in [14], who suggest p ≥ K
△t

for some positive constant

K.

• dXi
t is the i-th component of a general n-dimensional stochastic differential equation (SDE)

with m-dimensional Wiener process. It is denoted as follows

dXi
t = ai (t,Xt) dt+

m∑

j=1

bi,j (t,Xt) dW
j
t . (2.1)

where ai(t,Xt) and bi,j(t,Xt) are respectively the drift and the diffusion (or volatility)

coefficients of the process Xi.

• Lj is the derivative operator which is defined by Lj =
∑n

i=1 b
i,j ∂

∂xi
.

• I(j1,j1)△t is the multiple Ito integral given by

I(j1,j2)△t =

∫ tn+1

tn

∫ s1

tn

dW j1
s1
dW j2

s1
. (2.2)

• J(j1,j2) is the multiple Stratonovich integral given by

J(j1,j2)△t =

∫ tn+1

tn

∫ s1

tn

dW j1
s1
dW j2

s1
. (2.3)

• Jp

(j1,j2)
is the approximation of the multiple Stratonovich integral J(j1,j2). J

p

(j1,j2)
is given

as follows:

Jp

(j1,j2)
= △t

(
1

2
ζj1ζj2 +

√
ρp (µj1,pζj2 − µj2,pζj1)

)

+
△t
2π

p∑

r=1

1

r

(
ψj1,r

(√
2ζj2 + νj2,r

)
−ψj2,r

(√
2ζj1 + νj1,r

))
,

(2.4)
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where ζj ,µj,p,νj,r and ψj,r are all independent N (0; 1) Gaussian random variables with,

ρp =
1

12
− 1

2π2

p∑

r=1

1

r2
, (2.5)

ζj =
1√△t△W

j . (2.6)

• nS,t−1, nδ,t−1 and nµ,t−1 are i.i.d. standard normal random variables (where S, δ and µ

are the spot price, the convenience yield and the interest rate respectively).

11



3 Commodity models

3.1 Basic concepts in Econometric Theory

In this section, we first present some important background on commodity models as well as

review some major commodity exchanges in the world. After that, we introduce basic concepts

on forward and futures contracts, as well as market conditions on commodity.

3.1.1 Commodities and commodity exchanges

As defined in [5], a commodity is a physical substance, such as food, grains and metals, which is

interchangeable with another product of the same type, and which investors buy or sell, usually

through futures contracts. A commodity can be produced, consumed, transported or stored.

The price of a commodity is subject to supply and demand of the market. More generally, a

commodity is a product which trades on a commodity exchange; this would also include foreign

currencies and financial instruments and indexes. There are many types of commodity in general,

and the basic ones can be listed as follows

• Energy : crude oil, gasoline, natural gas, electricity, etc.

• Metals : copper, silver, gold, aluminum, zinc, etc.

• Agricultural : rice, wheat, salt, beans, coffee, pork bellies, grains, etc.

• Others : paper, chemicals, pulp, etc.

The commodity models presented in this thesis are focused on tangible commodities.

A commodity exchange (see [11]) is an exchange where various commodities are traded.

Most commodity markets across the world trade in agricultural products and other raw ma-

terials (like sugar, milk, wheat, coffee, oil metals, etc.) and contracts based on them. These

contracts can include legal details regarding spot prices, forwards, futures and options on fu-

tures. Commodity exchanges usually trade futures contracts on commodities, basically trading

contracts to receive an amount of the commodity in a certain date in the future. The main

commodity exchanges worldwide include [18]:

• CME Group, Inc. (CME): based in Chicago, is the world’s largest derivatives exchange.

It was formed by the 11.6 billion dollars merger in July 2007 of the 109-year-old Chicago
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Mercantile Exchange2 and the 159-year-old Chicago Board of Trade3. CME Group now

handles around 90 percent of all futures in the United States. The CME’s product complex

spans all major asset classes, including: futures and options on interest rates, indexes,

currencies, commodities, energy products, precious metals, and alternative investment

instruments such as weather and real estate derivatives. The CME Group’s total contract

volume dropped 21 percent in 2009 to 2.590 billion, according to the annual Futures

Industry Association (FIA)’s survey of the world’s leading derivatives exchanges. The FIA

report, published in early April 2010, notes that volume on the CME Group’s Eurodollar

futures contract fell by 26.7 percent to 437.6 million in 2009.

• New York Mercantile Exchange (NYMEX): opened in 1872, located in New York.

It is now the world’s largest energy and metals commodity exchange, and a unit of CME

Group Inc. Its two principal divisions are the New York Mercantile Exchange and Com-

modity Exchange, Inc (COMEX) which were once separated but are now merged. NYMEX

offers trading in crude oil, petroleum products, natural gas, coal, electricity, gold, silver,

copper, aluminum, platinum group metals, emissions, and soft commodities contracts for

trading and clearing virtually 24 hours a day. NYMEX’s average daily volume for 2007

was 1.485 million contracts, a 25 percent increase over 2006. The floor of the NYMEX

is regulated by the Commodity Futures Trading Commission, an independent agency of

the United States government. The NYMEX is one of the few exchanges in the world

to maintain the open outcry system where traders employ shouting and complex hand

gestures on the physical trading floor.

• Eurex: is one of the world’s largest and most diverse derivatives exchanges. It provides

clearing services for derivatives, equities, bonds. Founded in 1998, Eurex is jointly operated

by Deutsche Borse and the SIX Swiss Exchange, with the German group holding 50 percent

of the voting rights and 85 percent of the share capital. The agreement was extended for 10

years in 2003. Eurex ranked as the world’s second-largest derivatives exchange by contract

2The former Chicago Mercantile Exchange is a global futures and options exchange that in 2007 acquired the

Chicago Board of Trade to become CME group. The Chicago Mercantile Exchange’s products include futures

and options on interest rates, foreign currencies, stock indexes, commodities and investment products (real estate,

weather).
3The former Chicago Board of Trade (CBOT) is the oldest and one of the largest futures exchanges in the

world. The CBOT’s products include futures and options on futures: agricultural, interest rate, Dow stock indexes

and precious metals.
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volume in 2009, according to the annual Futures Industry Association (FIA)’s survey of

the world’s leading derivatives exchanges. In April 2010, the FIA notes that the number

of futures and options traded on Eurex fell 16.6 percent in 2009 to 2.647 billion, dropping

it behind the Korea Exchange for the top spot.

• Korea Exchange (KRX): was founded in 2005 from the merger of four domestic Korean

exchanges: the Korea Stock Exchange (KSE), the Korea Futures Exchange (Kofex), the

Kosdaq Market and the Kosdaq committee. It provides an electronic platform for the

trading, clearing and settlement of cash equities, bonds and derivatives. Ownership of

the KRX was split in 2007 between 44 financial and government entities, led by Woori

Investment Securities (6.3 percent), Daewoo Securities (3.2 percent) and Daishin Securities

(3.2 percent). Overseas owners include JP Morgan, Citigroup and Australia’s Macquarie

Bank. According to the 2009 volume rankings of world derivatives exchanges by the

Futures Industry Association (FIA), the KRX ranked first, with over 3.1 billion futures

and options traded and cleared. Moreover, KRX increased its 2009 trading volume by 8.3

percent over 2008, when it ranked third behind only CME Group and Eurex.

• Shanghai Futures Exchange (SHFE): formed in 1998 as part of the restructuring of

China’s futures industry. Particularly, it was merged from the Shanghai Metal Exchange,

Shanghai Cereals and Oil Exchange and Shanghai Commodity Exchange. SHFE involves

contracts in steel, copper, aluminum, natural rubber, fuel oil, zinc and gold. In 2009, it

was ranked the world’s tenth-largest derivative exchange by contract volume, according to

the annual Futures Industry Association (FIA)’s survey of the world’s leading derivatives

exchanges. The FIA report, published in early April 2010, notes that the number of futures

and options traded on SHFE more than trebled from 2008 to 2009 to reach a volume of

434.9 million. The SHFE’s leading contract by volume in 2009 was its Fuel Oil Futures,

which rose almost 50 percent on 2008 to rank as the FIA’s fifth-largest energy derivatives

contract by volume.

• London Metal Exchange (LME): established over 130 years ago and located in the

centre of London. The MLE offers futures and options contracts for plastics, aluminium,

copper, nickel, tin, zinc and lead, plus two regional aluminium alloy contracts. It was

ranked as the world’s 19th-largest derivatives exchange by volume in 2009, according to

the Futures Industry Association (FIA). The FIA report, published in early April 2010,

notes that the MLE’s total volume for 2009 reached 111.93 million. The LME is a highly
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liquid market and in 2007 achieved volumes of 93 million lots, equivalent to 9,500 billion

dollars annually and between 35 billion dollars to 45 billion dollars on an average business

day.

This thesis aims to study estimation and modelling on flexible multifactor stochastic models to

capture the price behaviour of commodities in each of these exchanges.

3.1.2 Forward vs Futures contracts

A forward contract is an agreement to buy or sell an asset at a certain future time for a certain

price. It is usually traded in the over-the-counter market4 and there is no standard contract size

or standard delivery arrangements. A single delivery date is usually specified and the contract

is usually held to the end of its life and then settled.

Like a forward contract, a futures contract is an agreement between two parties to buy or sell an

asset at a certain time in the future for a certain price. Unlike forward contracts, futures contract

are normally traded on an exchange. To make trading possible, the exchange specifies certain

standardized features of the contract. As the two parties to the contract do not necessarily

know each other, the exchange also provides a mechanism that gives the two parties a guarantee

that the contract will be honored. In addition, a range of delivery dates is usually specified. A

futures contract is settled daily and usually closed out prior to maturity. The largest exchanges

on which futures contract are traded are the Chicago Board of Trade (CBOT) and the Chicago

Mercantile Exchange (CME). On these and other exchanges throughout the world, a very wide

range of commodities and financial assets form the underlying assets in the various contracts.

The traded commodities include pork bellies, live cattle, sugar, wool, lumber, copper, aluminum,

gold and tin. The financial assets include stock indices, currencies and Treasury bonds.

3.1.3 Commodity Market Conditions: Contango vs Normal backwardation

• Contango is when the futures price is above the expected future spot price. Since the

futures price must converge to the expected future spot price, contango implies that futures

prices are falling over time as new information brings them into line with the expected

4The over-the-counter market is a telephone- and computer-linked network of dealers in which trades are done

over the phone and are usually between two financial institutions or between a financial institution and one of its

clients.
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future spot price.

• Normal backwardation is when the futures price is below the expected future spot

price. This is desirable for speculators who are “net long” in their positions: they want

the futures price to increase. Therefore, normal backwardation is when the futures prices

are increasing.

3.2 Commodity models

The stochastic models of commodity prices play a crucial role when evaluating commodity-

related securities and projects. Recently, a number of authors have considered the use of mean-

reverting price models and argued that these models are appropriate for many commodities

(for example, see [9],[22],[19]). Intuitively, by the law of supply and demand, when the price

of a commodity is higher than some long-run mean or equilibrium price level, the supply of

the commodity will go up since higher cost producers of the commodity will enter the market.

New production comes on line, older production expected to go off line stays on line, therefore

putting a downward pressure on prices. Conversely, when prices are relatively low, supply will

decrease since some of high-cost producers will exit the market, putting an upward pressure on

prices. The impact of relative prices on the supply of the commodity will induce mean reversion

in commodity prices. Moreover, when these entries and exits are not instantaneous, prices may

be temporarily high or low but will eventually revert toward the equilibrium level.

In this thesis, we present three models that in different ways take into account the mean reverting

nature of commodity prices, and also estimate them using futures data. The first model is a

simple one-factor model in which the convenience yield and interest rate are assumed to be

constant. The second model is the two-factor model developed in [21]. For most commodities,

there seem to be some mean reversion in prices but there is also uncertainty about the equilibrium

price to which prices revert. This two-factor model captures both of these effects by using two

factors: the short-term deviation and the equilibrium price level. In this model, the equilibrium

price level is assumed to follow a geometric Brownian motion with drift reflecting expectations

of the exhaustion of existing supply, improving technology for the production and discovery of

the commodity, inflation, political and regulatory effects. The short-term deviations which are

defined as the difference between spot and equilibrium prices are typically expected to revert

toward zero following an Ornstein-Uhlenbeck process [21]. These deviations may reflect, for

instance, short-term changes in demand resulting from variations in the weather or intermitent
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supply disruptions, and are tempered by the ability of market participants to adjust inventory

levels in response to changing market conditions. The last model is a three-factor model proposed

in [22]. This model takes into account the convenience yield factor which stands for the benefit

from physically holding an asset rather than owning a futures contract. Specifically, when a

shortage of the asset occurs in the market, it is better to own the asset already than to buy it

since it is likely to be at a very high price due to high demand of the market. In addition, in

this model, the convenience yield of the commodity and the interest rate are also assumed to

follow mean reverting processes [22]. These assumptions under the multifactor models in this

thesis result in closed form solutions for the resulting future prices derived in section 12.

One of the main difficulties in the empirical implementation of commodity price models is that

the factors or state variables of these models are frequently not directly observable. In many

cases, the spot price of a commodity is so uncertain that the corresponding futures contract

closest to maturity is used as a proxy for the spot price. Futures contracts, nevertheless, are

normally traded on several exchanges and their prices can be easily observed. Fortunately,

for these three models, closed form solutions for the prices of futures and forward contracts

can be obtained, which greatly simplifies the comparative statics and empirical estimation. In

addition, for all three models the logarithm of the futures price is linear in the underlying factors,

a property which turns out to be very useful in respect of the econometric technique used to

estimate the parameters of the models.

3.2.1 Model 1

The one-factor model is based on the one proposed in [9] where the convenience yield c and the

interest rate r are assumed to be constant. The dynamics for the spot price under the real-world

framework can be expressed as

dS = µSdt+ σSdZ. (3.1)

Let X = lnS. Then from Ito’s Lemma [13], the log of the spot price follows the dynamics as

dX = d lnS =

(
µ− 1

2
σ2
)
dt+ σdZ. (3.2)

The dynamics for the spot price under the equivalent martingale (or risk neutral) measure is

given by [20]:

dS = (r − c)Sdt+ σSdZ∗ (3.3)
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where dZ∗ is an increment of a standard Brownian motion process under the risk neutral measure.

In this model, since the interest rate is assumed to be constant, the futures price must equal to

the forward price. In Appendix 12, via using the Kolmogorov backward equation, the futures

price F with maturity T for the spot price S is derived to be

F (S, T ) = Se(r−c)T . (3.4)

Moreover, the futures price can be expressed in the log form as

lnF (X,T ) = X + (r − c)T. (3.5)

3.2.2 Model 2

This is a two-factor model which was developed in [21]. Let St denote the spot price of a

commodity at time t. The spot price is then decomposed into two stochastic factors as ln(St) =

χt + ξt, where χt is referred to as the short-term deviation in prices and ξt is the equilibrium

price level. The dynamics for the short-run deviation and the equilibrium level are given in [21]

as

dχt = −κχtdt+ σχdZχ (3.6)

dξt = µξdt+ σξdZξ (3.7)

where the mean reversion coefficient κ describes the rate at which the short-term deviations

are expected to disappear, dZχ and dZξ are correlated increments of standard Brownian motion

processes with dZχdZξ = ρdt, ρ being constant.

This model is called the short-term/long-term model [21]. Moreover, in order to value futures

contracts as well as other commodity-related investments, this model can be transformed into

risk-neutral stochastic processes as follows [21]

dχt = (−κχt − λχ) dt+ σχdZ
∗
χ (3.8)

dξt = (µξ − λξ) dt+ σξdZ
∗
ξ (3.9)

where λχ and λξ are the risk premiums for the short-term and long-term factors respectively, dZ∗
χ

and dZ∗
ξ are increments of standard Brownian motion processes under the risk neutral measure

with dZ∗
χdZ

∗
ξ = ρdt, ρ being constant. The risk-neutral process for the short-term deviation χt

is now an Ornstein-Uhlenbeck process which reverts to −λχ/κ, while the process for equilibrium
prices is still a geometric Brownian motion, but now its drift becomes µ∗ξ ≡ µξ − λξ.
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Let FT,0 denote the current market price for a futures contract with time T until maturity. In the

risk-neutral framework, futures prices are equal to the expected future spot price at maturity T.

Moreover, assume that interest rates are deterministic, then futures prices are equal to forward

prices. In Appendix 12, via using the Kolmogorov backward equation, the formulation for the

futures price FT,0 is derived as

ln (FT,0) = ln (E∗ [ST ]) = e−κTχ0 + ξ0 +A (T ) (3.10)

where

A (T ) = µ∗ξT −
(
1− e−κT

) λχ
κ

+
1

2

(
(
1− e−2κT

) σ2χ
2κ

+ σ2ξT + 2
(
1− e−κT

) ρσχσξ
κ

)
.

3.2.3 Model 3

Model 3 is a three-factor model of commodity contingent claims. This model was constructed in

[22]. The stochastic factors in this model are the spot price of the commodity, the instantaneous

convenience yield and the instantaneous interest rate. Here the instantaneous interest rate is

assumed to follow an Ornstein-Uhlenbeck process. The dynamics for these factors under the

real-world framework can be expressed as [22]

dS = (µ− δ)Sdt+ σ1SdZ1 (3.11)

dδ = κ (α− δ) dt+ σ2dZ2 (3.12)

dr = a (m− r) dt+ σ3dZ3 (3.13)

dZ1dZ2 = ρ1dt, dZ2dZ3 = ρ2dt, dZ1dZ3 = ρ3dt. (3.14)

where µ is the total expected return on the spot price, κ and a are the speed coefficients of

mean reversion for the convenience yield and interest rate respectively, α is the convenience

yield long-run mean, that is, the level to which δ reverts as t goes to infinity, dZ1, dZ2 and dZ3

are increments of standard Wiener processes and are correlated with each other.

Let X = lnS. Then from Ito’s Lemma [13], the dynamic for the log of the spot price can be

obtained as

dX = d lnS =

(
µ− δ − 1

2
σ21

)
dt+ σ1dZ1. (3.15)

In order to value futures contracts and other commodity-related investments, model 3 can be

transformed into risk-neutral stochastic processes as follows [22]

dS = (r − δ)Sdt+ σ1SdZ
∗
1 (3.16)
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dδ = κ (α̂− δ) dt+ σ2dZ
∗
2 (3.17)

dr = a (m∗ − r) dt+ σ3dZ
∗
3 (3.18)

dZ∗
1dZ

∗
2 = ρ1dt, dZ∗

2dZ
∗
3 = ρ2dt, dZ∗

1dZ
∗
3 = ρ3dt. (3.19)

where α̂ = α− λδ

κ
, m∗ = m− λr

a
, λδ is the market price of convenience yield risk, λr is the risk

of the interest rate; a and m∗ are respectively the speed of adjustment coefficient and the risk

adjusted mean short rate of the interest rate process.

Here we note that in model 3, the interest rate is a stochastic process. Therefore, futures prices

are not equal to forward prices. In Appendix 12, via using the Kolmogorov backward equation,

the futures prices are derived as

F (S, δ, r, T ) = S exp

[
−δ
(
1− e−κT

)

κ
+
r
(
1− e−αT

)

a
+ C (T )

]
. (3.20)

Or in the log form:

lnF (S, δ, r, T ) = lnS − −δ
(
1− e−κT

)

κ
+
r
(
1− e−αT

)

a
+ C (T ) (3.21)

where

C (T ) =
(κα̂+σ1σ2ρ1)((1−e−κT )−κT)

κ2 − σ2
2(4(1−e−κT )−(1−e−2κT )−2κT)

4κ3

− (am∗+σ1σ3ρ3)((1−e−aT )−aT)
a2

− σ2
3(4(1−e−aT )−(1−e−2aT )−2aT)

4a3

+ σ2σ3ρ2

(
(1−e−κT )+(1−e−aT )−(1−e−(κ+a)T )

κa(κ+a)
+

κ2(1−e−aT )+a2(1−e−κT )−κa2T−aκ2T

κ2a2(κ+a)

)
.

Next we present a summary of the properties of these three proposed models.

3.3 Properties of models

3.3.1 Models 1 and 2

In this sub-section, we will examine and derive the equivalence between model 1 and model

2. To some extent, model 1 is in fact nested in model 2. Unlike most other recent models of

commodity prices, model 2 does not consider convenience yields - defined in [2] as “the flow of

services which accrues to the owner of a physical inventory but not to the owner of a contract

for future delivery” even when valuing futures contracts or options on these futures. However,

this model is exactly equivalent to the stochastic convenience yield model proposed in [9] in that

the factors in each model can be expressed as linear combinations of the factors in the other.

To see this equivalence, we first briefly describe the Gibson and Schwartz’s model. We let Xt
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denote the log of the time-t current spot price, and let δt stand for the time-t convenience yield.

The stochastic convenience yield model assumes the joint stochastic process for these factors as

follows

dXt =

(
µ− δt −

1

2
σ21

)
dt+ σ1dZ1 (3.22)

dδt = κ (α− δt) dt+ σ2dZ2 (3.23)

where dZ1 and dZ2 are correlated increments of standard Brownian motion process with dZ1dZ2 =

ρdt. As shown in [9], the linear relationship between the variables in these two models can be

expressed as follows:

χt =
1

κ
(δt − α) (3.24)

ξt = Xt − χt = Xt −
1

κ
(δt − α) . (3.25)

To establish the equivalence of the two models, we can write the dynamics for the state vari-

ables of the short-term/long-term model using the dynamics of the variables in the stochastic

convenience yield model, and then relate the parameters in the two models:

dχt =
1

κ
dδt = (α− δt) dt+

σ2
κ
dZ2 (3.26)

dξt = dXt −
1

κ
dδt =

(
µ− α− 1

2
σ21

)
dt+ σ1dZ1 −

σ2
κ
dZ2. (3.27)

The relationships between parameters in the two models can be summarized in the following

table [21]:
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Short-term/long-term model Definition in terms of stochastic convenience yield model

κ κ

σχ
σ2
κ

dZχ dZ2

µξ µ− α− 1
2σ

2
1

σξ

(
σ21 +

σ2
2

κ2 − 2ρσ1σ2

κ

) 1
2

dZξ

(
σ1dZ1 − σ2

κ
dZ2

) (
σ21 +

σ2
2

κ2 − 2ρσ1σ2

κ

)− 1
2

ρ
(
ρσ1 − σ2

κ

) (
σ21 +

σ2
2

κ2 − 2ρσ1σ2

κ

)− 1
2

λχ
λ
κ

λξ µ− r − λ
κ

Table 1: The relationship between parameters in the short-term/long-term model and the

stochastic convenience model proposed in [9]

Hence, we have established the equivalence between model 2 and the stochastic convenience

yield model developed in [9]. Now we note that the stochastic convenience yield model is an

extension of model 1 since it allows the convenience yield factor to be stochastic. To some

extent, this implies that model 1 is nested in model 2 and therefore it suffices to consider the

properties of model 2 rather than those of model 1.

Now given χ0 and ξ0 as initial values of the short-term deviation and the equilibrium price

respectively. It is shown in Appendix 13 that χt and ξt are jointly normally distributed with

mean vector and covariance matrix:

E [(χt, ξt)] =
[
e−κtχ0, ξ0 + µξt

]
and (3.28)

Cov [(χt, ξt)] =



(
1− e−2κt

) σ2
χ

2κ

(
1− e−κt

) ρσχσξ

κ(
1− e−κt

) ρσχσξ

κ
σ2ξ t


 . (3.29)

The log of the future spot price is then normally distributed with

E [ln (St)] = e−κtχ0 + ξ0 + µξt and (3.30)

Var [ln (St)] =
(
1− e−2κt

) σ2χ
2κ

+ σ2ξ t+ 2
(
1− e−κt

) ρσχσξ
κ

. (3.31)

The spot price is then log-normally distributed with the expected price given by

E [St] = exp

(
E [ln (St)] +

1

2
Var [ln (St)]

)
(3.32)
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or

ln (E [St]) = E [ln (St)] +
1

2
Var [ln (St)]

= e−κtχ0 + ξ0 + µξt+
1

2

(
(
1− e−2κt

) σ2χ
2κ

+ σ2ξ t+ 2
(
1− e−κt

) ρσχσξ
κ

)
.

(3.33)

As the time t tends to infinity, the terms e−κt and e−2κt approach zero. Thus, the log of the

expected spot price approaches

ξ0 +
σ2χ
4κ

+
ρσχσξ
κ

+

(
µξ +

1

2
σ2ξ

)
t. (3.34)

Therefore, in the long run, the expected spot prices act as if they started at an “effective long-

run price” of exp(ξ0 +
σ2
χ

4κ +
ρσχσξ

κ
) and increase at a rate of (µξ +

1
2σ

2
ξ ). The difference between

this effective long-run price and the equilibrium price (exp(ξ0)) reflects the contribution of the

short-term volatility to the expected spot prices.

Furthermore, differentiate both sides of equation (3.10) with respect to T, we get

d ln (FT,0)

dT
= −κe−κTχ0 + µ∗ξ − e−κTλχ +

1

2
e−2κTσ2χ +

1

2
σ2ξ + 2e−κTρσχσξ (3.35)

. Here we see that the volatility of the price FT,0 or the instantaneous variance of ln(FT,0)

is given by e−2κTσ2χ + σ2ξ + 2e−κTρσχσξ. The volatility is therefore independent of the state

variables.

For near maturity futures contracts (T = 0), the volatility is equal to the sum of the volatilities

of the short- and long-term factors (i.e., σ2χ + σ2ξ ). As the maturity of the contract increases,

the e−2κT and e−κT terms tend to 0, and the instantaneous volatility approaches the volatility

of the equilibrium price level (σ2ξ ). This also implies that the short-term deviations make less of

a contribution to the volatility as T → ∞.

This short-term/long-term model appears to be natural and intuitive since it still keeps the mean

reverting nature of several common commodity price series. Indeed, the short-run deviation χt

is assumed to revert toward zero following an Ornstein-Uhlenbeck process. The mean-reversion

coefficient κ describes the rate at which the short-term deviation are expected to vanish.

Another important point is that model 2 has normal distribution. Due to this property, the

Kalman filter which we shall consider in section 8.3 yields optimal solution for the state space

model of model 2.
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3.3.2 Model 3

We first observe that in this model, the convenience yield and the interest rate are both Gaussian,

but the spot price is not. However, the transformation process X = lnS is Gaussian. In section

8.3, we shall see that the Kalman filter achieves optimal filtering solution for a state space

model under Gaussian and linear assumptions on the state space model. Therefore, when the

Kalman filter is applied to model 3, the log of the spot price rather than the original spot price

is made use of to obtain optimal filtering result. However, when the Extended Kalman filter, the

Unscented Kalman filter or the Particle filter (see sections 8.4 and 8.5) is applied, we no longer

need to utilise the transformation process X since these filtering techniques do not require the

Gaussian assumption on a state space model.

To investigate the term structure of futures prices in the three-factor model, we might consider

the rate of change in the futures price. This rate can be obtained by taking derivative of the

futures price F (S, δ, r, T ) with respect to time to maturity, dividing by the price, and taking

the limit as time to maturity goes to infinity. In [22], this rate is shown to be

1

F

∂F

∂T
(T → ∞) = m∗ − α̂+

σ22
2κ2

− ρ1σ1σ2
κ

+
σ23
2a2

+
ρ3σ1σ3
a

− ρ2σ2σ3
κa

. (3.36)

We interpret this to show that the term structure of futures prices will eventually turn upward

and converge to a fixed rate of growth even if initially it is in strong backwardation. Otherwise,

it will be decreasing over time and converge to a fixed rate if initially it is in contango.

In [22], Schwartz also shows that model 3 fits well the term structures of futures prices (for

copper and oil commodities) with maturity less than 2 years. However, the model does a poor

job when predicting longer term futures prices. A surprise arises in the term structure of the

volatilities of futures returns as we shall see in the following.

Indeed, for this model, the volatility of futures return is shown in [22] as

σ2F (T ) = σ21 + σ22

(
1− e−κT

)2

κ2
+ σ23

(
1− e−aT

)2

a2
− 2ρ1σ1σ2

(
1− e−κT

)

κ
+ 2ρ3σ1σ3

(
1− e−aT

)

a

− 2ρ2σ2σ3

(
1− e−aT

) (
1− e−κT

)

aκ
.

(3.37)

A very important feature of this model is that we can see that the volatility is independent of

the state variables and only depends on the time to maturity of the futures contracts. As the

time to maturity tends to infinity, the volatility converges to

σ2F (∞) = σ21 +
σ22
κ2

+
σ23
a2

− 2ρ1σ1σ2
κ

+
2ρ3σ1σ3

a
− 2ρ2σ2σ3

aκ
. (3.38)
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Thus the volatility of model 3 converges to a fixed value as maturity increases. However, as

shown in [22], it can fit very well the volatility of the futures market data (including oil, copper

and Enron oil data) for both short-term and long-term contracts. This contrasts to the poor fit

ability of the futures prices implied by the model when dealing with long-term contracts.
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4 Discretization of models and state space framework

Discretization is an indispensable approximation tool for simulating or estimating continuous

processes. Since a continuous process contains infinitely many points, it is impossible to capture

all these points in a real computer system. It is also therefore required when one wishes to

perform estimation and filtering to first perform discretization. The discretization method chosen

sorts out this problem. In theory, a discretized process converges to the real process as the time

step tends to zero. Thus, the number of points of the real process can be reduced to a finite

set so that they can be stored in a real computer system, and therefore the true process can be

simulated in this manner under a discrete approximation. Furthermore, discretization can also

be applied to simulate a complex system of continuous processes in which it may be very difficult

to obtain analytic forms for each process in the system (model 3, for example). In this section,

we present two common discretization schemes for multivariate stochastic processes together

with a model representation under the state space framework. The first discretization scheme

is known as the Euler scheme, and the second one is the Milstein scheme.

We first present the i-th component of a general n-dimensional stochastic differential equation

(SDE), with m-dimensional Wiener process as,

dXi
t = ai (t,Xt) dt+

m∑

j=1

bi,j (t,Xt) dW
j
t . (4.1)

4.1 The Euler scheme

Throughout the remainder of this section we will adopt here the operator notation of [14]. In

this book, page 341, the authors describe the i-th component of the Euler scheme under the Ito

integrals as

Xi
t = Xi

t−1 + ai (t− 1, Xt−1)△t+
m∑

j=1

bi,j (t− 1, Xt−1)△W j
t−1 (4.2)

where

△t = τt − τt−1

is the length of the time discretization subinterval [τt−1, τt] and

△W j
t−1 =W j

τt −W j
τt−1

is the N(0;△t) distributed increment of the jth component of the Wiener process W on [τt−1, τt],

and △W j1
t−1 and △W j2

t−1 are independent for j1 6= j2.
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We now use the Euler scheme to discretize the three models above.

4.1.1 Model 1: Euler Discretization

Model 1 is just a simple one-factor model and it can be discretized by the Euler scheme as

St = St−1 + (r − c)St−1△t+ σSt−1

√
△tnS,t−1 (4.3)

where nS,t−1 is a standard normal random variable.

4.1.2 Model 2: Euler Discretization

This model is first recast with respect to independent Wiener processes dW1 and dW2 as follows

dχt = −κχtdt+ σχdW1 (4.4)

dξt = µξdt+ σξρdW1 + σξ
√
1− ρ2dW2. (4.5)

This leads to the following bivariate Euler discretization scheme:

χt = χt−1 − κχt−1△t+ σχ
√
△tnχ,t−1 = (1− κ△t)χt−1 + σχ

√
△tnχ,t−1 (4.6)

ξt = ξt−1 + µξ△t+ σξρ
√
△tnχ,t−1 + σξ

√
1− ρ2

√
△tnξ,t−1 (4.7)

where nχ,t−1 and nξ,t−1 are i.i.d. standard normal random variables.

4.1.3 Model 3: Euler Discretization

Model 3 is first recast with respect to independent Wiener processes dW1, dW2 and dW3 as

follows

dSt = (µ− δt)Stdt+ σ1StdW1 (4.8)

dδt = κ (α− δt) dt+ σ2

(
ρ1dW1 +

√
1− ρ21dW2

)
(4.9)

drt = a (m− rt) dt+ σ3

(
ρ3dW1 +

√
1− ρ23dW3

)
. (4.10)

This will result in the following specifications, (n=m=3):

a1 (t, St) = (µ− δt)St; a
2 (t, δt) = κ (α− δt) ; a

3 (t, rt) = a (m− rt)

b1,1 (t, St) = σ1St; b
1,2 (t, St) = 0; b1,3 (t, St) = 0

b2,1 (t, δt) = σ2ρ1; b
2,2 (t, δt) = σ2

√
1− ρ21; b

2,3 (t, δt) = 0

b3,1 (t, rt) = σ3ρ3; b
3,2 (t, rt) = 0; b3,3 (t, rt) = σ3

√
1− ρ23.
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The trivariate Euler discretization scheme for model 3 can then easily be obtained as follows

St = St−1 + (µ− δt−1)St−1△t+ σ1St−1

√
△tnS,t−1 (4.11)

δt = δt−1 + κ (α− δt−1)△t+ σ2ρ1
√
△tnS,t−1 + σ2

√
1− ρ21

√
△tnδ,t−1 (4.12)

rt = rt−1 + a (m− rt−1)△t+ σ3ρ3
√
△tnS,t−1 + σ3

√
1− ρ23

√
△tnr,t−1 (4.13)

where nS,t−1, nδ,t−1 and nr,t−1 are i.i.d. standard normal random variables.

4.2 The Milstein scheme

The i-th component of the Milstein scheme under the Ito integrals is given in [14] (page 346) as

follows

Xi
t = Xi

t−1 + ai (t− 1, Xt−1)△t+
m∑

j=1

bi,j (t− 1, Xt−1)△W j
t−1

+
m∑

j1,j2

Lj1bi,j2 (t− 1, Xt−1) I(j1,j2)△t

(4.14)

where, Lj =
∑n

i=1 b
i,j ∂

∂xi
and the Ito multiple integral I(j1,j1)△t is given by,

I(j1,j2)△t =

∫ tn+1

tn

∫ s1

tn

dW j1
s1
dW j2

s1
. (4.15)

These integrals have the useful properties that,

I(j1,j1) =
1

2
{
(
△W j1

)2 −△t}, and J(j1,j1) =
1

2

(
△W j1

)2
. (4.16)

As pointed out in [14], when j1 6= j2 the Ito and Stratonovich integrals are equal,

I(j1,j2) = J(j1,j2) =

∫ τn+1

τn

∫ s1

τn

dW j1
s2
dW j2

s1
. (4.17)

It is further argued in [14] that it will be easier to obtain the approximation under the Stratonovich

integrals. This then results in a p-th order truncation given by

Jp

(j1,j2)
= △t

(
1

2
ζj1ζj2 +

√
ρp (µj1,pζj2 − µj2,pζj1)

)

+
△t
2π

p∑

r=1

1

r

(
ψj1,r

(√
2ζj2 + νj2,r

)
− ψj2,r

(√
2ζj1 + νj1,r

))
,

(4.18)

where ζj , µj,p, νj,r and ψj,r are all independent N (0; 1) Gaussian random variables with,

ρp =
1

12
− 1

2π2

p∑

r=1

1

r2
, (4.19)
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ζj =
1√△t△W

j . (4.20)

Here a recommendation for p is provided in [14] where the authors suggest p ≥ K
△t

for some

positive constant K.

We now use the Milstein scheme to discretize the three models as follows

4.2.1 Model 1: Milstein Discretization

In this model, we have:

a = (r − c)S and b = σS.

Model 1 can be discretized by the Milstein scheme as

St = St−1 + a△t+ b△W +
1

2
bb

′
{
(△W )2 −△t

}

= St−1 + (r − c)St−1△t+ σSt−1

√
△tnS,t−1 +

1

2
σ2S

(
△t.n2S,t−1 −△t

) (4.21)

where nS,t−1 is a standard normal random variable.

4.2.2 Model 2: Milstein Discretization

This model is first recast with respect to independent Wiener processes dW1 and dW2 as follows

dχt = −κχtdt+ σχdW1 (4.22)

dξt = µξdt+ σξρdW1 + σξ
√
1− ρ2dW2 (4.23)

where b1,1 = σχ, b
1,2 = 0, b2,1 = σξρ and b2,2 = σξ

√
1− ρ2.

Since b1,1, b1,2, b2,1 and b2,2 are constants, this follows directly that L1b1,1, L2b1,1, L1b1,2, L2b1,2,

L1b2,1, L2b2,1, L1b2,2 and L2b2,2 are all equal to 0.

This leads to the following bivariate Milstein discretization scheme:

χt = χt−1 − κχt−1△t+ σχ
√

△tnχ,t−1 = (1− κ△t)χt−1 + σχ
√
△tnχ,t−1 (4.24)

ξt = ξt−1 + µξ△t+ σξρ
√
△tnχ,t−1 + σξ

√
1− ρ2

√
△tnξ,t−1 (4.25)

where nχ,t−1 and nξ,t−1 are i.i.d. standard normal random variables.
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4.2.3 Model 3: Milstein Discretization

The discretization for model 3 can be found in Appendix 14 as

St = St−1 + (µ− δt−1)St−1△t+ σ1St−1

√
△tnS,t−1 + σ21St−1

1

2

(
△tn2S,t−1 −△t

)
(4.26)

δt = δt−1 + κ (α− δt−1)△t+ σ2ρ1
√
△tnS,t−1 + σ2

√
1− ρ21

√
△tnδ,t−1 (4.27)

rt = rt−1 + a (m− rt−1)△t+ σ3ρ3
√
△tnS,t−1 + σ3

√
1− ρ23

√
△tnr,t−1 (4.28)

where nS,t−1, nδ,t−1 and nr,t−1 are i.i.d. standard normal random variables.
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5 Theoretical and numerical studies of Euler vs Milstein schemes

5.1 Theoretical results and discussion

Consider the i-th component of a general n-dimensional SDE, with m-dimensional Wiener process

as follows

dXi
t = ai (t,Xt) dt+

m∑

j=1

bi,j (t,Xt) dW
j
t . (5.1)

where ai(t,Xt) and bi,j(t,Xt) are respectively the drift and the volatility coefficients of the

process X.

In this sub-section, we investigate the rate of convergence of the Euler and Milstein schemes

under certain conditions. The two following theorems provide necessary and sufficient conditions

to ensure that the Euler and Milstein schemes each converge. These theorems together with

their proofs can be found in [14].

5.1.1 Theorem 1 - Conditions for the convergence of the Euler scheme

Let X0 be the initial state of the true process, △ be the time interval and Y △
0 be the initial

state of the simulation process generated by the Euler scheme. Suppose that

E

[
|X0|2

]
<∞ (5.2)

E

[∣∣∣X0 − Y △
0

∣∣∣
2
] 1

2

≤ K1△
1
2 (5.3)

|a (t, x)− a (t, y)|+ |b (t, x)− b (t, y)| ≤ K2 |x− y| (5.4)

|a (t, x)|+ |b (t, x)| ≤ K3 (1 + |x|) (5.5)

|a (s, x)− a (t, x)|+ |b (s, x)− b (t, x)| ≤ K4 (1 + |x|) |s− t| 12 (5.6)

for all s, t ∈ [0, T ] and x, y ∈ Rd, where the constants K1, . . . ,K4 do not depend on the time

step △. Then, for the Euler approximation Y △, the estimate

E

[∣∣∣XT − Y △ (T )
∣∣∣
]
≤ K5△

1
2 (5.7)

holds, where the constant K5 does not depend on △.

Remark 1

This theorem shows that one may bound the discretization error between the true process at time
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T and the discretization as a function of a constant and the discretization interval. Therefore,

one can obtain as accurate solution as required by a reduction of △ only and no transform of

the process required. The conditions for this to hold are:

The first condition (5.2) of theorem 1 implies that the initial state of the true process X must

be finite in the mean square sense. The condition (5.3) indicates that the initial state of the

simulation Y △ must be chosen such that the square root of the mean square error between X0

and Y △
0 is bounded by K1△

1
2 . To some extent, (5.3) means that we must choose the initial

state of the simulation such that the “difference” between it and the initial true state is small

enough and bounded by a given △. The Lipschitz condition (5.4) implies that the drift and

the diffusion are differentiable everywhere in Rd for any s, t ∈ [0, T ]. To some extent, (5.4)

also guarantees the continuity of the drift and the diffusion coefficients in terms of their second

component. The linear growth condition (5.5) implies that the growths of the drift a(t,Xt) and

the diffusion b(t,Xt) must be bounded by the linear growth of K3(1 + |x|).
The three conditions (5.2), (5.4) and (5.5) follow the existence and uniqueness of a strong

solution for the SDE (5.1) (see, for example, chapter 4 in [13]). The last condition (5.6) is a

Hölder condition of order 1
2 (for a fixed x in Rd). Recall that a real or complex-valued function

f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when

there are nonnegative real constants C, α, such that |f(x)− f(y)| ≤ C|x− y|α for all x and y in

the domain of f. Moreover, every Hölder continuous function is uniformly continuous. Therefore,

the condition (5.6) guarantees the continuity and differentiability of the drift and diffusion in

terms of their first component.
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5.1.2 Theorem 2 - Conditions for the convergence of the Milstein scheme

Let X0 be the initial state of the true process, △ be the time interval and Y △
0 be the initial

state of the simulation process generated by the Milstein scheme. Suppose that

E

[
|X0|2

]
<∞ (5.8)

E

[∣∣∣X0 − Y △
0

∣∣∣
2
] 1

2

≤ K1△
1
2 (5.9)

|a (t, x)− a (t, y)| ≤ K2 |x− y| (5.10)

∣∣bj1 (t, x)− bj1 (t, y)
∣∣ ≤ K2 |x− y| (5.11)

∣∣Lj1bj2 (t, x)− Lj1bj2 (t, y)
∣∣ ≤ K2 |x− y| (5.12)

|a (t, x)|+
∣∣Lja (t, x)

∣∣ ≤ K3 (1 + |x|) (5.13)

∣∣bj1 (t, x)
∣∣+
∣∣Ljbj2 (t, x)

∣∣ ≤ K3 (1 + |x|) (5.14)

∣∣LjLj1bj2 (t, x)
∣∣ ≤ K3 (1 + |x|) (5.15)

|a (s, x)− a (t, x)| ≤ K4 (1 + |x|) |s− t| 12 (5.16)

∣∣bj1 (s, x)− bj1 (t, x)
∣∣ ≤ K4 (1 + |x|) |s− t| 12 (5.17)

∣∣Lj1bj2 (s, x)− Lj1bj2 (t, x)
∣∣ ≤ K4 (1 + |x|) |s− t| 12 (5.18)

where a = a− 1

2
bb

′
and Lj =

d∑

k=1

bk,j
∂

∂xk

for all s, t ∈ [0, T ] and x, y ∈ Rd, j = 0, ...,m and j1, j2 = 1, ...,m, where the constants

K1, . . . ,K4 do not depend on △. Then, for the Milstein approximation Y △, the estimate

E

[∣∣∣XT − Y △ (T )
∣∣∣
]
≤ K5△ (5.19)

holds, where the constant K5 does not depend on △.

Remark 2

Similarly to theorem 1, theorem 2 reveals that one may bound the discretization error and the

discretization at maturity T as a function of a constant and the discretization interval. Hence,

one can achieve as accurate solution as required by a reduction of the time interval △ only. The

conditions for this to hold are:

The conditions (5.8) and (5.10)-(5.15) are to guarantee the existence and uniqueness of the

solution for the SDE (5.1) (see chapter 4 in [13]). The condition (5.9) indicates that the initial

state of the simulation Y △ must be chosen such that the square root of the mean square error
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between X0 and Y △
0 is bounded by K1△

1
2 . To some extent, (5.9) means that we must choose

the initial state of the simulation such that the “difference” between it and the initial true state

is small enough and bounded by a given △. The Lipschitz conditions (5.10)-(5.12) imply that

the drift and the diffusion are differentiable everywhere in Rd for any s, t ∈ [0, T ]. Hence, (5.10)-

(5.12) also guarantee the continuity of the drift and the diffusion coefficients. The linear growth

conditions (5.13)-(5.15) imply that the growths of the drift a(t, x) and the diffusion b(t, x) must

be bounded by a linear growth of K3(1+ |x|). The last three conditions (5.16)-(5.18) are Hölder
conditions of order 1

2 (for a fixed x in Rd). These three conditions guarantee the continuity and

differentiability of the drift and diffusion coefficients in terms of their first component.

5.1.3 Discussion of theoretical comparison between Euler and Milstein schemes

To understand the difference between these two schemes, we might look at the results provided

by each scheme. As △ < 1, if we want to improve the accuracy of the simulation, then we must

reduce the time discretization step △ to less than 100 times for the Euler scheme, whereas we

only need to reduce it 10 times for the Milstein scheme. This implies that the solution by the

Milstein scheme converges to the truth faster than the Euler scheme as △ < 1. This provides a

significant computational saving. However, as △ ≥ 1, then we note that △ 1
2 < △. This indicates

that, the difference between the simulation and the truth is bounded by a smaller lower bound

for the Euler scheme than for the Milstein scheme. Therefore, in some sense, this implies that

when △ ≥ 1, the Milstein scheme might produce worse results than the counterpart.

Under some Lipschitz and linear growth conditions on the coefficients of the drift and the diffu-

sion given in the two above theorems, the Euler scheme attains the order of strong convergence

γ = 0.5, whereas the Milstein scheme attains the order of strong convergence γ = 1.0. However,

in special cases, the Euler scheme may actually achieve a higher order of strong convergence.

For instance, when the noise is additive, that is when the diffusion coefficient has the form

b(t, x) ≡ b(t). This actually happens in the case of model 2 since bχ = σχ and bξ = σξ. Hence we

might expect that the Euler scheme may achieve higher order (rather than 0.5) when applied to

model 2. Moreover, under appropriate smoothness assumptions on the drift and diffusion terms,

it may turn out that the Euler scheme has order of strong convergence γ = 1.0.

The Milstein scheme is an extension of the Euler scheme by simply adding one more term. The

strong order γ = 1.0 of the Milstein scheme corresponds to that of the Euler scheme in the de-

terministic case without any noise, that is with b ≡ 0. In this sense, we may regard the Milstein
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scheme as a proper generalization of the deterministic Euler scheme for the strong convergence

criterion since it gives the same order of strong convergence as for the deterministic case. In

many practical problems, the diffusion coefficients may have special structures which allow the

Milstein scheme to be simplified in such a way that avoids the use of double stochastic inte-

grals involving different components of the Wiener process. For instance, with additive noise,

the diffusion coefficients depend at most on time t and not on the x variable and the Milstein

scheme reduces to the Euler scheme, which involves no double stochastic integrals. Moreover,

model 3 is a typical example where its diffusion coefficients have special structure which do not

require the computation of a Stratonovich integral given as in equation (4.18). Particularly,

since the diffusions in the convenience yield and interest rate factors (model 3) are constant,

it turns out that Milstein and Euler scheme produce the same result for these two factors. In

addition, the diffusion of the spot price in model 3 is just a linear function of the spot price, it

therefore simplifies the Milstein scheme to the case where the Stratonovich integrals disappear

(see equation 4.26).

5.2 Simulation

In this sub-section, we examine and compare the Euler and Milstein schemes in terms of their

convergence to the true process. There have been several criteria to judge the quality of a dis-

cretization scheme. For example, in [17], the authors use the bias and root mean square error

(RMSE) criteria to appreciate and compare the accuracy of some schemes. In this analysis we

will consider several comparative criteria, the first involves the ideas discussed in [17] regarding

the root mean square error. In particular we will consider the averaged root mean square error,

where we average over the sample paths generated for a given discretization interval and we

also average over the discrete time steps to get an estimate of the average total error in the

analysis. This measure provides a mix of the Monte Carlo error from simulating trajectories

and the bias due to the discretization. We will also study the properties of strong convergence

and weak convergence of the discretization schemes. For the strong convergence we compare

the estimated empirical distribution to the known true distribution under a Kullback-Leibler

divergence for the strong convergence analysis. For the weak convergence we analyse the first

and second moment estimates and compare them to the true mean and variance of the process

that we derived analytically for different maturities, in addition we also consider the skewness.

To demonstrate the trajectories that we will simulate utilising these model parameters we first
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provide the following plots in figures 1 and 2 for the three factor model with different discretiza-

tion intervals. For both these plots, we use the same time period [0, T = 1]. Particularly, for the

first plot, we choose △ = 0.001 and use 1000 simulation paths. For the second plot, we take △
= 0.1 and use 100 paths. Moreover, to simulate the means for the three factors in model 3, we

choose △ = 10−4 (since as the time interval is sufficiently small, the simulation almost does not

distinguish with the truth). To generate the trajectories for model 3, we utilise the following

parameters

κ α̂ a m∗ σ1 σ2 σ3 ρ1 ρ2 ρ3

0.3 1 0.18 0.76 0.25 0.15 0.1 0.24 0.3 0.08

Table 2: Parameters for model 3

Figure 1: Simulation for model 3 using △ = 0.001 and 1000 simulation paths
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Figure 2: Simulation for model 3 using △ = 0.1 and 100 simulation paths

For figures 1 and 2, the blue lines stand for the simulation paths, whereas the black line

represents the true mean of each factor. It should be noted here that the mean of 1000 simulation

paths using a small △ (0.001) appears to be closer to the true mean than that of 100 paths using

a large △ (0.1). In some sense, this reveals that the simulation achieves better results as we use

more sample paths and a smaller time interval △.

5.2.1 Strong Convergence Analysis

In this section we simulated 10,000 sample paths for maturities or time horizons of T ∈
{5, 10, 25, 50}, for a range of different time discretizations, △ ∈ {0.25, 0.5, 0.75, . . . , 5}. We

then consider the information theoretic concept of the Kullback-Leibler divergence [15] between

the empirical histogram estimate of the sample paths at each maturity T versus the true distri-

bution of the process at time T . We denote the empirical distributional estimate for each factor

at time t = T for a given discretization △ by,

p̂△(t = T ) =
1

N

N∑

i=1

I [Xi ≤ x] (5.20)

where N is the total number of sample paths generated, I [Xi(t = T ) ≤ x] is an indicator function

which is one when the i-th path at time t = T is less than x, producing the ECDF (estimated

cumulative distribution function) estimate at time t. This can then be plugged into the Kullback-
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Leibler divergence [15], which provides a non-symmetric measure of the difference between two

probability distributions and is given by

DKL(q(x(t)||p(x(t)) =
∫ ∞

−∞
q(x(t)) ln

q(x(t))

p(x(t))
dx(t). (5.21)

Hence, if we substitute the ECDF for q we get the empirical KL divergence given by

DKL(p̂△(X(t = T ))||p(X(t = T )) =
∑

i

p̂△(X(t = T )) ln
p̂△(X(t = T ))

p(X(t = T ))
(5.22)

and so we can measure the empirical “distance” between the true distribution and the esti-

mated ECDF providing an analysis for different △ of the strong convergence properties of a

discretization scheme.

In the case of the two factor model we derived the distribution of the process at each maturity

T analytically, since it is a Gaussian distribution and we can obtain explicitly the sufficient

statistics as a function of t. Hence we can calculate exactly the empirical KL divergence, and

in the case of the three factor model we must estimate the KL divergence empirically, where

we assume that the true distribution is approximated exactly with a “true” distribution for the

spot price factor estimated taking △ = 10−5.

For this study, we utilise the following model parameters given in Tables 3 and 4.

κ µ σ1 σ2 ρ

0.02 0.11 0.44 0.22 0.15

Table 3: Parameters for model 2

κ α̂ a m∗ σ1 σ2 σ3 ρ1 ρ2 ρ3

0.4 0.81 0.28 0.7 0.17 0.15 0.08 0.24 0.3 0.08

Table 4: Parameters for model 3
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Figure 3: Model 2 - KL divergence for different maturities T in {5, 10, 25, 50} and different time

intervals △ in {0.25, 0.5, 0.75, . . . , 5}
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Figure 4: Model 3 - KL divergence for different maturities T in {5, 10, 25, 50} and different time

intervals △ in {0.25, 0.5, 0.75, . . . , 5}

39



From figures 3 and 4, we can observe that the KL divergence (for both model 2 and 3) appears

to be increasing as the maturity T increases. This implies that when approximating the true

process for a short maturity, the discretization schemes (Euler and Milstein) achieve very good

result in the sense of distribution. Particularly, as the KL divergence is small, it indicates that

the ECDF obtained by a simulation scheme almost does match the true distribution. Otherwise,

for a large KL divergence, it implies a much less accuracy in the ECDF estimate. In addition,

these figures also reveal a much uncertainty in the KL divergence as the time interval △ is large.

Specifically, for a small △ from 0.25 to around 2.5, the KL divergence appears to be small and

quite stable. But after that, it increases quickly up to △ = 5. This fact implies that the KL

divergence is also affected by the time interval △. To conclude, a simulation scheme achieves a

good result in terms of distribution for a short maturity and a small time interval. Its result gets

worse when either the maturity or the time interval is expanded, and the worse case happens

when both the maturity and time interval become very large.

5.2.2 Weak Convergence Analysis

Recall that a time discrete approximation Y △ corresponding to a time interval △ converges

weakly to the truth X at time T as △ ↓ 0 with respect to a class C of test functions g : Rd → R
if we have

lim△↓0

∣∣∣E[g(XT )]− E[g(Y △(T ))]
∣∣∣ = 0 (5.23)

for all g ∈ C. If C contains all polynomials, then this definition reveals the convergence of all

moments. Hence, for theoretical investigations in this aspect will require the existence of the

moments.

In this section we simulated 10,000 sample paths for maturities or time horizons of T ∈
{1, 5, 10, 25, 50}. In addition, for model 2, we use a range of different discretizations △ in

{0.01, 0.02, 0.03, . . . , 1}, and for model 3, we observe △ in {0.01, 0.02, 0.03, . . . , 1, 2.5, 5}. We

then consider an analysis of the estimated mean, standard deviation and skewness which pro-

vide a comparison of the weak stationarity properties of the simulated sample paths. This allows

us to estimate the effect of the discretization on the estimate of the moments. In probability

theory and statistics, skewness is a measure of the asymmetry of the probability distribution of

a real-valued random variable. In practice, many models assume Gaussian distribution which

has a skewness of zero (since the data points are symmetric about the mean). However, in

reality, the data may not be symmetric. Therefore, an understanding about the skewness allows
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us to see whether deviations from the mean are going to be positive or negative. We denote the

empirical skewness estimate for each factor in the models for a given discretization △ by

γ△ =
m3

m
3
2
2

=
1
N

∑N
i=1 (Xi − X̄)3

( 1
N

∑N
i=1 (Xi − X̄)2)

3
2

(5.24)

where N is the total number of sample paths generated, Xi’s are the sample paths, X̄ is the

sample mean of N paths, m3 is the sample third central moment, and m2 is the sample variance.

Intuitively, the skewness can be infinite when the sample variance m2 equals 0 and the third

central moment m3 is positive or negative. Moreover, when both m2 and m3 are zeros, then the

skewness is undefined. In such cases, the N sample paths do not distinguish to each other (since

m2 = 0 follows that Xi = X̄ for all i). To deal with these cases, we need to sample another N

paths until its sample variance is different from zero.

In the case of the two factor model we derived the distribution of the process at each maturity

T analytically, since it is a Gaussian distribution and we can obtain explicitly the sufficient

statistics as a function of t. Hence we can calculate exactly the moments, and in the case of

the three factor model we must estimate these moments empirically, where we assume that

true distribution is approximated exactly with a “true” distribution for the spot price factor

estimated taking △ = 10−3 under the Milstein scheme.

For this study, we utilise the following model parameters given in Tables 5 and 6.

κ µ σ1 σ2 ρ

1.5 -0.16 0.75 0.52 0.14

Table 5: Parameters for model 2

κ α̂ a m∗ σ1 σ2 σ3 ρ1 ρ2 ρ3

0.3 1 0.18 0.76 0.55 0.15 0.1 0.24 0.3 0.08

Table 6: Parameters for model 3
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Figure 5: Model 2 - Estimated mean versus the true mean for different maturities T in

{1, 5, 10, 25, 50} and different time intervals △ in {0.01, 0.02, . . . , 1}
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Figure 7: Model 2 - Estimated skewness for different maturities T in {1, 5, 10, 25, 50} and different

time intervals △ in {0.01, 0.02, . . . , 1}
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Figure 8: Model 2 - Estimated mean, standard deviation and skewness at maturity T = 25 for

different time intervals △ in {0.01, 0.02, . . . , 1, 2.5, 5}
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Figure 9: Model 3 - Estimated mean versus the true mean for different maturities T in

{1, 5, 10, 25, 50} and different time intervals △ in {0.01, 0.02, . . . , 1, 2.5, 5}
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Figure 10: Model 3 - Estimated standard deviation for different maturities T in {1, 5, 10, 25, 50}
and different time intervals △ in {0.01, 0.02, . . . , 1, 2.5, 5}
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Figure 11: Model 3 - Estimated skewness for different maturities T in {1, 5, 10, 25, 50} and

different time intervals △ in {0.01, 0.02, . . . , 1, 2.5, 5}
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Figure 12: Model 3 - Estimated mean, standard deviation and skewness at maturity T = 25 for

different time intervals △ in {0.01, 0.02, . . . , 1, 2.5, 5}
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From figures 5, 6, 7, 8, 9, 10, 11 and 12, we observe that as the time interval is small, both

the estimated mean and standard deviation get very close to the true ones. Otherwise, the

estimated mean and standard deviation appear to diverge as the time interval becomes bigger.

This implies that in order to obtain good approximation for the true process, we need to make the

time interval △ to be as small as possible. As a result, the discrete approximation Y △ we have

generated converges weakly to the truth with respect to its first, second and third moments.

This provides insight into properties of the models 1, 2 and 3 under different discretizations

which will be valuable when we perform filtering.

5.2.3 Bias and Monte Carlo Uncertainty Analysis via Ave.RMSE

In the analysis of the average root mean square error (AveRMSE) and the standard deviation

are taken into account to judge the accuracy and convergence of the Euler and Milstein schemes

(using models 2 and 3). The standard deviation is taken with respect to the AveRMSE. To

obtain accurate estimates of the AveRMSE, we simulate sets of 1000 sample paths for the

factors in the models 2 and 3, until the relative uncertainty in our estimates is less than 20%, for

each discretization interval. In addition, to evaluate the standard deviation of the AveRMSE,

we use 20 sample sets (50 simulation paths for each set). Furthermore, we use 100 different time

intervals to observe the accuracy of each scheme as the time discretization is made finer.

We divide these studies into two parts. In the first part, we consider taking the AveRMSE

only at the points generated by the time step △. In the second part, we extend taking the

AveRMSE over the whole 100 points: 0.01, 0.02, ..., 1. In the latter study, the result contains

more information than in the first one, since it also considers the points which may not be

generated by △. Hence, for the latter study, we might have a more clearly view about the

“difference” between the simulation and the truth by using each scheme.

Recall that the average root mean square error is given as

AveRMSE =
1

T

T∑

t=1

√
E [X1:T − µ1:T ]

2 (5.25)

Or more explicitly

AveRMSE =
1

T

T∑

t=1

√√√√ 1

m

m∑

j=1

(
Xj

1:T − µj1:T

)2
(5.26)

where T is the total time observed, m is the number of simulation paths, Xj
1:T is the j-th

simulation path, µj1:T is the j-th true mean path.
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The standard deviation of the AveRMSE is given as

Std[AveRMSE] =

√√√√1

k

k∑

s=1

(
AveRMSE−AveRMSE

)2
(5.27)

where AveRMSE is evaluated using m paths (N is the total number of simulation paths), k is

the number of sets which is partitioned from N simulation paths, AveRMSE is evaluated using

N
k
paths. Specifically, in our case, N = 1000 and k = 20. For studies 1 and 2 in this section, we

utilise the following model parameters given in Tables 7 and 8.

κ µ σ1 σ2 ρ

1.5 -0.16 0.75 0.52 0.14

Table 7: Parameters for model 2

κ α̂ a m∗ σ1 σ2 σ3 ρ1 ρ2 ρ3

0.3 1 -0.18 0.76 0.35 0.44 0.4 0.24 0.3 -0.08

Table 8: Parameters for model 3

5.2.4 Study 1 - Errors at the points generated by △

For this study, we calculate the AveRMSE between the simulation and the truth (for model 2

and model 3) at only the points produced by △. A disadvantage of this study is that it does

not take into account the points in the middle of two adjacent points when the time step is

expanded to more than 0.01. In some sense, this implies that we might not be able to observe

the “closeness” between the simulation and the truth paths.

Model 2

We note that since the volatilities in the short-term and long-term factors are constant, the Euler

and Milstein schemes produce the same simulations for this model. Hence, we only restrict our

comparisons here on the change of the time step. The figures 13, 14 and table 9 below summarize

the results obtained by the Euler (or Milstein) scheme.
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Figure 13: Short-term deviation versus Ave. RMSE for χ (study 1)
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Figure 14: Long-term equilibrium price versus Ave. RMSE for ξ (study 1)
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χ ξ

△t AveRMSE 1 Standard deviation 1 AveRMSE 2 Standard deviation 2

0.01 0.3549 0.0216 0.3450 0.0257

0.02 0.3563 0.0218 0.3440 0.0217

0.05 0.3721 0.0243 0.3590 0.0284

0.1 0.3926 0.0254 0.3643 0.0295

0.2 0.4477 0.0290 0.3832 0.0237

0.25 0.4725 0.0377 0.3900 0.0274

0.5 0.7232 0.0559 0.4423 0.0343

0.6 0.8242 0.0535 0.4531 0.0372

0.8 1.2308 0.0601 0.4978 0.0332

1 1.9394 0.0679 0.5101 0.0430

Table 9: Simulation results for model 2 (study 1)

where AveRMSE 1 and Standard deviation 1 denote the AveRMSE and the standard devia-

tion for the short-term factor respectively, AveRMSE 2 and Standard deviation 2 stand for the

AveRMSE and the standard deviation for the long-term factor respectively.

From table 9, we see that as the time step increases, the AveRMSEs for both the short-term and

long-term factors also increase. The AveRMSE for the short-term deviation begins at 0.3549

(for △t = 0.01) and ends up at 1.9394 (for △t = 1). Similarly, the AveRMSE for the long-term

factor starts at 0.3450 (for △t = 0.01), going up gradually and ends up at 0.5101 (for △t = 1).

These facts imply that the simulation generated by the Euler (or Milstein) scheme gives better

approximation results as the time step becomes smaller. Regarding the standard deviations for

the short- and long-term factors, even there are some declines at some time intervals, the general

trend is still upward. The standard deviation for the short-term factor starts at 0.0216 for △t =
0.01, and ends up at 0.0679 for △t = 1 (an increase of approximately three-folds). Meanwhile,

the standard deviation for the long-term factor makes an increase of about two-folds from 0.0257

(at △t = 0.01) to 0.0430 (at △t = 1). To some extent, these imply that the uncertainty of the

simulation occurs most at △t = 1, and when the time step is made smaller, the uncertainty of

the simulation reduces too.
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Model 3

We first note that since the diffusion coefficient in the spot price dynamics is not a constant, the

Euler and Milstein schemes produce different simulation results for the spot price. In addition,

since the diffusion coefficients in the convenience yield and the interest rate are constant, the

results obtained by these schemes are not distinguishable. The figures 15, 16, 17, 18 and tables

10, 11 below summarize the results obtained by the Euler and Milstein schemes.
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Figure 15: The spot price (Milstein scheme) versus Ave. RMSE (study 1)
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Figure 16: The spot price (Euler scheme) versus Ave. RMSE (study 1)
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Figure 17: The convenience yield versus Ave. RMSE (study 1)
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Figure 18: The interest rate versus Ave. RMSE (study 1)

S δ r

△t AveRMSE1 Std1 AveRMSE2 Std2 AveRMSE3 Std3

0.01 1.7263 0.0050 0.4030 0.0008 0.5744 0.0008

0.02 1.7266 0.0032 0.4207 0.0004 0.5841 0.0008

0.05 1.7540 0.0026 0.4401 0.0004 0.5808 0.0004

0.1 1.7465 0.0030 0.4345 0.0004 0.6169 0.0007

0.2 1.8509 0.0039 0.4369 0.0008 0.6343 0.0008

0.25 1.9194 0.0046 0.4458 0.0011 0.6821 0.0014

0.5 2.1705 0.0080 0.4635 0.0006 0.7692 0.0015

0.6 2.2754 0.0139 0.4437 0.0008 0.8064 0.0023

0.8 1.9301 0.0036 0.4311 0.0019 0.8931 0.0017

1 1.9067 0.0080 0.4810 0.0012 0.9579 0.0023

Table 10: Simulation results for model 3 using the Milstein scheme (study 1)
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S δ r

△t AveRMSEe1 Stde1 AveRMSEe2 Stde2 AveRMSEe3 Stde3

0.01 1.7264 0.0050 0.4030 0.0008 0.5744 0.0008

0.02 1.7261 0.0032 0.4207 0.0004 0.5841 0.0008

0.05 1.7552 0.0027 0.4401 0.0004 0.5808 0.0004

0.1 1.7454 0.0029 0.4345 0.0004 0.6169 0.0007

0.2 1.8499 0.0041 0.4369 0.0008 0.6343 0.0008

0.25 1.9197 0.0050 0.4458 0.0011 0.6821 0.0014

0.5 2.1664 0.0096 0.4635 0.0006 0.7692 0.0015

0.6 2.2759 0.0156 0.4437 0.0008 0.8064 0.0023

0.8 1.9151 0.0047 0.4311 0.0019 0.8931 0.0017

1 1.8905 0.0122 0.4810 0.0012 0.9579 0.0023

Table 11: Simulation results for model 3 using the Euler scheme (study 1)

where:

• AveRMSE1 and Std1 denote the AveRMSE and the standard deviation for the spot price

respectively (using Milstein scheme).

• AveRMSE2 and Std2 denote the AveRMSE and the standard deviation for the convenience

yield respectively (using Milstein scheme).

• AveRMSE3 and Std3 denote the AveRMSE and the standard deviation for the interest

rate respectively (using Milstein scheme).

• AveRMSEe1 and Stde1 denote the AveRMSE and the standard deviation for the spot

price respectively (using Euler scheme).

• AveRMSEe2 and Stde2 denote the AveRMSE and the standard deviation for the conve-

nience yield respectively (using Euler scheme).

• AveRMSEe3 and Stde3 denote the AveRMSE and the standard deviation for the interest

rate respectively (using Euler scheme).

From tables 10 and 11, we observe that the AveRMSEs for the convenience yield and interest

rate obtained by the Milstein and Euler schemes are not distinguishable since their diffusion
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coefficients are constants. For the spot price factor, the AveRMSEs achieved by the both

schemes appear to increase up to △t = 0.6. For the Milstein scheme, its AveRMSE starts from

1.7263 at △t = 0.01 and rises to 2.2754 at △t = 0.6. For the Euler scheme, its AveRMSE

begins from 1.7264 at △t = 0.01 and increases to 2.2759 at △t = 0.6. From △ = 0.8 to △
= 1, the AveRMSEs for both schemes decrease due to the fact that the spot price appears to

be stationary and less changing in that interval. Regarding the standard deviation for the spot

price, it can be seen that the standard deviation obtained by the Milstein scheme seems to be

less than that of the Euler scheme. To some extent, this implies that the simulations generated

by the Milstein gather closer to the truth than those generated by the Euler one. However, it

should be noted that as the time interval becomes very small, the Euler appears to produce as a

good result as its counterpart, as expected. This again verifies numerically the theoretical results

presented previously. Indeed, at △t = 0.01, the AveRMSEs for both these schemes almost do

not distinguish with a very small difference of 0.0001, meanwhile the standard deviation for both

schemes are the same (0.0050).

Regarding the results for the convenience yield factor, it can be seen that the AveRMSE for this

factor is quite small and stable as compared to the spot price. It ranges from 0.4030 (at △t =
0.01) to 0.4810 (at △t = 1). Moreover, the standard deviation of the convenience yield seems

to be very small as compared to its actual AveRMSE, ranging from 0.0004 to 0.0019. Another

outstanding feature is that the AveRMSE of the interest rate increases as the time interval is

expanded (except at △t = 0.02 where its AveRMSE is 0.5841). To some extent, this implies that

as the time interval is made smaller, the Milstein (or Euler) scheme gives better simulation for

the interest rate. In addition, the standard deviation of the interest is quite small as compared

to that of the spot price factor. The general trend of this standard deviation is upward which

implies that as the time step increases, there may appear some simulation paths generated by

the Milstein (or Euler) scheme being “far” away from the truth path.

5.2.5 Study 2 - Errors at fixed grid of values

For this study, we calculate the AveRMSE between the simulation and the truth (for model 2

and model 3) at only the points produced by △. An advantage of this study is that it does take

into account points in the middle of two adjacent discretization time points when the time step

is expanded to more than 0.01. In some sense, this implies that we might be able to observe the

“closeness” between the simulation and the truth paths.
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Model 2

We note that since the volatilities in the short-term and long-term factors are constant, the

Euler and Milstein schemes produce the same simulations for this model. Hence, we only restrict

our comparisons here on the change of the time step. The figures 19, 20 and table 12 below

summarize the results obtained by the Euler (or Milstein) scheme.
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Figure 19: Short-term deviation versus Ave. RMSE for χ (study 2)
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Figure 20: Long-term equilibrium price versus Ave. RMSE for ξ (study 2)

χ ξ

△t AveRMSE 1 Standard deviation 1 AveRMSE 2 Standard deviation 2

0.01 0.3514 0.0214 0.3416 0.0254

0.02 0.3535 0.0215 0.3406 0.0214

0.05 0.3754 0.0235 0.3555 0.0281

0.1 0.4217 0.0259 0.3626 0.0294

0.2 0.5308 0.0278 0.3798 0.0233

0.25 0.5950 0.0427 0.3869 0.0278

0.5 1.0380 0.0533 0.4403 0.0345

0.6 1.2186 0.0609 0.4426 0.0375

0.8 1.8342 0.0884 0.4720 0.0306

1 2.6021 0.0886 0.5441 0.0485

Table 12: Simulation results for model 2 (study 2)

where AveRMSE 1 and Standard deviation 1 denote the AveRMSE and the standard devia-

tion for the short-term factor respectively, AveRMSE 2 and Standard deviation 2 stand for the
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AveRMSE and the standard deviation for the long-term factor respectively.

From table 12, we observe that as the time step increases, the AveRMSEs for both the short-

term and long-term factors almost increase too. Particularly, the AveRMSE for the short-term

deviation begins at 0.3514 (for △t = 0.01) and ends up at 2.6021 (for △t = 1). Similarly, the

AveRMSE for the long-term factor starts at 0.3416 (for △t = 0.01), going up gradually (even

there is a small decline to 0.3406 at △t = 0.02) and ends up at 0.5441 (for △t = 1). These

facts indicate that the simulation generated by the Euler (or Milstein) scheme gives better ap-

proximation results as the time step is made smaller. Regarding the standard deviations for

the short- and long-term factors, even there are some declines at some time intervals (for the

long-term factor), the general trend for both two factors is still upward. The standard deviation

for the short-term factor starts at 0.0214 for △t = 0.01, and ends up at 0.0886 for △t = 1 (an

increase of approximately four times). In addition, the standard deviation for the long-term

factor makes an increase of about two-folds from 0.0254 (at △t = 0.01) to 0.0485 (at △t = 1).

To some extent, these imply that the uncertainty of the simulation occurs most at △t = 1, and

when the time step is smaller, the uncertainty of the simulation decreases too.

Model 3

We first notice that since the diffusion coefficient in the spot price dynamics is not a constant,

the Euler and Milstein schemes produce different simulation results for the spot price. On the

other hand, since the diffusion coefficients in the convenience yield and the interest rate are

constant, the results obtained by these schemes are not distinguishable. The figures 21, 22, 23,

24 and tables 13, 14 below summarize the results achieved by the Euler and Milstein schemes.
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Figure 21: The spot price (Milstein scheme) versus Ave. RMSE (study 2)
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Figure 22: The spot price (Euler scheme) versus Ave. RMSE (study 2)
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Figure 23: The convenience yield versus Ave. RMSE (study 2)
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Figure 24: The interest rate versus Ave. RMSE (study 2)
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S δ r

△t AveRMSE1 Std1 AveRMSE2 Std2 AveRMSE3 Std3

0.01 1.7263 0.0708 0.4030 0.0276 0.5744 0.0285

0.02 1.7264 0.0566 0.4202 0.0196 0.5820 0.0280

0.05 1.7288 0.0510 0.4208 0.0204 0.5765 0.0198

0.1 1.7264 0.0538 0.4050 0.0190 0.5990 0.0258

0.2 1.7618 0.0600 0.4198 0.0287 0.6071 0.0266

0.25 1.7819 0.0652 0.4227 0.0309 0.6147 0.0361

0.5 1.7951 0.0758 0.4307 0.0242 0.6539 0.0345

0.6 1.7628 0.0917 0.4341 0.0225 0.6543 0.0435

0.8 1.6747 0.0596 0.4556 0.0422 0.6586 0.0403

1 1.6860 0.0973 0.4779 0.0374 0.7250 0.0601

Table 13: Simulation results for model 3 using the Milstein scheme (study 2)

S δ r

△t AveRMSEe1 Stde1 AveRMSEe2 Stde2 AveRMSEe3 Stde3

0.01 1.7264 0.0708 0.4030 0.0276 0.5744 0.0285

0.02 1.7259 0.0568 0.4202 0.0196 0.5820 0.0280

0.05 1.7300 0.0515 0.4208 0.0204 0.5765 0.0198

0.1 1.7254 0.0533 0.4050 0.0190 0.5990 0.0258

0.2 1.7604 0.0623 0.4198 0.0287 0.6071 0.0266

0.25 1.7815 0.0686 0.4227 0.0309 0.6147 0.0361

0.5 1.7912 0.0877 0.4307 0.0242 0.6539 0.0345

0.6 1.7633 0.1042 0.4341 0.0225 0.6543 0.0435

0.8 1.6591 0.0711 0.4556 0.0422 0.6586 0.0403

1 1.6857 0.1248 0.4779 0.0374 0.7250 0.0601

Table 14: Simulation results for model 3 using the Euler scheme (study 2)

where:

• AveRMSE1 and Std1 denote the AveRMSE and the standard deviation for the spot price

respectively (using Milstein scheme).
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• AveRMSE2 and Std2 denote the AveRMSE and the standard deviation for the convenience

yield respectively (using Milstein scheme).

• AveRMSE3 and Std3 denote the AveRMSE and the standard deviation for the interest

rate respectively (using Milstein scheme).

• AveRMSEe1 and Stde1 denote the AveRMSE and the standard deviation for the spot

price respectively (using Euler scheme).

• AveRMSEe2 and Stde2 denote the AveRMSE and the standard deviation for the conve-

nience yield respectively (using Euler scheme).

• AveRMSEe3 and Stde3 denote the AveRMSE and the standard deviation for the interest

rate respectively (using Euler scheme).

From tables 13 and 14, we first observe that the AveRMSE for the spot price (for both the

Milstein and Euler schemes) appears to increase from △t = 0.01 up to △t = 0.5, and then

decline until the end. The Milstein and Euler schemes produce almost the same results at △t =
0.01 (1.7263 for the Milstein and 1.7264 for the Euler one). This is due to the fact that the Euler

scheme achieves very good simulation result as the Milstein does as the time interval is made

very small. The AveRMSE for the spot price rises gradually (even it declines at some certain

△t), and reaches 1.7951 and 1.7912 for the Milstein and Euler schemes respectively. It should

be noted that from time 0.5 to time 1, the curve of the spot price appears to be less changing

than from time 0 to time 0.5. To some extent, this leads to the declines in the AveRMSE of

the spot price achieved by these two schemes. Regarding the standard deviation of the spot

price, the numbers for both the Milstein and Euler schemes appear to be quite similar to each

other for very small △t. As △t increases, the Milstein seems to yield better result than its

counterpart which implies that as the time interval goes up, the uncertainty appears more in

the Euler scheme than in the Milstein one. In addition, the general trend for the standard

deviation of the spot price is upward. Both the Milstein and Euler start at almost the same

level of 0.0708 (at △t = 0.01), and end up at 0.0973 for the Milstein scheme and 0.1248 for the

Euler one respectively.

Regarding the results for the convenience yield and the interest rate factors, since the drift and

diffusion coefficients are constants, therefore the Milstein and Euler schemes produce the same

results. It first should be noted that the AveRMSEs for these two factors seem to rise up as the

time interval is expanded. The AveRMSE for the convenience yield starts at 0.4030 (for △t =
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0.01), and then it fluctuates around 0.4200 until △t = 0.2. For △t from 0.25 to 1, the AveRMSE

for this factor goes up quite quickly, and reach 0.4779 at △t = 1. For the interest rate factor,

there is only a bit decrease at △t = 0.05 where its AveRMSE is 0.5765. In general, the trend

of the AveRMSE for this last factor is upwards. It begins at 0.5744 for △t = 0.01, and ends

up at 0.7250 for △t = 1. Finally, regarding the standard deviation aspect, it can be seen that

there are more uncertainty for large △t than for smaller △t. For the convenience yield factor,

the numbers at △t = 0.8 and △t = 1 are 0.0422 and 0.0374 respectively, as compared to 0.0276

and 0.0196 at △t = 0.01 and △t = 0.02 in that order. For the interest rate one, the numbers at

△t = 0.8 and △t = 1 are 0.0403 and 0.0601 respectively, as compared to 0.0285 and 0.0280 at

△t = 0.01 and △t = 0.02 in the same order.
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6 State space models for commodities

In this section, the state space model is presented as in [10]. This model representation is a

powerful tool to handle a wide range of time series models. Once a model has been put in state

space form, the Kalman filter may be applied and this in turn leads to algorithms for prediction

and smoothing. The general state space form applies to a multivariate time series, zk, containing

N elements. These observable variables are related to an m × 1 vector, xk, known as the state

vector, via a measurement equation [10]

zk =Wkxk + dk + ǫk, k = 1, ..., T (6.1)

where Wk is an N x m matrix, dk is an N x 1 vector and ǫk is an N x 1 vector of serially

uncorrelated disturbances with mean zero and covariance matrix Hk, that is

E [ǫk] = 0 and Var [ǫk] = Hk (6.2)

In general, the elements of xk are not observable. However, they are known to be generated by

a first-order Markov process [10]

xk = Tkxk−1 + ck +Rkηk, k = 1, ..., T (6.3)

where Tk is an m x m matrix, ck is an m x 1 vector, Rk is an m x g matrix and ηk is a g x 1

vector of serially uncorrelated disturbances with mean zero and covariance matrix, Qk, that is

E [ηk] = 0 and Var [ηk] = Qk (6.4)

Equation (6.3) is the transition equation. To some extent, the inclusion of the matrix Rk is

arbitrary. The disturbance term could always be redefined to have a covariance matrix RkQkR
T
k .

The specification of the state space system is completed by two further assumptions:

(a) the initial state vector, x0, has a mean of a0 and a covariance matrix P0, that is

E [x0] = a0 and Var [x0] = P0 (6.5)

(b) the disturbances ǫk and ηk are uncorrelated with each other in all time periods, and uncor-

related with the initial state, that is

E
[
ǫkη

T
s

]
= 0 ∀s, k = 1, ..., T (6.6)

and

E
[
ǫkx

T
0

]
= 0, E

[
ηkx

T
0

]
= 0 for k = 1, ..., T (6.7)
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The matrices Wk, dk and Hk in the measurement equation and the matrices Tk, ck, Rk and Qk

in the transition equation are referred to as the system matrices. If these matrices do not change

over time, the model is said to be time-invariant or time-homogeneous. Stationary models are

a special case. However, although the class of time-invariant models is broader than that of

stationary models, many time-invariant models have a stationary from which can be obtained

by applying a transformation such as differencing. The system matrices Wk, Hk, Tk, Rk and

Qk may also depend on a set of unknown parameters, and one of the main statistical tasks will

often be the estimation of these parameters.

The transition equation in (6.3) is sometimes shifted forward one period in order to become [10]

xk+1 = Tkxk + ck +Rkηk, (6.8)

The definition of xk for any particular statistical model is determined by construction. Its ele-

ments may or may not be identifiable with components which have a substantive interpretation,

for instance as a trend or a seasonal. From a technical viewpoint, the aim of the state space

formulation is to set up xk in such a way that it contains all the relevant information on the

system at time k and that it does so by having as small a number of elements as possible. A state

space form which minimises the length of the state vector is said to be a minimal realisation. A

minimal realisation is a basic criterion for a good state space representation.

6.1 Representation for model 1

From equation (3.5), the measurement equation of model 1 can be expressed as follows

zk =Wkxk + dk + ǫk, k = 1, ..., nT (6.9)

where:

• zk = [lnFT1 , . . . , lnFTn ] is a n × 1 vector of observed (log) futures prices with maturities

T1, . . . , Tn;

• dk = [(r − c)T1, . . . , (r − c)Tn] is a n× 1 vector;

• Wk = [1, . . . , 1] is a n× 1 matrix; and

• ǫk is a n× 1 vector of serially uncorrelated, normally distributed disturbances with:

E [ǫk] = 0 and Cov [ǫk] = Hk.
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Now using the Euler scheme, the process X (the log of the spot price) can be discretized as

Xk =Xk−1 +

(
µ− 1

2
σ2
)
△k + σ

√
△knX,k−1 (6.10)

where nX,k−1 is a standard normal random variable.

Thus, from this equation, the transition equation can be expressed as follows

xk = Tkxk−1 + ck +Rkηk, k = 1, ..., nT (6.11)

where:

• xk = [Xk] is a 1× 1 vector of the state variable;

• Tk = [1] is a 1× 1 matrix;

• ck = [(µ− 1
2σ

2)△k] is a 1× 1 vector;

• Rk is a 1× 1 identity matrix;

• ηk is a 1 × 1 vector of normally distributed disturbance with E [ηk] = 0 and Var [ηk] =

Qk = Var[Xk] = [σ2△k].

6.2 Representation for model 2

From equation (3.10), the measurement equation of the short-term/long-term model can be

written as follows

zk =Wkxk + dk + ǫk, k = 1, ..., nT (6.12)

where:

• zk = [lnFT1 , . . . , lnFTn ] is a n × 1 vector of observed (log) futures prices with maturities

T1, . . . , Tn;

• dk = [A(T1), . . . , A(Tn)] is a n× 1 vector;

• Wk = [e−κT1 1, . . . , e−κTn 1] is a n× 2 matrix; and

• ǫk is a n× 1 vector of serially uncorrelated, normally distributed disturbances with:

E [ǫk] = 0 and Cov [ǫk] = Hk
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The evolution of the state variables is described by the transition equation [10]:

xk = Tkxk−1 + ck +Rkηk, k = 1, ..., nT (6.13)

where:

• xk = [χk, ξk] is a 2× 1 vector of state variables;

• Tk =


 e−κ△k 0

0 1


 is a 2× 2 matrix;

• ck = [0, µξ△k] is a 2× 1 vector;

• Rk is a 2× 2 identity matrix;

• ηk is a 2×1 vector of serially uncorrelated, normally distributed disturbances with E [ηk] =

0 and Var [ηk] = Qk = Cov[(χ△k, ξ△k)] =



(
1− e−2κ△k

) σ2
χ

2κ

(
1− e−κ△k

) ρσχσξ

κ(
1− e−κ△k

) ρσχσξ

κ
σ2ξ△k




(given by equation (3.29)).

6.3 Representation for model 3

For the purpose of estimation which we will consider later on, the spot price, the convenience

yield and the interest rate should be estimated simultaneously from a time series and cross-

section of futures prices. To simplify the estimation, we first estimate the parameters of the

interest rate process, and then use them to estimate the parameters of the spot price and

convenience yield processes. Hence, it is essentially assumed that the parameters of the interest

rate process are not affected by commodity futures prices, which seems to be a reasonable

assumption. Once the interest rate process has been estimated, we then only have to estimate

the parameters and state variables from the spot price and convenience yield processes. For

these reasons, we just need to express the measurement and transition equations in terms of the

(log) spot price and the convenience yield factors.

From equation (3.21), the measurement equation of model 3 can be written as follows

zk =Wkxk + dk + ǫk, k = 1, ..., nT (6.14)

where:

• zk = [lnFTk
], k = 1, . . . , n is a n×1 vector of observed (log) futures prices with maturities

T1, . . . , Tn;
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• Wk = [1 − 1−e−κTk

κ
], k = 1, . . . , n is a n× 2 matrix;

• dk = [ rk(1−e−aTk )
a

+ C(Tk)], k = 1, . . . , n is a n× 1 vector; and

• ǫk is a n× 1 vector of serially uncorrelated, normally distributed disturbances with:

E [ǫk] = 0 and Cov [ǫk] = Hk

The transition equation can be found in the Appendix as

xk = Tkxk−1 + ck +Rkηk, k = 1, ..., nT (6.15)

where:

• xk = [Xk, δk] is a 2× 1 vector of state variables;

• Tk =


 1 −△k

0 1− κ△k


 is a 2× 2 matrix;

• ck = [(µ− 1
2σ

2
1)△k, κα△k] is a 2× 1 vector;

• Rk is a 2× 2 identity matrix;

• ηk is a 2×1 vector of serially uncorrelated, normally distributed disturbances with E [ηk] =

0 and Var [ηk] = Qk = Cov[(Xk, δk)] =


 σ21△k ρ1σ1σ2△k
ρ1σ1σ2△k σ21△k


.
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7 Filtering recursions for commodities

Here a general framework relevant to each of the commodity state space models is developed for

recursive estimation of the latent states. This approach is typically known as filtering.

7.1 Filtering problem

The filtering problem considers the evolution of the state sequence xk, k ∈ N given by

xk = fk (xk−1,vk−1) (7.1)

where fk : Rnx × Rnv → Rnx is a possibly nonlinear function of the state xk−1, vk−1, k ∈ N

is an i.i.d process noise sequence, nx, nv are dimensions of the state and process noise vectors,

respectively. The objective of the problem is to recursively estimate xk from the measurements

zk = hk (xk, nk) (7.2)

where hk : Rnx ×Rnn → Rnz is a possibly nonlinear function, nk, k ∈ N is an i.i.d. measurement

noise sequence, and nz, nn are dimensions of the measurement and measurement noise vectors

respectively.

From a Bayesian perspective, the aim of the filtering problem is to recursively calculate some

degree of belief in the state xk at time k, taking different values, given the data z1:k up to time

k. Thus, it is required to construct the p.d.f. p(xk|z1:k). It is essentially assumed that the initial

p.d.f. p(x0|z0) ≡ p(x0) of the state vector, which is also known as the prior, is available (z0

being the set of no measurements).

7.2 Model definition and assumptions

To be able to solve the problem of filtering, a model is required for the dynamics of the state and

for the measurement process. It is often assumed that the xk process is Markov, so the state at

a time step, xk−1, is a sufficient statistic of the history of the process, x1:k−1. Since the state

captures all the information known about the system, the state at a time step is also assumed

a sufficient statistic of the history of measurements, z1:k−1. The current state, xk, is therefore

independent of the history of states and measurements if the previous state, xk−1, is known:

p (xk|x1:k−1, z1:k−1) = p (xk|xk−1,x1:k−2, z1:k−1) = p (xk|xk−1) (7.3)
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While in general, the measurement could be a function of the entire history of states, x1:k,

and the previous measurements, z1:k−1, the case often encountered is that the measurement is

independent of the history of states and the previous measurements:

p (zk|x1:k, z1:k−1) = p (zk|xk,x1:k−1, z1:k−1) = p (zk|xk) (7.4)

In principle, the procedure for solving the filtering problem consists of two stages: prediction

and update.

7.2.1 Prediction stage

Suppose that the required p.d.f. p(xk−1|z1:k−1) at time k-1 is available. The prediction stage

involves using the state equation of xk to obtain the prior p.d.f. p(xk|z1:k) at time k via the

Chapman-Kolmogorov equation (see, for example, [14] page 69)

p (xk|z1:k−1) =

∫
p (xk,xk−1|z1:k−1) dxk−1

=

∫
p (xk|xk−1, z1:k−1) p (xk−1|z1:k−1) dxk−1

=

∫
p (xk|xk−1) p (xk−1|z1:k−1) dxk−1

(7.5)

In this equation, the fact that p(xk|xk−1, z1:k−1) = p(xk|xk−1) has been used since the state

equation is described as a Markov process of order one. The probabilistic of the state evolution

p(xk|xk−1) is defined by the system equation of xk and the known statistics of vk−1.

7.2.2 Update stage

At time step k, when a measurement zk becomes available, it may be used to update the prior

via Bayes’ rule

p (xk|z1:k) =
p (zk|xk) p (xk|z1:k−1)

p (zk|z1:k−1)
(7.6)

where the normalizing constant

p (zk|z1:k−1) =

∫
p (zk|xk) p (xk|z1:k−1) dxk (7.7)

depends on the likelihood function p(zk|xk) defined by the measurement equation and the known

statistics of nk. In the update stage, the measurement zk is used to modify the prior density to

obtain the required posterior density of the current state.
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8 Filtering solutions for commodity state space models

In this section, derivation of the properties of estimation under a filtering framework in a state

space model will be presented. In particular, derivation of optimality of the Kalman filter in the

linear Gaussian setting will be considered ([10], [8], [1]).

8.1 Minimum mean square error criterion

In statistics, the mean square error (MSE) of an estimator is a method to quantify the difference

between an estimator and the true value. MSE is the expected value of the squared error loss

or quadratic loss, and it measures the average of the square of the error. Therefore, minimizing

MSE is a key criterion in selecting estimators.

Here we denote x̂k(z1:k) by x̂k|k - the state estimator at time k based on the observations up to

time k. The conditional mean estimator yields

x̂k|k = E [xk|z1:k = z1:k] =

∫
xkp (xk|z1:k = z1:k) dxk (8.1)

This is a unique estimate which minimizes the MSE:

E

[∥∥xk − x̂k|k

∥∥2 |z1:k = z1:k

]
(8.2)

and is also called the minimum error variance estimate, since

E

[∥∥xk − x̂k|k
∥∥2 |z1:k = z1:k

]
≤ E

[
‖xk − y‖2 |z1:k = z1:k

]
(8.3)

for all estimators y = f(z1:k).

Proof

E

[
‖xk − f (z1:k)‖2 |z1:k = z1:k

]

=

∫ ∫
(xk − f (z1:k))

2 p (xk, z1:k = z1:k) dxkdz1:k

=

∫ (∫
(xk − f (z1:k))

2 p (xk|z1:k = z1:k) dxk

)
p (z1:k = z1:k) dz1:k

To minimize E
[
‖xk − f (z1:k)‖2 |z1:k = z1:k

]
, we minimize

∫
(xk − f (z1:k))

2
p (xk|z1:k = z1:k) dxk

∂

∂f

∫

(xk − f (z1:k))
2
p (xk|z1:k = z1:k) dxk

=
∂

∂f

{
∫

x
2
kp (xk|z1:k = z1:k) dxk − 2f (z1:k)

∫

xkp (xk|z1:k = z1:k) dxk + f (z1:k)
2

∫

p (xk|z1:k = z1:k) dxk

}

=− 2

∫

xkp (xk|z1:k = z1:k) dxk + 2f (z1:k)

∫

p (xk|z1:k = z1:k) dxk

=− 2E [xk|z1:k = z1:k] + 2f (z1:k)
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Set the last expression to zero, then: f(z1:k) = E[xk|z1:k = z1:k]

Remarks

Let x̃k|k be the MSE estimation error, then it is given by

x̃k|k = xk − x̂k|k (8.4)

The estimator x̂k|k has the following properties:

1. x̂k|k is conditionally unbiased. That is,

E
[
x̃k|k|z1:k = z1:k

]
= 0 (8.5)

2. x̂k|k is both conditionally and unconditionally unbiased:

E
[
x̃k|k|z1:k = z1:k

]
= 0 (8.6)

E
[
x̃k|k

]
= 0 (8.7)

Proof

1. We use the above result that x̂k|k = E [xk|z1:k = z1:k]. Then this follows that:

E
[
x̂k|k|z1:k = z1:k

]
= E [xk|z1:k = z1:k]

⇒ E
[
xk − x̂k|k|z1:k = z1:k

]
= 0

⇒ E
[
x̃k|k|z1:k = z1:k

]
= 0

2. We use the result of item 1: E
[
x̃k|k|z1:k = z1:k

]
= 0. Take expectation of both hand sides

yields:

E
[
E
(
x̃k|k|z1:k = z1:k

)]
= 0

⇒ E
[
x̃k|k

]
= 0

where we use a property of conditional expectation that: E[E[A|B]] = E[A].

Result (Orthogonality principle)

In statistics, the orthogonality principle is a necessary and sufficient condition for the optimality

of a Bayesian estimator. It says that the error associated with optimal estimate is orthogonal to

any function of the observations with respect to the inner product E[xyT ]. Thus, an estimator
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is optimal according to the minimum mean square error criterion if and only if it is unbiased

and the orthogonality condition holds, that is

E
[
x̃k|k

]
= 0, and (8.8)

E
[
x̃k|kf (z)

]
= 0 (8.9)

The second condition is equivalent to

x̃⊥Zk (8.10)

where Zk denotes the linear vector space generated by z = z1:k. Hence, the least linear mean

square estimator of x given z is simply the projection of x onto the space Zk, that is

x̂ = projZx

=
E
[
xzT

]

E [zzT ]
z

(8.11)

As shown earlier, the conditional mean is an optimal estimator in the least mean square

sense. Hence, from the orthogonality principle, it follows automatically that the conditional

mean estimator is orthogonal to the linear space generated by the observations available at the

current time.

We have so far made no assumptions on the state or observations, as well as have not defined

any particular state space models yet. From now on, we will concentrate on problems with

specific assumptions made on the state and the observations. In the following part, we consider

the case where the state and the observations are jointly multivariate normal. This is particularly

relevant for the Kalman filter optimal solution.

8.2 Properties of multivariate normal random variables

Suppose the state xk and the observations z1:k are jointly multivariate normal. For simplicity,

we denote xk by x and z1:k by z. Then the multivariate normal distribution of x and z is given

by

fx,z (x, z) =
1√

det (2πP )
exp


− 1

2π

[
(x− x̄)T (z − z̄)T

]
P−1


 x− x̄

z − z̄




 (8.12)

where x̄ is the expectation of x, z̄ is the expectation of z, and P =


 Pxx Pxz

Pzx Pzz


.

The following result (see [10], page 165) shows that the conditional distribution of jointly mul-
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tivariate normal vectors x and z is also multivariate normal with:

E [x|z] = x̄+ PxzP
−1
zz

(z − z̄) (8.13)

Cov [x|z] = P
xx|z = Pxx − PxzP

−1
zz
Pzx (8.14)

In this Gaussian context, there are two points we need to note. Firstly, the conditional expec-

tation of x given z is a linear function of the observations z. Secondly, the covariance matrix

Cov[x|z] is not a function of the observations z which may simplify the recursive computation of

the Kalman filter recursions. These nice properties of the multivariate normal random variables

then lead to the introduction of the Kalman filter which is a procedure for calculating the linear

minimum MSE state estimator in linear state space models. The derivation and properties of

the Kalman filter are discussed in the next section.

8.3 Filtering solution for Linear Gaussian case

In this section, we discuss the Kalman filter ([8], [10], [1]) and examine its important role

for linear Gaussian models. Once a model is put in a state space form which is specified by

equations (6.1) and (6.3), the Kalman filter emerges as an effective tool for computing the

optimal estimator of the state vector at time k, based on the observations up to and including

time k. The system matrices together with a0 and P0 are assumed to be known in all time

periods and do not need to be explicitly included in the information set. Particularly, when the

disturbances and the initial state vector are normally distributed, the Kalman filter enables the

likelihood function to be calculated via the prediction error decomposition, and then this allows

the estimation of any unknown parameters in the model. Moreover, it also provides the basis for

statistical testing and model specification. The derivation of the Kalman filter presented below

relies on the assumptions that the disturbances and initial state vector are normally distributed.

A standard result on the multivariate normal distribution is then used to show how it is possible

to calculate recursively the distribution of xk, conditional on the information set at time k, for all

k from 1 to T. These conditional distributions are themselves normal and hence are completely

specified by their means and covariance matrices. After deriving the Kalman filter, it is shown

that the mean of the conditional distribution of xk is an optimal estimator of xk in the sense

that it minimises the mean square error. When the normality assumption is omitted, it does not

guarantee that the Kalman filter will give the conditional mean of the state vector. Nonetheless,

it is still optimal in the sense that it minimises the mean square error within the class of all
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linear estimators.

8.3.1 Derivation of the Kalman filter

Let ak−1 denote the mean of xk−1 conditional on the observations up to and including time k - 1,

that is, ak−1 = E(xk−1|z1:k−1). Under the normality assumption, the initial state vector, x0, has

a multivariate normal distribution with mean a0 and covariance matrix P0. The disturbances

ηk and ǫk also have multivariate normal distribution for k = 1, ..., T and are distributed

independently of each other and of x0. The state vector at time k = 1 is given by

x1 = T1x0 + c1 +R1η1. (8.15)

Thus x1 is a linear combination of two vectors of random variables (x0 and η1), both with

multivariate normal distributions, and a vector of constants (c1). Hence it is itself multivariate

normal with a mean of

a1|0 = T1a0 + c1 (8.16)

and a covariance matrix

P1|0 = T1P0T
T
1 +R1Q1R

T
1 . (8.17)

The notation a1|0 stands for the mean of the distribution of x1 conditional on the information

at time k = 0. In order to obtain the distribution of x1 conditional on z1, we write

x1 = a1|0 +
(
x1 − a1|0

)
(8.18)

z1 =W1a1|0 + d1 +W1

(
x1 − a1|0

)
+ ǫ1. (8.19)

Equation (8.19) is simply a rearrangement of the measurement equation. Furthermore, it can

be seen that the vector [xT
1 zT1 ]

T has a multivariate normal distribution with a mean of

[aT1|0 (W1a1|0+d1)
T ]T and a covariance matrix Cov

[
xT
1 zT1

]T
=


 P1|0 P1|0W

T
1

W1P1|0 W1P1|0W
T
1 +H1


 .

Now applying properties of multivariate normal random variables as described above, the

distribution of x1, conditional on a particular value of z1, is multivariate normal with mean

a1 = a1|0 + P1|0W
T
1 F

−1
1

(
z1 −W1a1|0 − d1

)
(8.20)

and the covariance matrix

P1 = P1|0 − P1|0W
T
1 F

−1
1 W1P1|0 (8.21)
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where

F1 =W1P1|0W
T
1 +H1 (8.22)

and here we also assume that the inverse of F exists.

By repeating the above procedure to obtain equations (8.18)-(8.21) for k = 2, ..., T, we obtain

the prediction and updating recursions for the Kalman filter as described in the next sub-section.

8.3.2 General form of the Kalman filter

In this section, we present the general form of the Kalman filter in the same construction as

in [10]. The Kalman filter involves two recursions: prediction and updating. The prediction

equations are given as follows

ak|k−1 = Tkak−1 + ck (8.23)

Pk|k−1 = TkPk−1T
T
k +RkQkR

T
k (8.24)

where ak|k−1 indicates the mean of the distribution of xk conditional on the information up to

time k-1 and Pk|k−1 is the covariance matrix of the estimation error.

Whenever the new observation, zk, becomes available, the estimator of xk, ak|k−1, can be

updated. The updating equations are:

ak = ak|k−1 + Pk|k−1W
T
k F

−1
k

(
zk −Wkak|k−1 − dk

)
(8.25)

and

Pk = Pk|k−1 − Pk|k−1W
T
k F

−1
k WkPk|k−1 (8.26)

where5

Fk =WkPk|k−1W
T
k +Hk. (8.27)

Taking equations (8.23)-(8.26) together forms the Kalman filter. Moreover, they can be written

as recursions going directly from ak−1 to ak, or from ak|k−1, and this yields:

ak+1|k = (Tk+1 − Tk+1KkWk)ak|k−1 + Tk+1Kkzk + (ck+1 − Tk+1Kkdk) (8.28)

where the gain matrix Kk is given by

Kk = Pk|k−1W
T
k F

−1
k . (8.29)

5It is assumed that the inverse of F exists. It can be replaced by a pseudo-inverse or a positive definite matrix.

75



Then the recursion for the error covariance matrix is

Pk+1|k = Tk+1

(
Pk|k−1 − Pk|k−1W

T
k F

−1
k WkPk|k−1

)
T T
k+1 +Rk+1Qk+1R

T
k+1 (8.30)

Here (8.30) is known as a Riccati equation.

The starting values for the Kalman filter may be specified in terms of a0 and P0, or a1|0 and

P1|0. Given these initial conditions, the Kalman filter then provides the optimal estimator of the

state vector once the new observation becomes available. Particularly, when all T observations

have been processed, the filter then produces the optimal estimator of the current state vector,

or the state vector in the next time period, based on the full information set. This estimator

contains all information needed to make optimal predictions of future values of both the state

and the observations.

8.3.3 Statistical properties of the Kalman filter

For Gaussian models, the Kalman filter produces the mean and covariance matrix of the distri-

bution of xk conditional on the information available at time k, and hence:

ak = E [xk|z1:k] (8.31)

and

Pk = E

[
(xk − ak) (xk − ak)T |z1:k

]
. (8.32)

As was shown in the previous section, the conditional mean estimator ak is the minimum mean

square estimator of the state xk. The estimator is unbiased in the sense that the conditional

expectation of the estimation error is zero. Moreover, this expectation can be taken over all

variables in the observation set, and hence it is also unconditionally unbiased. Another point

to note is that as pointed out in equation (8.14), the covariance matrix Pk is independent of

the observations. Therefore, it can be referred to as an unconditional error covariance matrix

associated with the conditional mean estimator. This implies that the right hand side of (8.32)

can be written without being conditioned on the observation z1:k.

In general cases, when the normality assumption on the disturbances is dropped, it is no longer

true that the Kalman filter produces the conditional mean of the state vector. This implies

that (8.31) does not hold in these cases. Furthermore, the above points can be used to explain

similarly for ak|k−1 and Pk|k−1. Let z̃k|k−1 denote the conditional mean of zk at time k-1, that

is:

z̃k|k−1 =Wkak|k−1 + dk. (8.33)
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Then z̃k|k−1 can be interpreted as the minimum mean square error (MMSE) of the observation

zk in a Gaussian model, and as the minimum mean square linear estimator in other cases.

Let vk be the prediction errors of z̃k|k−1, that is:

vk = zk − z̃k|k−1 =Wk

(
xk − ak|k−1

)
+ ǫk, k = 1, ..., T. (8.34)

Then vk are known as the innovations, since they indicate the new information in the latest

observation.

In a Gaussian model, it can be seen that the mean of vk is a vector of zeros and its variance is

Fk. Here Fk is given by (8.27). Moreover, these innovations are also independently and normally

distributed, and therefore: vk ∼ NID(0, Fk).

In the cases without normality assumption, the expectation of the innovation vector is still a

vector of zeros, and its covariance matrix at time k is Fk. Furthermore, it can be shown that

the innovations in different time periods are uncorrelated, that is

E
[
vkv

T
s

]
= 0 for k 6= s, and k, s = 1, ..., T. (8.35)

It should be noted that these properties on the distribution of the innovations only hold exactly

if the system matrices are fixed and known. And hence, they are not true in general cases where

these matrices contain unknown hyperparameters6 which can be replaced by estimators.

Correlated measurement and transition equation disturbances

When the measurement and transition equation disturbances are correlated, we need to modify

the Kalman filter. In this case, the modification of the Kalman filter depends on choosing the

transition equation as in (6.3) or (6.8). The following results can be found in [10], page 112.

Consider the state space form given by (6.1) and (6.3), and suppose that

E
[
ηkǫ

T
s

]
=





Gk, k = s

0, k 6= s
(8.36)

where Gk is a known g x N matrix. The prediction equations (8.23) and (8.24) remain unchanged

in the case of contemporaneous correlation, whereas the updating equations are modified as

follows

ak = ak|k−1 +
(
Pk|k−1W

T
k +RkGk

)
F−1
k

(
zk −Wkak|k−1 − dk

)
(8.37)

and Pk = Pk|k−1 −
(
Pk|k−1W

T
k +RkGk

)
F−1
k WkPk|k−1. (8.38)

6In Bayesian statistics, a hyperparameter is a parameter of a prior distribution.
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where

Fk =WkPk|k−1W
T
k +WkRkGk +GT

kR
T
kW

T
k +Hk. (8.39)

The alternative state space form involves equations (6.1) and (6.8). By this construction, the

correlation between the disturbances can be defined as in (8.36), however the model is a different

one. The recursion for the state vector, (8.28), needs to be changed by redefining the gain matrix

as

Kk =
(
Pk|k−1W

T
k +RkGk

)
F−1
k . (8.40)

The innovation covariance matrix, Fk, still remains as in (8.27). Whilst regarding the error

covariance matrix, the recursion in (8.30) becomes

Pk+1|k = Tk+1Pk|k−1T
T
k+1−

(
Tk+1Pk|k−1W

T
k +RkGk

)
F−1
k

(
Tk+1Pk|k−1W

T
k +RkGk

)T
+RkQkR

T
k .

(8.41)

Initial conditions and convergence of Kalman filter

In this sub-section, we consider the initial conditions for a time-invariant model. Here we restrict

our attention to univariate series case, with the state space form given by

zk = wTxk + dk + ǫk (8.42)

xk = Txk−1 + ck +Rηk (8.43)

where Var [ǫk] = h and Var [ηk] = Q. (8.44)

In principle, the starting values for the Kalman filter are given by the mean and covariance

matrix of the unconditional distribution of the state vector, that is,

a0 = E [x0|z0] = E [x0] (8.45)

P0 = E

[
(x0 − a0) (x0 − a0)T |z0

]
= E

[
(x0 − a0) (x0 − a0)T

]
. (8.46)

The state vector in (8.43) is stationary if |λi(T )| < 1 and ck is time-invariant (that is ck = c

where c being constant). If this is the case, then it has mean (I−T )−1c and a covariance matrix

P, which is the unique solution to the equation

P = TPT T +RQRT . (8.47)

The derivation of this equation can be found in chapter 8 of [10]. Since the unconditional

distribution of x1 is equal to that of x0, we can choose the initial values for the Kalman filter
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as a0 = 0, P0 = P or a1|0 = 0, P1|0 = P . From equations (8.47) and (8.24), it can be seen that

the covariance matrices P0 and P1|0 are consistent with each other.

When the state vector is non-stationary, its unconditional distribution is not easily determined.

Unless genuine prior information is available, the initial distribution of x0 must be specified in

terms of a diffuse or non-informative prior.

If we choose P0 = κI, where κ is a positive scalar, then the diffuse prior is obtained when

κ→ ∞. This then leads to P−1
0 = 0. In addition, it is also possible to consider the diffuse prior

applied to x1 by choosing P1|0 = κI.

As was shown in [10] that the Kalman filter cannot be run if κ equals to infinity. However, by

setting κ to be a large but finite number, a good approximation can be obtained.

It is also often the case that some of the elements in the state vector are stationary and some

are non-stationary. If the non-stationary elements are taken to be the first d, where d ≤ m, then

the transition matrix must be of the form

T =


 T1 T2

0 T4


 (8.48)

where T1 is a d × d matrix, T2 is a d × (m − d) matrix and T4 is a (m − d) × (m − d) matrix

with |λ(T4)| < 1. If P1|0 is also partitioned conformably with (8.48), then the initial conditions

can be chosen as

P1|0 =


 κI 0

0 P


 . (8.49)

In [10], it is shown that if w is partitioned conformably with T, that is wT =
[
wT
1 wT

2

]
, then a

proper prior can be constructed from the first d observations provided that T1 is non-singular

and the first d elements of xk, namely the non-stationary ones, are observable, that is

Rank
[
w1, T

T
1 w1, . . . ,

(
T T
1

)d−1
w1

]
= d. (8.50)

We now turn to the issue on convergence of the filter. Given that the stationary part of a model

is initialised in the Kalman filter by its unconditional mean and covariance matrix, and the non-

stationary part is initialised with a diffuse prior. Assume that T1 in (8.48) is non-singular and

(8.50) holds. Convergence to the steady state is monotonic in the sense that the MSE matrix

of ak|k−1 exceeds that of ak+1|k by a positive semi-definite matrix, that is

Pk|k−1 ≥ Pk+1|k, k = d+ 1, d+ 2, . . . (8.51)
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This follows because there is no information at time k = 0 and so the estimator at k is based

on more information than the estimator at k - 1, and Pk|k−1 does not depend on the actual

observations. In addition, since Fk = WPk|k−1W
T + H, W is of rank N and H is positive

semi-definite, these together with (8.51) imply that

Fk ≥ Fk+1, k = d+ 1, d+ 2, . . . . (8.52)

From (8.52), it now follows that

|Fk| ≥ |Fk+1| ≥ |Σ| ≥ 0 (8.53)

where Σ is the steady state of Fk which is defined as limk→∞Fk = Σ = WP̄W
′
+H (here P̄ is

such that Pk+1|k = P̄ for all k) (see [10], page 120)

Result (Joseph form - see [3])

The subtraction in the covariance matrix Pk = Pk|k−1 − Pk|k−1W
T
k F

−1
k WkPk|k−1 may lead to

loss of symmetry and positive definiteness (for instance, negative eigenvalues may occur). The

following form of Kalman filter recursion which is known as Joseph form can help to preserve

symmetry and avoid negative eigenvalues for the covariance matrix:

Pk = (I −KkWk)Pk|k−1 (I −KkWk)
T +KkHkK

T
k . (8.54)

Proof

Pk =Cov [xk − ak]

=Cov
[
xk − ak|k−1 − Pk|k−1W

T
k F

−1
k

(
zk −Wkak|k−1 − dk

)]

(using definition of ak)

=Cov
[
xk − ak|k−1 −Kk

(
Wkxk + dk + ǫk −Wkak|k−1 − dk

)]

(using definition of Kk and zk)

=Cov
[
xk − ak|k−1 −Kk

(
Wkxk −Wkak|k−1 + ǫk

)]

=Cov
[
I
(
xk − ak|k−1

)
−KkWk

(
xk − ak|k−1

)
−Kkǫk

]

=Cov
[
(I −KkWk)

(
xk − ak|k−1

)]
+ Cov [Kkǫk]

= (I −KkWk)Cov
[
xk − ak|k−1

]
(I −KkWk)

T +KkCov [ǫk]K
T
k

(using the properties of covariance)

= (I −KkWk)Pk|k−1 (I −KkWk)
T +KkHkK

T
k .
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8.3.4 Kalman filter Algorithm 1

: Assume that at time k - 1, Pk−1 and ak−1 are known (initialised as P0 and a0). The Kalman

filter algorithm involves 6 steps as follows

1. ak|k−1 = Tkak−1 + ck.

2. Pk|k−1 = TkPk−1T
T
k +RkQkR

T
k .

3. Fk =WkPk|k−1W
T
k +Hk.

4. Receive the new observation zk.

5. ak = ak|k−1 + Pk|k−1W
T
k F

−1
k

(
zk −Wkak|k−1 − dk

)
.

6. Pk = Pk|k−1 − Pk|k−1W
T
k F

−1
k WkPk|k−1.

8.4 Filtering solution for Non-linear Gaussian case

As described in the previous section, the Kalman filter provides an optimal solution to the

filtering recursion problems when the functions of the state and the observation are linear and

the disturbances are Gaussian. However, when one of these assumptions is dropped, it does not

guarantee that we can obtain an optimal solution from the Kalman filter. In this section, we

consider the case where the functions of the state and the observation are non-linear, while the

normality conditions are still hold. From there on, we will present two extensions of the Kalman

filter which can deal with the non-linear case (see [10]). The first one is called the Extended

Kalman filter, and the second is the Unscented Kalman filter.

8.4.1 The Extended Kalman filter

Consider the non-linear state space model:

zk = fk (xk) + ǫk (8.55)

xk = hk (xk−1) +Rk (xk−1)ηk (8.56)

where fk(xk) and hk(xk−1) are N × 1 and m× 1 vectors respectively, and Rk(xk−1) is an m× g

matrix. In addition, fk and hk are non-linear functions, and Rk(xk−1) may depend on the state

vector.

Derivation of the Extended Kalman filter

If the non-linear functions fk and hk are sufficiently smooth, they then can be expanded in a
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Taylor series around conditional means, âk|k−1 and âk−1 as follows

fk (xk) ≈ fk
(
âk|k−1

)
+ Ŵk

(
xk − âk|k−1

)
(8.57)

hk (xk−1) ≈ hk (âk−1) + T̂k (xk−1 − âk−1) (8.58)

and

Rk(xk−1) ≈ R̂k (8.59)

where

Ŵk =
∂fk (x)

∂x
|x=âk|k−1

(8.60)

T̂k =
∂hk (x)

∂x
|x=âk−1

(8.61)

and

R̂k = Rk (âk−1) . (8.62)

Suppose that âk|k−1 and âk−1 are known and substitute (8.57)-(8.62) to (8.55) and (8.56), the

nonlinear model then becomes

zk ≈ Ŵkxk + d̂k + ǫk (8.63)

xk ≈ T̂kxk−1 + ĉk + R̂kηk (8.64)

where

d̂k = fk(âk|k−1)− Ŵkâk|k−1 (8.65)

and

ĉk = hk(âk−1)− T̂kâk−1. (8.66)

Here the quantities âk and âk|k−1 are computed by applying the Kalman filter to (8.63)-(8.66).

The prediction equations (8.23) and (8.24) then become

âk|k−1 = hk (âk−1) (8.67)

P̂k|k−1 = T̂kP̂k−1T̂
T
k + R̂kQkR̂

T
k (8.68)

while the updating equations are given by

âk = âk|k−1 + P̂k|k−1Ŵ
T
k F̂

−1
k

[
zk − fk

(
âk|k−1

)]
(8.69)

P̂k = P̂k|k−1 − P̂k|k−1Ŵ
T
k F̂

−1
k ŴkP̂k|k−1 (8.70)
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where

F̂k = ŴkP̂k|k−1Ŵ
T
k +Hk. (8.71)

Extended Kalman filter Algorithm 2:

Assume that at time k - 1, P̂k−1 and âk−1 are known (initialised as P̂0 and â0). The EKF

algorithm consists of 8 steps as follows:

1. Using âk−1, compute T̂k.

2. R̂k = Rk(âk−1).

3. âk|k−1 = hk(âk−1).

4. P̂k|k−1 = T̂kP̂k−1T̂
T
k + R̂kQkR̂

T
k .

5. Receive new observation zk.

6. F̂k = ŴkP̂k|k−1Ŵ
T
k +Hk.

7. âk = âk|k−1 + P̂k|k−1Ŵ
T
k F̂

−1
k

[
zk − fk

(
âk|k−1

)]
.

8. P̂k = P̂k|k−1 − P̂k|k−1Ŵ
T
k F̂

−1
k ŴkP̂k|k−1.

8.4.2 The Unscented Kalman filter

As mentioned in the previous section, the EKF is an improvement of the Kalman filter since it

can be applied in the nonlinear systems. However, the EKF also has some drawbacks:

• Linearisation can produce unstable filters if the assumptions of local linearity of the model

is violated;

• The derivation of the Jacobian matrices in most applications are often difficult to imple-

ment.

In this section, we present a new tool called the Unscented Kalman filter [12] which avoids the

two drawbacks above. This filter is mainly based on the principle of the unscented transforma-

tion which is presented below.

The Unscented Transformation

The Unscented Transformation is a new method for calculating the statistics of a random vari-

able which undergoes a nonlinear transformation. Consider propagating a random variable x

(dimension n) through a nonlinear function y = f(x). Assume x has mean x̄ and covariance

Pxx. We wish to calculate the mean ȳ and covariance Pyy of y.
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The transformation includes a set of sigma points which are chosen so that their mean and

covariance are x̄ and Pxx. The nonlinear function is then applied to each sigma point to produce

a set of transformed points. Assume x has dimension n, then it is approximated by 2n + 1

weighted points given as follows

X0 = x̄, W0 =
κ

n+ κ
(8.72)

Xi = x̄+
(√

(n+ κ)Pxx

)
i
, Wi =

1

2 (n+ κ)
(8.73)

Xi+n = x̄−
(√

(n+ κ)Pxx

)
i
, Wi+n =

1

2 (n+ κ)
(8.74)

where κ ∈ R, (
√
(n+ κ)Pxx)i is the ith row or column of the matrix square root of (n+ κ)Pxx

and Wi is the weight associated with the ith sigma point. The transformation procedure then

consists of 3 following steps:

1. Transform each sigma point via the nonlinear function f(.),

Yi = f [Xi] . (8.75)

2. The mean is given by the weighted average of the transformed points,

ȳ =
2n∑

i=0

WiYi. (8.76)

3. The covariance matrix is then given by,

Pyy =
2n∑

i=0

WiYi − ȳYi − ȳT . (8.77)

The Unscented Kalman filter

The transformation processes in the UKF consist of three following steps:

• Predict the new state x̂(k+1|k) and its associated covariance P (k+1|k). This prediction
must take into account the effects of process noise.

• Predict the expected observation ẑ(k + 1|k) and the innovation covariance Pvv(k + 1|k).
This prediction should include the effects of observation noise.

• Finally, predict the cross-correlation matrix Pxz(k + 1|k).
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Before running these steps, the state vector is augmented with the noise terms to give na = n+q

dimensional vector:

xa (k) =


 x (k)

v (k)


 . (8.78)

The process model7 is then expressed as a function of xa(k):

x (k + 1) = f [xa (k) ,u (k) , k] . (8.79)

Now given the estimate mean and covariance of the state vector at time k based on the infor-

mation up to time k as follows

x̂a (k|k) =


 x̂ (k|k)

0q×1


 (8.80)

and P a (k|k) =


 P (k|k) Pxv (k|k)
Pxv (k|k) Q (k)


 . (8.81)

Now apply the transformation equations (8.72)-(8.74) to (8.80)-(8.81), the UKF yields 2na + 1

sigma points. The next steps in the UKF can be seen in the algorithm below

Unscented Kalman filter Algorithm 3:

The algorithm of the UKF includes the following main steps:

1. Applying equations (8.72)-(8.74) to (8.80)-(8.81), we first obtain 2na + 1 sigma points.

2. The transformed set is then given by replacing each sigma points to the process model

X i (k + 1|k) = f [X a
i (k|k) ,u (k) , k] .

3. The predicted mean is calculated as

x̂ (k + 1|k) =
2na∑

i=0

WiX
a
i (k + 1|k).

4. The predicted covariance is calculated as

P (k + 1|k) =
2na∑

i=0

Wi {X i (k + 1|k)− x̂ (k + 1|k)} {X i (k + 1|k)− x̂ (k + 1|k)}T .

5. Instantiate each prediction sigma point via the observation model

Z i (k + 1|k) = h [X i (k + 1|k) ,u (k) , k] .

7Here for simplicity, we adopt the notation used in [12].
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6. The predicted observation is then computed as

ẑ (k + 1|k) =
2na∑

i=1

WiZ i (k + 1|k).

7. Since the observation noise is additive and independent, the innovation covariance is

Pvv (k + 1|k) = R (k + 1) +
2na∑

i=0

Wi {Z i (k|k − 1)− ẑ (k + 1|k)} {Z i (k|k − 1)− ẑ (k + 1|k)}T .

8. The cross correlation matrix is determined by

Pxz (k + 1|k) =
2na∑

i=0

Wi {X i (k|k − 1)− x̂ (k + 1|k)} {Z i (k|k − 1)− ẑ (k + 1|k)}T .

9. K = Pxz (k + 1|k)P−1
vv (k + 1|k)−1.

10. Receive the new information zk+1.

11. x̂ (k + 1|k + 1) = x̂ (k + 1|k) +K (zk+1 − ẑ (k + 1|k)).
12. P (k + 1|k + 1) = P (k + 1|k)−KPvvKT .

8.5 Filtering solution for Non-linear or Non-Gaussian case

In the case of non-linear and non-Gaussian (state equation and observation equation) in state

space models, one can also consider more accurate, though more computational filtering solutions

based on random grids. These approaches are known as Particle filters or sequential Monte Carlo

(see [1], [8]).

8.5.1 Sequential Importance Sampling (SIS) Particle Filter

The sequential importance sampling (SIS) [1] algorithm is a Monte Carlo (MC) method that

forms the basis for most sequential MC filters developed over the past decades. The idea is to

represent the required posterior density function by a set of random samples with associated

weights and to compute estimates based on these samples and weights. As the number of

samples becomes very large, this MC characterization becomes an equivalent representation

to the usual functional description of the posterior p.d.f., and the SIS approaches the optimal

Bayesian estimate.

Let
{
xi
0:k, w

i
k

}Ns

i=1
denote a random measure that characterizes the posterior p.d.f. p(x0:k|z1:k),

where xi
0:k, i = 0, ..., Ns is a set of support points with associated weights wi

k, i = 1, ..., Ns and
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x0:k = xj , j = 0, ..., k is the set of all states up to time k. The weights are normalized such that
∑

iw
i
k = 1. Then the posterior density at k can be approximated as in [1]

p (x0:k|z1:k) ≈
Ns∑

i=1

wi
kδ̃
(
x0:k − xi

0:k

)
. (8.82)

The weights are chosen using the principle of importance sampling. This principle relies on

the following. Suppose p(x) ∝ π(x) is a probability density from which it is difficult to draw

samples but for which π(x) can be evaluated. In addition, let xi ∼ q(x), i = 1, ..., Ns be samples

that are easily generated from a proposal q(.) called an importance density. Then a weighted

approximation for the density p(.) is provided in [1] as

p (x) ≈
Ns∑

i=1

wiδ̃
(
x− xi

)
(8.83)

where

wi ∝ π
(
xi
)

q (xi)
(8.84)

is the normalized weight of the ith particle.

If the samples xi
0:k were drawn from an importance density q(x0:k|z1:k), then the weights in

(8.82) are defined by (8.84) to be

wi
k ∝ p

(
xi
0:k|z1:k

)

q
(
xi
0:k|z1:k

) . (8.85)

If the importance density is chosen to factorize such that

q (x0:k|z1:k) = q (xk|x0:k−1, z1:k) q (x0:k−1|z1:k−1) (8.86)

then one can obtain samples xi
0:k ∼ q(x0:k|z1:k) by augmenting each of the existing samples

xi
0:k−1 ∼ q(x0:k−1|z1:k−1) with the new state xi

k ∼ q(xk|x0:k−1, z1:k). To derive the weight up-

date equation, p(x0:k|z1:k) is first expressed in terms of p(x0:k−1|z1:k−1), p(zk|xk) and p(xk|xk−1)

[7]

p (x0:k|z1:k) ∝ p (zk|xk) p (xk|xk−1) p (x0:k−1|z1:k−1) . (8.87)

Now by substituting (8.86) and (8.87) into (8.85), the weight update equation can be shown to

be [4]

wi
k ∝ wi

k−1

p
(
zk|xi

k

)
p
(
xi
k|xi

k−1

)

q
(
xi
k|xi

0:k−1, z1:k
) . (8.88)
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Furthermore, if q(xk|x0:k−1, z1:k) = q(xk|xk−1, zk), then the importance density only depends

on xk−1 and zk. This is particularly useful when only a filtered estimate of p(xk|z1:k) is required
at each time step. From this point on, only xi

k need be stored, hence one can discard the path

xi
0:k−1 and history of observations z1:k−1. The modified weight is then

wi
k ∝ wi

k−1

p
(
zk|xi

k

)
p
(
xi
k|xi

k−1

)

q
(
xi
k|xi

k−1, zk
) (8.89)

and the posterior filtered density p(xk|z1:k) can be approximated as [6]

p (xk|z1:k) ≈
Ns∑

i=1

wi
kδ̃
(
xk − xi

k

)
(8.90)

where the weights wi
k are defined in (8.89). In addition, as Ns → ∞, the approximation (8.90)

approaches the true posterior density p(xk|z1:k).
SIS Particle Filter Algorithm (4)

[
{
xi
k, w

i
k

}Ns

i=1
] = SIS[

{
xi
k−1, w

i
k−1

}Ns

i=1
, zk]

FOR i = 1 : Ns

- Draw xi
k ∼ q

(
xk|xi

k−1, zk
)
.

- Assign the particle a weight, wi
k, according to (8.89).

END FOR

A common problem with the SIS particle filter is the degeneracy phenomenon, where after

a few iterations, all but one particle will have negligible weight. This implies that a large

computational effort is devoted to updating particles whose contribution to the approximation

to p(xk|z1:k) is almost zero. A suitable measure of degeneracy of the algorthim is the effective

sample size Neff defined as [6]

Neff =
Ns

1 + Var
[
w∗i
k

] (8.91)

where w∗i
k =

p(xi
k|z1:k)

q(xi
k
|xi

k−1,zk)
is referred to as the “true weight”. This cannot be evaluated exactly,

but an estimate N̂eff of Neff can be obtained by [16]

N̂eff =
1

∑Ns

i=1 (w
i
k)

2
(8.92)

where wi
k is the normalized weight obtained using (8.88).

The degeneracy problem is an undesirable effect in particle filters. The brute force approach

to reducing its effect is to use a very large Ns. This is often impractical, hence we rely on two

other methods: computationally efficient choice of importance density and use of resampling.
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Computationally efficient choice of Importance Density:

This is an optimal choice. It involves choosing the importance density q(xk|xi
k−1, zk) to minimize

Var[w∗i
k ] so that Neff is maximized. The optimal importance density function that minimizes

the variance of the true weights w∗i
k conditioned on xi

k−1 and zk is shown in [1] as

q
(
xk|xi

k−1, zk
)
opt

= p
(
xk|xi

k−1, zk
)

(8.93)

=
p
(
zk|xk,x

i
k−1

)
p
(
xk|xi

k−1

)

p
(
zk|xi

k−1

) (8.94)

Substituting (8.94) into (8.89) yields

wi
k ∝ wi

k−1

∫
p
(
zk|x

′

k

)
p
(
x

′

k|xi
k−1

)
dx

′

k (8.95)

A disadvantage of this optimal importance density is that it requires the ability to sample from

p(xk|xi
k−1, zk) and to evaluate the integral over the new state. Finally, it is often convenient to

choose the importance density to be the prior

q
(
xk|xi

k−1, zk
)
= p

(
xk|xi

k−1

)
(8.96)

Substituting (8.96) into (8.89) yields

wi
k ∝ wi

k−1p
(
zk|xi

k

)
(8.97)

This appears to be the most common choice of importance density since it is intuitive and simple

to implement.

8.5.2 Resampling Algorithm

As discussed, the choise of important density is important to control particle degeneracy on

the path space. Another important process to help decrease particle degeneracy is to consider

adaptive resampling. This is the second method (besides the importance density choice) by

which the effects of degeneracy can be reduced whenever a significant degeneracy is observed,

i.e., when Neff falls below some threshold NT . The idea of resampling is to eliminate particles

that have small weights and to concentrate on particles with large weights.

The resampling step involves generating a new set
{
xi∗
k

}Ns

i=1
by resampling Ns times from an

approximate discrete representation of p(xk|z1:k) given by [1]

p (xk|z1:k) ≈
Ns∑

i=1

wi
kδ̃
(
xk − xi

k

)
(8.98)
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so that Pr(xi∗
k = x

j
k) = wj

k. The resulting sample is in fact an i.i.d. sample from the discrete

density (8.98); therefore, the weights are now reset to wi
k = 1

Ns
.

Although the resampling step reduces the effects of the degeneracy problem, it introduces other

practical problems. First, it limits the chance to parallelize since all particles must be combined.

Second, the particles that have high weights wi
k are statistically selected many times. This leads

to a loss of diversity among the particles as the resultant sample will contain many repeated

points. Third, since the diversity of the paths of the particles is reduced, any smoothed estimates

based on the particles’ paths degenerate.

Resampling Algorithm 5

[
{
x
j∗
k , w

j
k, i

j
}Ns

j=1
] = RESAMPLE[

{
xi
k, w

i
k

}Ns

i=1
]

• Initialize the CDF: c1 = 0.

• FOR i = 2: Ns

- Construct CDF: ci = ci−1 + wi
k.

• END FOR

• Start at the bottom of the CDF: i = 1.

• Draw a starting point: u1 ∼ U[0, N−1
s ].

• FOR j = 1: Ns

- Move along the CDF: uj = u1 +N−1
s (j − 1).

- WHILE uj > ci

∗ i = i + 1.

- END WHILE

- Assign sample: xj∗
k = xi

k.

- Assign weight: wj
k = N−1

s .

- Assign parent: ij = i.

• END FOR

8.5.3 Sequential Importance Resampling Particle Filter

Sequential Importance Resampling Algorithm 6

[
{
xi
k, w

i
k

}Ns

i=1
] = PF [

{
xi
k−1, w

i
k−1

}Ns

i=1
, zk]

• FOR i = 1: Ns

- Draw xi
k ∼ q(xk|xi

k−1, zk).

- Assign the particle a weight, wi
k, according to (8.89).
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• END FOR

• Calculate total weight: t = SUM[
{
wi
k

}Ns

i=1
].

• For i = 1: Ns

- Normalize: wi
k = t−1wi

k.

• END FOR

• Calculate N̂eff using (8.92).

• IF N̂eff < NT

- Resampling using algorithm 2:

∗[
{
xi
k, w

i
k,−

}Ns

i=1
] = RESAMPLE[

{
xi
k, w

i
k

}Ns

i=1
].

• END IF

The generic particle filter is an innovation of the SIS one since it uses the resampling step to

reduce the effect of the degeneracy problem. However, it also has some problems regarding to

the resampling step as described above.
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9 Commodity model filtering results

In this section, we present empirical results achieved from implementing the Kalman filter (for

model 2) and the Particle filter (for model 3) based on the observed futures contracts. The data

used to test the models consist of daily observations of futures contracts in a range of 100 days.

For the Kalman filter study (using model 2), we investigate the effects of noise (low noise and

high noise) and different structures of futures contracts on the performance of the Kalman filter.

Particularly, we use different numbers of the futures contract, and the contracts with different

lengths and different initializations of time to maturity on a single contract.

The values for the parameters (in models 2 and 3) which were used to generate the true paths

are summarized in the following tables

κ µ σ1 σ2 ρ

1.7 1.1 1 1 0.5

Table 15: Parameters used to generate the truth for model 2

κ α̂ a m∗ σ1 σ2 σ3 ρ1 ρ2 ρ3

1.4 -0.0071 1.1 0.0636 2 0.5 0.1 0.8 0.3 0.1

Table 16: Parameters used to generate the truth for model 3

As discussed earlier, under normality assumptions on the initial state vector and the distur-

bances, the Kalman filter produces optimal estimators for the mean and covariance of the state

vector at each particular time. We shall see this via the figures in each sub-study below. More-

over, for all simulations in these studies, we set the initial state vector and the disturbances to

be normally distributed. Throughout all figures in this section, the black line represents the

true mean, whereas the blue line stands for the estimate mean. We also plot the error bars for

the estimate, and these bars stand for the variance of the estimate.

9.1 Two-factor model Kalman filter study

In this section, the Kalman filter was implemented in Matlab for the two-factor Euler discretized

state space model of section 6. In this first analysis, we consider three studies:
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• The effects of using a single futures contract (9.1.1).

• The effects of the observation noise (9.1.2).

• The effects of the futures contracts structure (9.1.3).

For the last study, we focus on four different structures of futures contracts. Firstly, we observe

the effect of changing the number of contracts while fixing the same maturity for both of these

contracts. Secondly, we consider the effect of a single contract with different lengths. Thirdly, we

use a single contract with different time to maturity on initialization and observe its impact on

the performance of the Kalman filter. Finally, we consider different structures of the observation

noise in terms of its correlation over the futures maturities (i.e. futures curve) per day.

9.1.1 Single futures contract Kalman filter estimation study
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t(days/100)
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Figure 25: Model 2 - Single futures contract, length 90 days, estimated optimal Kalman filter

states and precision at each day vs true latent process.

Figure 25 shows the result for the two factors in model 2 using the Kalman filter. Here we

use only one futures contract with length 90 days and observe the performance of the Kalman

filter over a period of 90 days. We can observe from this figure that the Kalman filter achieves

very accurate results for both two factors in model 2 over the entire period. Particularly, for the
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long-term factor ξ, over the first 30 days, the estimated mean almost matches the true mean.

After the first 30 days, although the variance of the this factor expands, the estimated mean

still remains very close to the truth.

9.1.2 Effects of the observation noise in futures contracts

For this sub-study, we use a single futures contract with length 90 days to investigate the effects

of the observation noise on the performance of the Kalman filter. There are two types of noise

ratios: low signal-to-noise ratio and high signal-to-noise ratio. Low signal-to-noise corresponds

to a large value of the observation noise, whereas high signal-to-noise corresponds to a small

value of the observation disturbance. Here we choose σobs = 10 for the first case, whereas

σobs = 0.1 for the latter case.
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Figure 26: Model 2 - Low signal-to-noise ratio, single contract, length 90 days, estimated Kalman

filter states and precision at each day vs true latent process.
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Figure 27: Model 2 - High signal-to-noise ratio, single contract, length 90 days, estimated

Kalman filter states and precision at each day vs true latent process.

From figures 26 and 27, we first observe that the Kalman filter appears to give better results
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in the high SNR case than in the low SNR case. In addition, the variance of the simulated

mean tends to fall very fast in the high SNR case (especially for the long-term factor). This

indicates that as the disturbances are small (according to high SNR case), then there appears

less uncertainty in the short- and long-term factors. This together with the fact that the Kalman

filter yields optimal variance at each time explain why the variance tends to be smaller very

quickly in the high SNR case. As a result, the Kalman filter performs better in the high SNR

case due to a fast reduction in variance and an optimal estimator for the mean at each time. In

some sense, this implies that if we would like to get a good simulation for the true mean by using

Kalman filter, then we need to adjust the disturbances in model 2 to be smaller. Otherwise, it

may lead to a worse simulation for the factors in the model.

9.1.3 Effects of the futures contracts structure on Kalman filter estimation per-

formance

In this sub-section, we investigate the effects of the futures contracts structure on the perfor-

mance of the Kalman filter. In fact, there are three main structures of the futures contract

which may affect the result of the Kalman filter: the number of futures contracts, the length of

a single contract and the initialization of time to maturity on a single contract.

The number of futures contracts: For this study, we consider using three different numbers

of futures contracts: 1, 3 and 5 respectively. All these contracts have the same maturity of 30

days, and we observe them in a range of 100 days.
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Figure 28: Model 2 - One futures contract, maturity 30 days, estimated Kalman filter states

and precision at each day vs true latent process.
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Figure 29: Model 2 - Three futures contracts, maturity 30 days, estimated Kalman filter states

and precision at each day vs true latent process.
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Figure 30: Model 2 - Five futures contracts, maturity 30 days, estimated Kalman filter states

and precision at each day vs true latent process.

From figures 28, 29 and 30, we observe that:

- As the number of contracts increases, the accuracy of the Kalman filter improves with respect

to precision in the state estimate.

- Moreover, as the number of contracts increases, we see that the mean estimate is not as accurate

as in the single contract case. The reason for this is due to the model assumptions made. We

assumed the correlation between observation noise on a given date t for all futures contracts was

identical, that is σ(F
(1)
t,T ) = σ(F

(2)
t,T ) = . . .. This assumption makes filtering easier but clearly

affects the performance of the Kalman filter. In the last study of the futures contracts structure

analysis, this assumption is removed and we shall see the performance of the mean estimate is

improved as the number of contracts increases.

The length of futures contracts: For this study, we utilise three different lengths of a single

futures contract: 30, 60 and 90 days to examine the effect of length of a futures contract on the

performance of the Kalman filter. The range of the observed period for each case corresponds

to the length of the contract, i.e. 30, 60 and 90 days respectively.
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Figure 31: Model 2 - One futures contract, length 30 days, estimated Kalman filter states and

precision at each day vs true latent process.
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Figure 32: Model 2 - One futures contract, length 60 days, estimated Kalman filter states and

precision at each day vs true latent process.
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Figure 33: Model 2 - One futures contract, length 90 days, estimated Kalman filter states and

precision at each day vs true latent process.

From figures 31, 32 and 33, we first see that the variance of the simulation (for both short-

and long-term factors) tends to decrease as time increases. As a result, when we expand the

observed period (or the length of the contract), then the Kalman filter tends to achieve better

result at the end of the period (or at the maturity of the contract). In some sense, this implies

that the estimated mean converges to the truth when the length of the contract is extended.

This can be seen clearly from the result for the long-term factor (ξ) in figure 33 where the

estimation and the truth are almost indistinguishable and are covered in a very small variance

of the simulation at the maturity (day 90). However, it should also be noted that, the estimate

mean of the short-term factor appears to be “far” away from the truth at the maturity. To some

extent, this reveals that the Kalman filter estimate may not give good result as the length of

the contract is extended. Nonetheless, the Kalman filter, in general, still works very well over

the entire observed period for both two factors in model 2.

The effect of time to maturity on initialization of futures contracts on the Kalman

filter performance: In this study, we examine the effect of time to maturity on initialization of

a single futures contract. We utilise one futures contract with length 90 days. The initialization

includes 5 days to maturity and 60 days to maturity respectively.
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Figure 34: Model 2 - One futures contract, length 90 days, initialization of 5 days to maturity,

estimated Kalman filter states and precision at each day vs true latent process.
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Figure 35: Model 2 - One futures contract, length 90 days, initialization of 60 days to maturity,

estimated Kalman filter states and precision at each day vs true latent process.

From figures 34 and 35, we can see that although there are some differences at some points
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between these cases, the results for both cases are almost indisguishable. This implies that the

change in initialization with respect to time to maturity of a single contract does not lead to a

significant change in the results of the Kalman filter.

The effect of correlation on the observation noise: For this study, we utilise five fu-

tures contracts (maturity of 30 days) and observe the effect of the correlation on the ob-

servation noise. Particularly, this study aims to examine the effect of different structure of

the covariance matrix of the observation noise for a futures curve on a given date t, i.e.

Cov(F̂ (t, T1), F̂ (t, T2), . . . , F̂ (t, T5)). We mainly focus on three cases of the covariance matrix

of the observation noise but still diagonal in structure. The first case is when the correlations

of noise are the same for all five futures contracts. The second case is when the correlations of

noise increase from the first contract to the last contract. The third case is when the correla-

tions of noise decrease from the first contract to the final contract. These studies now account

for varying temporal dependence in the futures curves as well as dependence due to differing

maturities on a given day t.
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Figure 36: Model 2 - Five futures contract, maturity 30 days, constant correlation on the

observation noise, estimated Kalman filter states and precision at each day vs true latent process.
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Figure 37: Model 2 - Five futures contract, maturity 30 days, increasing correlation on the

observation noise, estimated Kalman filter states and precision at each day vs true latent process.
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Figure 38: Model 2 - Five futures contract, maturity 30 days, decreasing correlation on the

observation noise, estimated Kalman filter states and precision at each day vs true latent process.

From figures 36, 37 and 38, we first observe that there appear most uncertainty in the constant
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correlation case, and for the last case (decreasing correlation), there is almost no uncertainty

over the entire period for both two factors. In addition, it should be noted that the Kalman

filter achieves very accurate and stable results for the constant and increasing cases during the

first 30 days, and these results get worse as the observed period is expanded. On the other

hand, although there is almost no uncertainty in the decreasing correlation case, the Kalman

filter appears to produce much less accurate estimation for the truth in this third case. In some

sense, these results imply that the Kalman filter performance gets worse as the correlations

on the observation noise becomes descending from the first contract to the last contract. In

addition, the Kalman filter performs well and stable as the correlations on the observation noise

are constants (or increasing) across the futures contracts.

9.2 Three-factor model Extended Kalman filter study

We note that under the Euler scheme, the three-factor model still keeps the Gaussian property

for both three factors. However, the spot price factor in this model is no longer linear for which

the Kalman filter may not work well. In this second study, we apply the Extended Kalman filter

to the non-linear case of the state space model of model 3. In addition, the data used to test

model 3 using the Extended Kalman filter involve one and five futures contracts respectively

with the same maturity of 30 days.
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Figure 39: Spot price factor (model 3) - one futures contract, maturity 30 days, estimated

Extended Kalman filter states and precision at each day vs true latent process.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−30

−20

−10

0

10

20

30

t(days/100)

C
on

ve
ni

en
ce

 Y
ie

ld

 

 
True mean
EKF mean

Figure 40: Convenience yield factor (model 3) - one futures contract, maturity 30 days, estimated

Extended Kalman filter states and precision at each day vs true latent process.
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Figure 41: Interest rate factor (model 3) - one futures contract, maturity 30 days, estimated

Extended Kalman filter states and precision at each day vs true latent process.
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Figure 42: Spot price factor (model 3) - five futures contract, maturity 30 days, estimated

Extended Kalman filter states and precision at each day vs true latent process.
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Figure 43: Convenience yield factor (model 3) - five futures contract, maturity 30 days, estimated

Extended Kalman filter states and precision at each day vs true latent process.
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Figure 44: Interest rate factor (model 3) - five futures contract, maturity 30 days, estimated

Extended Kalman filter states and precision at each day vs true latent process.

From figures 39, 40, 41, 42, 43, 44, we first observe that the Extended Kalman filter appears

to give more accurate results for both three factors in the one contract case than in the five

contracts case. Moreover, we could see from figures 39, 40 and 42, 43 that there is a strong
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correlation between the spot price and the convenience yield, and this does affect the performance

of the EKF. Particularly, for figures 39 and 40, a significant large variance in the spot price (at

day 50) leads to a large variance in the convenience yield, and vice versa. In some sense,

the correlation between the factors may affect considerably the performance of the EKF. In

general, the Extended Kalman filter performance gets worse as the number of contracts increases.

Otherwise, it achieves very accurate result in the one contract case, even though there appear

more uncertainty in each factor in this case.

9.3 Three-factor model Particle filter study

9.3.1 One futures contract case

In this last study, we observe the performance of the Particle filter for the three-factor model.

We shall in turn examine one and five futures contracts. For each particular number of contracts

used, we consider utilising 1000 particles and 5000 particles and compare the performance of

the Particle filter for these cases.
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Figure 45: Spot price factor (model 3) - one futures contract, maturity 30 days, 1000 particles

are utilised, estimated Particle filter states and precision at each day vs true latent process.
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Figure 46: Convenience yield factor (model 3) - one futures contract, maturity 30 days, 1000

particles are utilised, estimated Particle filter states and precision at each day vs true latent

process.
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Figure 47: Interest rate factor (model 3) - one futures contract, maturity 30 days, 1000 particles

are utilised, estimated Particle filter states and precision at each day vs true latent process.
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Figure 48: Spot price factor (model 3) - one futures contract, maturity 30 days, 5000 particles

are utilised, estimated Particle filter states and precision at each day vs true latent process.
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Figure 49: Convenience yield factor (model 3) - one futures contract, maturity 30 days, 5000

particles are utilised, estimated Particle filter states and precision at each day vs true latent

process.
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Figure 50: Interest rate factor (model 3) - one futures contract, maturity 30 days, 5000 particles

are utilised, estimated Particle filter states and precision at each day vs true latent process.

From figures 45, 46, 47, 48, 49, 50, it can be observed that as we utilise more particles, the

Particle filter estimate becomes more accurate for both three factors in model 3. Moreover,

increasing simulation particles also leads to a reduction in the variance of the estimate. Partic-

ularly, for the spot price factor, the Particle filter using 5000 particles produces very accurate

simulation at the maturity (day 100) in the sense that the estimated mean gets very close to

the truth as compared with the 1000 particles case. The variance of the estimate in the 5000

particles case is just a half of that in the 1000 case at maturity. It should also be noted that the

Particle filter achieves very good results for both the convenience yield and interest rate. This

may be due to the fact that the convenience yield and interest rate have special structures in

the SDE where their diffusion terms are both constants.
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9.3.2 Five futures contracts case
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Figure 51: Spot price factor (model 3) - five futures contract, maturity 30 days, 1000 particles

are utilised, estimated Particle filter states and precision at each day vs true latent process.
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Figure 52: Convenience yield factor (model 3) - five futures contract, maturity 30 days, 1000

particles are utilised, estimated Particle filter states and precision at each day vs true latent

process.
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Figure 53: Interest rate factor (model 3) - five futures contract, maturity 30 days, 1000 particles

are utilised, estimated Particle filter states and precision at each day vs true latent process.

From figures 51, 52, 53, we see that the Particle filter estimate in the five futures contracts
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case is less accurate than that in the one contract case. This can be seen clearly from the

result of the spot price factor. The estimate achieved in the five contracts tends to diverge

as time increases (from day 40 to maturity), whereas the one contract estimate almost keeps

close to the truth over the entire period. The results for the other factors (convenience yield

and interest rate) in both these cases are not quite distinguishable, and very accurate. In some

sense, this together with the results for the convenience yield and interest rate obtained in the

one contract case imply that the Particle filter produces very good estimates for factors with

special structures in their dynamics. For instance, in the three-factor model, the convenience

yield and interest rate all have constant volatilities, and this leads to a more accurate Particle

filter estimate for these factors than for the spot price where the diffusion term is stochastic.

9.4 Discussion

In the previous sections, we have implemented the three different filters for the two models 2

and 3. The data used involve futures contracts since in most commodity markets, the futures

price is more easily observed than the spot price of a commodity. For the two-factor model, we

utilise the Kalman filter since model 2 is both Gaussian and linear under its state space form.

However, in the three-factor model, the linear property is dropped, and hence the Kalman filter

does not work well for this model. We then use an extension of the Kalman filter, namely, the

Extended Kalman filter to linearize the non-linear state space model of model 3. Once a model

has been linearized, the Extended Kalman filter adopts the same technique as the Kalman filter

for filtering the “new” state space model under Gaussian and linear conditions on the state

and measurement equations. For model 3, we also implement the Particle filter to observe its

performance with the Extended Kalman filter. The results as discussed in the previous section

reveal that the Particle filter achieves much more accurate estimate than the Extended Kalman

filter. Even though the initial state is chosen far away from that of the truth, the Particle filter

quickly finds the accurate estimate within only a few first steps.

For the Kalman filter study, we particularly observe the effects of different factors: a single

contract, high observation noise, low observation noise, and different structures of the futures

prices. Especially, for the time to maturity study, we have found that the effects of changing

the time to maturity on initialization is almost zero for both two factors in model 2. For the

other studies, we see that using a single futures contract appears to give better result than using

multi futures contracts. Furthermore, the length of a contract also has a noticeable impact on
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the performance of the Kalman filter. As the length is expanded, the Kalman filter may achieve

accurate result (as for the long-term factor ξ), but it may also achieve a less accurate estimate

for the truth (as for the short-term factor χ). Moreover, the observation noise study implies that

the high SNR case (according to a small noise) appears to give better simulation than the low

SNR case (according to a large noise). Similar to the high SNR and low SNR case, correlation

on the observation noise also has noticeable implications. Indeed, for a constant or increasing

correlation on the observation noise, the Kalman filter produces very accurate estimate, but it

does not for the decreasing correlation on the observation noise.

For the Extended Kalman filter study, utilising one futures contract seems to yield better es-

timate than using multi futures contracts. This result is similar the result we derived already

in the Kalman filter implementation. Finally, for the Particle filter study, we observe that the

number of particles utilised also has a strong effect on the performance of the Particle filter.

Indeed, as we increase the number of simulation particles from 1000 to 5000, then the result is

improved significantly as shown in figures 45 and 48. Moreover, the Particle filter is affected as

the number of futures contracts is changed. As less futures contracts are utilised, the Particle

filter produces more accurate estimate as seen in figures 48 and 51.

In general, the Kalman filter appears to be the optimal solution for the filtering recursion

problem under Gaussian and linear assumptions on a state space model. However, when the

Gaussian and linear assumptions are removed, then the Particle filter becomes an optimal choise

for producing accurate estimate for the truth.
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10 Conclusion and future research

In this thesis, we have presented three types of commodity models which take into account the

mean reverting property of commodity prices. We basically attent our study on discretization

and filtering aspects for the models 2 and 3 (since model 1 and model 2 are equivalent as dis-

cussed in section 3.3). For the discretization aspect, we study both theoretically and empirically

the performance of the Euler and Milstein schemes. Moreover, we examine the effect of the

discretization time interval and the maturity on these schemes. We note that the Euler and

Milstein schemes only distinguish when applied to the spot price factor of model 3, since the

spot price involves a stochastic diffusion term in its dynamics. All the results derived in section

5.1 imply that both these schemes achieve very good simulation results as the discretization time

interval decreases. Moreover, as the maturity is expanded, then there appear more uncertainty

arising in each simulation, and hence this leads to a less accuracy in the simulation obtained by

the Euler or Milstein scheme.

Regarding filtering aspect, we utilise the state space model approach to facilitate the filtering

techniques. We note that once a model has been put into a state space form, then the Kalman

filter, Extended Kalman filter or the Particle filter can be implemented using futures contracts.

The futures contract is more easily observed and handled than the spot price in most commodity

markets. Therefore, it is used as a proxy for the spot price when implementing a filtering tech-

nique. Moreover, we also observe that the effects of futures contracts and different assumptions

on the state space model to the performance of filtering techniques. Every different types of

these factors have different implications on the filtering results.

In this thesis, we have considered two cases of a state space model. The first case is when the

Gaussian and linear assumptions are put into the state space model (model 2). The second case

is when the state space model still keeps Gaussian property, but now it is no longer linear in

terms of its transition and measurement equations. Moreover, we also have just examined the

effects of some particular factors based on the futures contracts and the observation noise. A

further research in this regard can be made by considering the effect of other factors on the

performance of each filtering technique. For instance, one may investigate changing the state

noise and may try other different structures of correlation on the observation noise, etc.
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12 Appendix 1: Futures Price Derivation

12.1 Model 1

Let Xt = lnSt. Then from Ito’s Lemma (see, for example, [13]), we obtain the dynamics of the

process X as follows

dX =

(
r − c− 1

2
σ2
)
dt+ σdZ∗

We denote the futures price at time t with maturity T by F(t, T). Since the futures price

converges to the expected futures spot price, then we have

F (t, T ) = E∗ [ST |St] = E∗
[
eXT |Xt

]

where E∗ denotes the expectation taken with respect to the risk neutral process.

In order to calculate this expectation, a natural way is to find the transition density p(XT , T |Xt, t)

of the process X. This can be obtained by using the Kolmogorov backward equation (KBE) which

is expressed as follows

∂p (XT , T |Xt, t)

∂t
+

(
r − c− 1

2
σ2
)
p (XT , T |Xt, t)

∂X
+

1

2
σ2
∂2p (XT , T |Xt, t)

∂X2
= 0

subject to the boundary condition: p(XT , T |Xt, t = T ) = δ̃(XT −Xt).

To obtain the expression for the futures price, we multiply both sides by eXt and then integrate

with respect to Xt. This then follows that

∂F (t, T )

∂t
+

(
r − c− 1

2
σ2
)
F (t, T )

∂X
+

1

2
σ2
∂2F (t, T )

∂X2
= 0

subject to the boundary condition: F (t = T, T ) = eXT .

We assume that the solution of this KBE has an exponential affine form:

F (t, T ) = eA0(t)+A1(t)Xt

Since F (t = T, T ) = eXT , we must have: A0(T ) = 0 and A1(T ) = 1. The derivatives of the

futures price can be found as follows

∂F (t, T )

∂t
=

(
dA0 (t)

dt
+Xt

dA1 (t)

dt

)
F (t, T ) ;

∂F (t, T )

∂X
= A1 (t)F (t, T ) ;

∂2F (t, T )

∂X2
= (A1 (t))

2 F (t, T )
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Now, substitute these terms to the above KBE, we obtain:

(
dA0 (t)

dt
+Xt

dA1 (t)

dt

)
F (t, T ) +

(
r − c− 1

2
σ2
)
A1 (t)F (t, T ) +

1

2
σ2 (A1 (t))

2 F (t, T ) = 0

Divide both sides by F (t, T ):

dA0 (t)

dt
+Xt

dA1 (t)

dt
+

(
r − c− 1

2
σ2
)
A1 (t) +

1

2
σ2 (A1 (t))

2 = 0

This then follows that




dA1(t)
dt

= 0

dA0(t)
dt

+
(
r − c− 1

2σ
2
)
A1 (t) +

1
2σ

2 (A1 (t))
2 = 0

⇒





A1 (t) = 1 (since A1 (T ) = 1)

dA0(t)
dt

+ r − c− 1
2σ

2 + 1
2σ

2 = 0

⇒





A1 (t) = 1 (since A1 (T ) = 1)

A0 (t) = (c− r) (t− T ) (since A0 (T ) = 0)

Thus, the futures price is given by

F (t, T ) = e(c−r)(t−T )+Xt = Ste
(c−r)(t−T )

12.2 Model 2

Let Xt = lnSt. We denote the futures price at time t with maturity T by F(t, T). Since the

futures price converges to the expected futures spot price, then we have

F (t, T ) = E∗ [ST |St] = E∗
[
eXT |Xt

]
= E∗

[
eχT+ξT |χt, ξt

]

where E∗ denotes the expectation taken with respect to the risk neutral process.

In order to calculate this expectation, a natural way is to find the transition density p(χT +

ξT , T |χt, ξt, t). For simplicity, we denote p(χT + ξT , T |χt, ξt, t) by p(YT , T |Yt, t). Then the Kol-

mogorov backward equation can be applied to obtain the expression for p(YT , T |Yt, t) as follows
∂p(YT ,T |Yt,t)

∂t
+ (−κχt − λχ)

∂p(YT ,T |Yt,t)
∂χ

+ (µξ − λξ)
∂p(YT ,T |Yt,t)

∂ξ
+ 1

2
σ2
χ
∂2p(YT ,T |Yt,t)

∂χ2 +

+ 1
2
σ2
ξ
∂2p(YT ,T |Yt,t)

∂ξ2
+ ρσχσξ

∂2p(YT ,T |Yt,t)
∂χ∂ξ

= 0

subject to the boundary condition: p(YT , T |Yt, t = T ) = δ̃(YT − Yt).
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To obtain the expression for the futures price, we multiply both sides by eXt and then integrate

with respect to Xt. This then follows that

∂F (t, T )

∂t
+ (−κχt − λχ)

∂F (t, T )

∂χ
+ (µξ − λξ)

∂F (t, T )

∂ξ
+

1

2
σ2χ
∂2F (t, T )

∂χ2
+

1

2
σ2ξ
∂2F (t, T )

∂ξ2
+

+ρσχσξ
∂2F (t, T )

∂χ∂ξ
= 0

subject to the boundary condition: F (t = T, T ) = eXT .

We assume that the solution of this KBE has an exponential affine form:

F (t, T ) = eA0(t)+A1(t)χt+A2(t)ξt

Since F (t = T, T ) = eXT , we must have: A0(T ) = 0, A1(T ) = 1 and A2(T ) = 1. The derivatives

of the futures price can be found as follows

∂F (t, T )

∂t
=

(
dA0 (t)

dt
+ χt

dA1 (t)

dt
+ ξt

dA2 (t)

dt

)
F (t, T ) ;

∂F (t, T )

∂χ
= A1 (t)F (t, T ) ;

∂F (t, T )

∂ξ
= A2 (t)F (t, T ) ;

∂2F (t, T )

∂χ2
= (A1 (t))

2 F (t, T ) ;

∂2F (t, T )

∂ξ2
= (A2 (t))

2 F (t, T ) ;

∂2F (t, T )

∂χ∂ξ
= A1 (t)A2 (t)F (t, T ) ;

Now, substitute these terms to the above KBE, we obtain:(
dA0(t)

dt
+ χt

dA1(t)
dt

+ ξt
dA2(t)

dt

)
F (t, T )+(−κχt − λχ)A1 (t)F (t, T )+(µξ − λξ)A2 (t)F (t, T )

+ 1
2
σ2
χ (A1 (t))

2
F (t, T ) + 1

2
σ2
ξ (A2 (t))

2
F (t, T ) + ρσχσξA1 (t)A2 (t)F (t, T ) = 0

Divide both sides by F (t, T ):

dA0(t)
dt

+ χt
dA1(t)

dt
+ ξt

dA2(t)
dt

+ (−κχt − λχ)A1 (t) + (µξ − λξ)A2 (t) +
1
2
σ2
χ (A1 (t))

2 +

+ 1
2
σ2
ξ (A2 (t))

2 + ρσχσξA1 (t)A2 (t) = 0

⇒ χt

(
dA1(t)

dt
− κA1 (t)

)
+ ξt

dA2(t)
dt

+ dA0(t)
dt

− λχA1 (t) + (µξ − λξ)A2 (t) +
1
2
σ2
χ (A1 (t))

2 +

+ 1
2
σ2
ξ (A2 (t))

2 + ρσχσξA1 (t)A2 (t) = 0

This then follows that




dA1(t)
dt

= κA1 (t)

dA2(t)
dt

= 0

dA0(t)
dt

− λχA1 (t) + (µξ − λξ)A2 (t) +
1
2σ

2
χ (A1 (t))

2 + 1
2σ

2
ξ (A2 (t))

2 + ρσχσξA1 (t)A2 (t) = 0
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⇒





A1 (t) = eκ(t−T ) (since A1 (T ) = 1)

A2 (t) = 1 (since A2 (T ) = 1)

dA0(t)
dt

− λχe
κ(t−T ) + µξ − λξ +

1
2σ

2
χe

2κ(t−T ) + 1
2σ

2
ξ + ρσχσξe

κ(t−T ) = 0

⇒





A1 (t) = eκ(t−T )

A2 (t) = 1

A0 (t) =
λχ

κ

(

eκ(t−T ) − 1
)

− (µξ − λξ) (t− T )− 1
4κ

σ2
χ

(

e2κ(t−T ) − 1
)

− 1
2
σ2
ξ (t− T )−

ρσχσξ

κ

(

eκ(t−T ) − 1
)

Thus, the futures price is given by

F (t, T ) = ee
κ(t−T )χt+ξt+A0(t)

with A0(t) defined as above.

12.3 Model 3

Let Xt = lnSt. Then from Ito’s Lemma (see, for example, [13]), we obtain the dynamics of the

process X as follows

dX =

(
r − δ − 1

2
σ21

)
dt+ σ1dZ

∗
1

We denote the futures price at time t with maturity T by F(t, T). Since the futures price

converges to the expected futures spot price, then we have

F (t, T ) = E∗ [ST |St] = E∗
[
eXT |Xt

]

where E∗ denotes the expectation taken with respect to the risk neutral process.

In order to calculate this expectation, a natural way is to find the transition density of the state

variables which is denoted by p(XT , δT , rT , T |Xt, δt, rt, t) = p(YT , T |Yt, t). This can be obtained

by using the Kolmogorov backward equation (KBE) which is expressed as follows

∂p(YT ,T |Yt,t)
∂t

+
(
r − δ − 1

2
σ2
1

)
∂p(YT ,T |Yt,t)

∂X
+ κ (α̂− δ) ∂p(YT ,T |Yt,t)

∂δ
+ a (m∗ − r) ∂p(YT ,T |Yt,t)

∂r
+

+ 1
2
σ2
1
∂2p(YT ,T |Yt,t)

∂X2 + 1
2
σ2
2
∂2p(YT ,T |Yt,t)

∂δ2
+ 1

2
σ2
3
∂2p(YT ,T |Yt,t)

∂r2
+ ρ1σ1σ2

∂2p(YT ,T |Yt,t)
∂X∂δ

+

+ ρ2σ2σ3
∂2p(YT ,T |Yt,t)

∂δ∂r
+ ρ3σ1σ3

∂2p(YT ,T |Yt,t)
∂X∂r

= 0

subject to the boundary condition: p(YT , T |Yt, t = T ) = δ̃(YT − Yt).

To obtain the expression for the futures price, we multiply both sides by eXt and then integrate

with respect to Xt. This then follows that

∂F (t,T )
∂t

+
(
r − δ − 1

2
σ2
1

)
∂F (t,T )

∂X
+ κ (α̂− δ) ∂F (t,T )

∂δ
+ a (m∗ − r) ∂F (t,T )

∂r
+ 1

2
σ2
1
∂2F (t,T )

∂X2 +
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+ 1
2
σ2
2
∂2F (t,T )

∂δ2
+ 1

2
σ2
3
∂2F (t,T )

∂r2
+ ρ1σ1σ2

∂2F (t,T )
∂X∂δ

+ ρ2σ2σ3
∂2F (t,T )
∂δ∂r

+ ρ3σ1σ3
∂2F (t,T )
∂X∂r

= 0

subject to the boundary condition: F (t = T, T ) = eXT .

We assume that the solution of this KBE has an exponential affine form:

F (t, T ) = eA0(t)+A1(t)Xt+A2(t)δt+A3(t)rt

Since F (t = T, T ) = eXT , we must have: A0(T ) = 0, A1(T ) = 1, A2(T ) = 0 and A3(T ) = 0.

The derivatives of the futures price can be found as follows

∂F (t, T )

∂t
=

(
dA0 (t)

dt
+Xt

dA1 (t)

dt
+ δt

dA2 (t)

dt
+ rt

dA3 (t)

dt

)
F (t, T ) ;

∂F (t, T )

∂X
= A1 (t)F (t, T ) ;

∂F (t, T )

∂δ
= A2 (t)F (t, T ) ;

∂F (t, T )

∂r
= A3 (t)F (t, T ) ;

∂2F (t, T )

∂X2
= (A1 (t))

2 F (t, T ) ;

∂2F (t, T )

∂δ2
= (A2 (t))

2 F (t, T ) ;

∂2F (t, T )

∂r2
= (A3 (t))

2 F (t, T ) ;

∂2F (t, T )

∂X∂δ
= A1 (t)A2 (t)F (t, T ) ;

∂2F (t, T )

∂δ∂r
= A2 (t)A3 (t)F (t, T ) ;

∂2F (t, T )

∂X∂r
= A1 (t)A3 (t)F (t, T ) ;

Now, substitute these terms to the above KBE, we obtain:

(
dA0 (t)

dt
+Xt

dA1 (t)

dt
+ δt

dA2 (t)

dt
+ rt

dA3 (t)

dt

)
F (t, T ) +

(
r − δ − 1

2
σ21

)
A1 (t)F (t, T )+

+κ (α̂− δ)A2 (t)F (t, T ) + a (m∗ − r)A3 (t)F (t, T ) +
1

2
σ21 (A1 (t))

2 F (t, T )+

+
1

2
σ22 (A2 (t))

2 F (t, T ) +
1

2
σ23 (A3 (t))

2 F (t, T ) + ρ1σ1σ2A1 (t)A2 (t)F (t, T )+

+ρ2σ2σ3A2 (t)A3 (t)F (t, T ) + ρ3σ1σ3A1 (t)A3 (t)F (t, T ) = 0
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Divide both sides by F (t, T ):

dA0 (t)

dt
+Xt

dA1 (t)

dt
+ δt

dA2 (t)

dt
+ rt

dA3 (t)

dt
+

(
r − δ − 1

2
σ21

)
A1 (t) + κ (α̂− δ)A2 (t)+

+a (m∗ − r)A3 (t) +
1

2
σ21 (A1 (t))

2 +
1

2
σ22 (A2 (t))

2 +
1

2
σ23 (A3 (t))

2 + ρ1σ1σ2A1 (t)A2 (t)+

+ρ2σ2σ3A2 (t)A3 (t) + ρ3σ1σ3A1 (t)A3 (t) = 0

⇒ Xt
dA1 (t)

dt
+ δt

(
dA2 (t)

dt
−A1 (t)− κA2 (t)

)
+ rt

(
dA3 (t)

dt
+A1 (t)− aA3 (t)

)
+
dA0 (t)

dt
−

−1

2
σ21A1 (t) + κα̂A2 (t) + am∗A3 (t) +

1

2
σ21 (A1 (t))

2 +
1

2
σ22 (A2 (t))

2 +
1

2
σ23 (A3 (t))

2+

+ρ1σ1σ2A1 (t)A2 (t) + ρ2σ2σ3A2 (t)A3 (t) + ρ3σ1σ3A1 (t)A3 (t) = 0

This then follows that





dA1(t)
dt

= 0

dA2(t)
dt

−A1 (t)− κA2 (t) = 0

dA3(t)
dt

+A1 (t)− aA3 (t) = 0

and

dA0 (t)

dt
− 1

2
σ21A1 (t) + κα̂A2 (t) + am∗A3 (t) +

1

2
σ21 (A1 (t))

2 +
1

2
σ22 (A2 (t))

2 +
1

2
σ23 (A3 (t))

2+

+ρ1σ1σ2A1 (t)A2 (t) + ρ2σ2σ3A2 (t)A3 (t) + ρ3σ1σ3A1 (t)A3 (t) = 0

⇒





A1 (t) = 1 (since A1 (T ) = 1)

dA2(t)
dt

= 1 + κA2 (t)

dA3(t)
dt

= −1 + aA3 (t)

and

dA0 (t)

dt
− 1

2
σ21 + κα̂A2 (t) + am∗A3 (t) +

1

2
σ21 +

1

2
σ22 (A2 (t))

2 +
1

2
σ23 (A3 (t))

2 + ρ1σ1σ2A2 (t)+

+ρ2σ2σ3A2 (t)A3 (t) + ρ3σ1σ3A3 (t) = 0

⇒





A1 (t) = 1

A2 (t) =
1
κ

(
eκ(t−T ) − 1

)
(since A2 (T ) = 0)

A3 (t) =
1
a

(
1− ea(t−T )

)
(since A3 (T ) = 0)
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and

dA0 (t)

dt
=
1

2
σ21 − α̂

(
eκ(t−T ) − 1

)
+m∗

(
ea(t−T ) − 1

)
− 1

2
σ21 −

σ22
2κ2

(
eκ(t−T ) − 1

)2
−

− σ23
2a2

(
ea(t−T ) − 1)2 − ρ1σ1σ2

κ

(
eκ(t−T ) − 1

)
+
ρ2σ2σ3
κa

(
eκ(t−T ) − 1

)(
ea(t−T ) − 1

)
+

+
ρ3σ1σ3
a

(
ea(t−T ) − 1

)

=
ρ2σ2σ3
κa

e(κ+a)(t−T ) − σ22
2κ2

e2κ(t−T ) − σ23
2a2

e2a(t−T )+

+ eκ(t−T )

(
σ22
κ2

− α̂− ρ1σ1σ2
κ

− ρ2σ2σ3
κa

)
+ ea(t−T )

(
m∗ +

σ23
a2

− ρ2σ2σ3
κa

+
ρ3σ1σ3
a

)
+

+ α̂−m∗ − σ22
2κ2

− σ23
2a2

+
ρ1σ1σ2
κ

+
ρ2σ2σ3
κa

− ρ3σ1σ3
a

Since A0(T ) = 0, it follows that

⇒ A0 (t) =
ρ2σ2σ3

κa (κ+ a)

(
e(κ+a)(t−T ) − 1

)
− σ22

4κ3

(
e2κ(t−T ) − 1

)
− σ23

4a3

(
e2a(t−T ) − 1

)
+

+

(
σ22
κ3

− α̂

κ
− ρ1σ1σ2

κ2
− ρ2σ2σ3

κ2a

)(
eκ(t−T ) − 1

)
+

+

(
m∗

a
+
σ23
a3

− ρ2σ2σ3
κa2

+
ρ3σ1σ3
a2

)(
ea(t−T ) − 1

)
+

+

(
α̂−m∗ − σ22

2κ2
− σ23

2a2
+
ρ1σ1σ2
κ

+
ρ2σ2σ3
κa

− ρ3σ1σ3
a

)
(t− T )

Thus, the futures price is given by

F (t, T ) = eXt+
1
κ(e

κ(t−T )−1)δt+ 1
a(1−ea(t−T ))rt+A0(t)

with A0(t) defined as above.

13 Appendix 2: Derivation of Statistical Properties for Model

2 (Equations (3.28) and (3.29))

The discrete-time approximation of the process with time step △t = t
n
can be written as

xt = c+Qxt−1 + ηt

where xt ≡ [χt, ξt], c ≡ [0, µ△t], Q ≡


 Φ 0

0 1


,

Φ ≡ 1− κ△t, and ηt is a 2 x 1 vector of serially uncorrelated disturbances with E[ηt] = 0, and

126



Var [ηt] =W ≡


 σ21△t ρσ1σ2△t
ρσ1σ2△t σ22△t




The n-step ahead mean vector (mn) and covariance matrix (Vn) are given recursively by mn =

c + Qmn−1 and Vn = QVn−1Q
T +W , with m0 = x0 ≡ [χ0, ξ0] and V0 = 0 (see, for instance,

Harvey 1989). Then applying this recursion, we find that

mn = [Φnχ0, ξ0 + µn△t],

Vn =


 σ21△t

∑n−1
i=0 Φ2i ρσ1σ2△t

∑n−1
i=0 Φi

ρσ1σ2△t
∑n−1

i=0 Φi n△tσ21




(These recursive calculations can be checked easily by inductive arguments). Now we can rewrite

the geometric series in mn and Vn as follows

n−1∑

i=0

Φi =
1− Φn−1

1− Φ
and

n−1∑

i=0

Φ2i =
1− Φ2(n−1)

1− Φ2

As n→ ∞, △t = t
n
reaches 0, then Φn = (1− κt

n
)n approaches e−κt, Φ2n approaches e−2κt, and

1− Φn−1

1− Φ
△t→ 1− e−κt

κ
and

1− Φ2(n−1)

1− Φ2
△t→ 1− e−2κt

2κ

Now substituting these limits into the expressions for mn and Vn, we obtain the mean vector

and covariance matrix given in equations (3.28) and (3.29).

14 Appendix 3: Discretization for Model 3 Using The Milstein

Scheme

Model 3 will first be recast with respect to independent Wiener processes dW1, dW2 and dW3

as follows

dSt = (µ− δt)Stdt+ σ1StdW1

dδt = κ (α− δt) dt+ σ2

(
ρ1dW1 +

√
1− ρ21dW2

)

drt = a (m− rt) dt+ σ3

(
ρ3dW1 +

√
1− ρ23dW3

)
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This will result in the following specifications:

a1 (t, St) = (µ− δt)St; a
2 (t, δt) = κ (α− δt) ; a

3 (t, rt) = a (m− rt)

b1,1 (t, St) = σ1St; b
1,2 (t, St) = 0; b1,3 (t, St) = 0

b2,1 (t, δt) = σ2ρ1; b
2,2 (t, δt) = σ2

√
1− ρ21; b

2,3 (t, δt) = 0

b3,1 (t, rt) = σ3ρ3; b
3,2 (t, rt) = 0; b3,3 (t, rt) = σ3

√
1− ρ23

L1b1,1 (t, St) = b1,1 (t, St)
∂

∂St
b1,1 (t, St) + b2,1 (t, δt)

∂

∂δt
b1,1 (t, St) + b3,1 (t, rt)

∂

∂rt
b1,1 (t, St) = σ21St

It can easily be seen that Lkbi,j = 0 for all k, i, j such that they do not equal to 1 simultaneously.

Now we arrive at the trivariate Milstein discretization scheme as follows

St = St−1 + (µ− δt−1)St−1△t+ σ1St−1

√
△tnS,t−1 + σ21St−1

1

2

(
△tn2S,t−1 −△t

)

δt = δt−1 + κ (α− δt−1)△t+ σ2ρ1
√

△tnS,t−1 + σ2

√
1− ρ21

√
△tnδ,t−1

rt = rt−1 + a (m− rt−1)△t+ σ3ρ3
√

△tnS,t−1 + σ3

√
1− ρ23

√
△tnr,t−1

where nS,t−1, nδ,t−1 and nr,t−1 are i.i.d. standard normal random variables.

15 Appendix 4: Derivation of The Transition Equation for Model

3

As mentioned earlier, model 3 can be expressed in terms of the log of the spot price, the

convenience yield and the interest rate as

dX =

(
µ− δ − 1

2
σ21

)
dt+ σ1dZ1

dδ = κ (α− δ) dt+ σ2dZ2

dr = a (m− r) dt+ σ3dZ3

dZ1dZ2 = ρ1dt, dZ2dZ3 = ρ2dt, dZ1dZ3 = ρ3dt.

To derive the transition equation for model 3, we first need to convert the joint stochastic

processes of the spot price and the convenience yield into the discretized forms.

Model 3 will first be recast with respect to independent Wiener processes dW1 and dW2 as
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follows

dX =

(
µ− δ − 1

2
σ21

)
dt+ σ1dW1

dδ = κ (α− δ) dt+ σ2ρ1dW1 + σ2

√
1− ρ21dW2

Then by using the Euler scheme, the joint stochastic processes of the spot price and the conve-

nience yield can be discretized as follows

Xk = Xk−1 +

(
µ− δk−1 −

1

2
σ21

)
△k + σ1

√
△knX,k−1

= Xk−1 − δk−1△k +
(
µ− 1

2
σ21

)
△k + σ1

√
△knX,k−1

δk = δk−1 + κ (α− δk−1)△k + σ2
√
△knδ,k−1

= (1− κ△k) δk−1 + κα△k + σ2
√

△knδ,k−1

where nX,k−1 and nδ,k−1 are i.i.d. standard normal random variables.

Thus, from these equations, the transition equation for model 3 can be obtained as

xk = Tkxk−1 + ck +Rkηk, k = 1, ..., nT

where:

xk = [Xk, δk] is a 2× 1 vector of state variables;

Tk =


 1 −△k

0 1− κ△k


 is a 2× 2 matrix;

ck = [(µ− 1
2σ

2
1)△k, κα△k] is a 2× 1 vector;

Rk is a 2× 2 identity matrix;

ηk is a 2 × 1 vector of serially uncorrelated, normally distributed disturbances with E [ηk] = 0

and Var [ηk] = Qk = Cov[(Xk, δk)] =


 σ21△k ρ1σ1σ2△k
ρ1σ1σ2△k σ21△k


.
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16 Appendix 5: Matlab Code - Generating The Three-factor

Model

% The SDE of the 3-factor model (under the risk neutral framework) is:

% dS = (r-Delta).S.dt + sigma1.S.dZ1

% dDelta = kappa.(alpha-Delta).dt + sigma2.dZ2 (here alpha implies

% alpha_hat)

% dr = a.(m-r).dt + sigma3.dZ3 (here m implies m*)

% dZ1.dZ2 = rho12.dt, dZ1.dZ3 = rho13.dt, dZ2.dZ3 = rho23.dt

clear all

clc

randn(’seed’,1)

rand(’seed’,1)

T = 1;

sigma1 = 0.25; sigma2 = 0.15; sigma3 = 0.1;

m = 0.76; kappa = 0.3; a = 0.18; alpha = 1;

rho12 = 0.24; rho23 = 0.3; rho13 = 0.08;

S0 = 2*randn+0.7; Delta0 = randn; r0 = 2*randn+0.4;

Delta = [0.001 0.1];

g = 0;

Deta = 0.0001; t0 = [0:Deta:T];

for d = 1:500

XM1(1) = S0; XE2(1) = Delta0; XE3(1) = r0;

for j = 1:length(t0)-1

dW1 = sqrt(Deta)*randn;

dW2 = sqrt(Deta)*randn;

dW3 = sqrt(Deta)*randn;

XM1(j+1) = XM1(j) + (XE3(j) - XE2(j))*XM1(j)*Deta ...

+ sigma1*XM1(j)*dW1 + 0.5*(sigma1^2)*XM1(j)*((dW1^2)-Deta);

XE2(j+1)=XE2(j)+kappa*(alpha-XE2(j))*Deta+sigma2*rho12*dW1 ...

+ sigma2*sqrt(1-rho12^2)*dW2;

XE3(j+1)=XE3(j)+a*(m-XE3(j))*Deta+sigma3*rho13*dW1 ...

+ sigma3*sqrt(1-rho13^2)*dW3;

end

pat1(d,:) = XM1(:);

pat2(d,:) = XE2(:);

pat3(d,:) = XE3(:);

XM1=[]; XE2=[]; XE3=[];

end

truemean1 = mean(pat1(:,1:length(t0)));

130



truemean2 = mean(pat2(:,1:length(t0)));

truemean3 = mean(pat3(:,1:length(t0)));

pat1=[]; pat2=[]; pat3=[];

for k = 1:length(Delta)

t = [];

Xe1 = []; X1 = []; X2 = []; X3 = [];

X1(1) = S0; Xe1(1) = S0;

X2(1) = Delta0; X3(1) = r0;

t = [0:Delta(k):T];

if Delta(k) == 0.001

d = 1000;

elseif Delta(k) == 0.1

d = 100;

end

for u = 1:d

Xe1 = []; X1 = []; X2 = []; X3 = [];

Xe1(1) = S0; X1(1) = S0; X2(1) = Delta0; X3(1) = r0;

for j = 1:length(t)-1

dW1 = sqrt(Delta(k))*randn;

dW2 = sqrt(Delta(k))*randn;

dW3 = sqrt(Delta(k))*randn;

X1(j+1)=X1(j)+(X3(j)-X2(j))*X1(j)*Delta(k)+sigma1*X1(j)*dW1 ...

+ 0.5*(sigma1^2)*X1(j)*((dW1^2)-Delta(k));

X2(j+1)=X2(j)+kappa*(alpha-X2(j))*Delta(k)+sigma2*rho12*dW1 ...

+ sigma2*sqrt(1-rho12^2)*dW2;

X3(j+1)=X3(j)+a*(m-X3(j))*Delta(k)+sigma3*rho13*dW1 ...

+ sigma3*sqrt(1-rho13^2)*dW3;

end

if Delta(k) == 0.001

figure(1)

hold on

subplot(3,1,1),title(’Spot price’),plot(t,X1)

hold on

subplot(3,1,2),title(’Convenience yield’),plot(t,X2)

hold on

subplot(3,1,3),title(’Interest rate’),plot(t,X3)

elseif Delta(k) == 0.1

figure(2)

hold on

subplot(3,1,1),title(’Spot price’), plot(t,X1)
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hold on

subplot(3,1,2),title(’Convenience yield’), plot(t,X2)

hold on

subplot(3,1,3),title(’Interest rate’), plot(t,X3)

end

g = g + 1

end

if Delta(k) == 0.001

figure(1)

hold on

subplot(3,1,1),title(’Spot price’),plot(t0,truemean1,’k’)

hold on

subplot(3,1,2),title(’Convenience yield’),plot(t0,truemean2,’k’)

hold on

subplot(3,1,3),title(’Interest rate’),plot(t0,truemean3,’k’)

elseif Delta(k) == 0.1

figure(2)

hold on

subplot(3,1,1),title(’Spot price’),plot(t0,truemean1,’k’)

hold on

subplot(3,1,2),title(’Convenience yield’),plot(t0,truemean2,’k’)

hold on

subplot(3,1,3),title(’Interest rate’),plot(t0,truemean3,’k’)

end

end

save threeMod -v7.3

17 Appendix 6: Matlab Code - Kalman Filter for Single Con-

tract with Length 90 Days (Model 2)

% Implementation for the short-/long-term model using the Kalman filter

% The SDE of the short-term/long-term model under the real-world framework is:

% dchi = -kappa.chi.dt + sigma1.dZ1

% dxi = mu.dt + sigma2.dZ2

% dZ1.dZ2 = rho.dt

clear all

clc

randn(’seed’,1)

rand(’seed’,1)
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mydata = importdata(’1Contract90.xls’);

ID = mydata.data(:,1);

C1 = mydata.data(:,2); % Single futures contract

g = 1;

while C1(g)~=0

g = g + 1;

end

H = 0.1*eye(1);

% Step 1: Generate the latent process under the real-world framework

T = 100;

kappa = 1.7; sigma1 = 2; mu = 1.1; sigma2 = 2; rho = 0.5;

chi0 = randn+0.5; xi0 = randn*2+0.3; % random initial values

X1(1) = chi0; X2(1) = xi0;

Delta = 0.01; t = [0.01:Delta:1];

mean1 = chi0 * exp(-kappa*t); mean2 = xi0 + mu*t;

for j = 1:length(t)-1

dW1 = sqrt(Delta)*randn; dW2 = sqrt(Delta)*randn;

X1(j+1) = (1 - kappa*Delta)*X1(j) + sigma1*dW1;

X2(j+1) = X2(j)+ mu*Delta+sigma2*rho*dW1+sigma2*sqrt(1-rho^2)*dW2;

end

XX1(1) = chi0; XX2(1) = xi0; t1 = [0.0001:0.0001:1];

for j = 1:length(t1)-1

dW1 = sqrt(0.0001)*randn; dW2 = sqrt(0.0001)*randn;

XX1(j+1) = (1 - kappa*0.0001)*XX1(j) + sigma1*dW1;

XX2(j+1) = XX2(j)+mu*0.0001+sigma2*rho*dW1+sigma2*sqrt(1-rho^2)*dW2;

end

% Step 2: Calculate the futures price and the observed futures price

lambda1 = 1.2; % The risk premium of chi

lambda2 = 0.7; % The risk premium of xi

A=@(t,T) (lambda1/kappa)*(exp(kappa*(t-T)/100)-1)-((mu-lambda2)*(t-T)/100) ...

-(0.25/kappa)*(sigma1^2)*(exp(2*kappa*(t-T)/100)-1) ...

-0.5*(sigma2^2)*((t-T)/100)-(rho*sigma1*sigma2/kappa)*(exp(kappa*(t-T)/100)-1);

LNP1 = @(tau) exp(kappa*(-tau/100))*X1(90-tau)+X2(90-tau)+A(90-tau,90);

s = 1;

for i = 1:100

ObsNoise = mvnrnd(zeros(1),H);

if i <= 100-g

LNF1(i) = LNP1(C1(i+g)); LNF1o(i) = LNF1(i) + ObsNoise(1);

else

LNF1(i) = LNP1(C1(100)-s); LNF1o(i) = LNF1(i) + ObsNoise(1);
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s = s + 1;

end

end

% Step 3: Using the Kalman filter to estimate the mean and covariance

% Firstly, establish the system matrices

W = @(k) [exp(kappa*(k-90)/100) 1];

d = @(k) [A(k,90)];

TT = [exp(-kappa*Delta) 0; 0 1];

c = [0; mu*Delta];

R = eye(2);

Q = @(k) [

(1-exp(-2*kappa*Delta))*(sigma1^2/(2*kappa)) (1-exp(-kappa*Delta))*(rho*sigma1*sigma2/kappa)

(1-exp(-kappa*Delta))*(rho*sigma1*sigma2/kappa) (sigma2^2)*Delta];

% Run the Kalman filter algorithm

a(:,1) = [chi0; xi0]; % Initial value of the mean

P(:,:,1) = [2 0; 0 2]; % Initial value of the covariance

for i = 2:90

aa(:,i) = TT*a(:,i-1) + c;

PP(:,:,i) = TT*P(:,:,i-1)*TT’ + R*Q(i)*R’;

z(i) = [LNF1o(i)];

F(i) = W(i)*PP(:,:,i)*(W(i))’ + H;

a(:,i) = aa(:,i) + PP(:,:,i)*(W(i))’*inv(F(i))*(z(:,i) - W(i)*aa(:,i) - d(i));

P(:,:,i) = PP(:,:,i) - PP(:,:,i)*(W(i))’*inv(F(i))*W(i)*PP(:,:,i);

end

figure(1)

subplot(2,1,1),plot(t(1:90),X1(1:90),’k’)

hold on

errorbar(t(1:90),a(1,:),P(1,1,:))

xlabel t(days/100)

ylabel Chi

subplot(2,1,2),plot(t(1:90),X2(1:90),’k’)

hold on

errorbar(t(1:90),a(2,:),P(2,2,:))

xlabel t(days/100)

ylabel Xi

save shortlongFsim90 -v7.3
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18 Appendix 7: Matlab Code - Kalman Filter for The Num-

ber of Contracts Study and Correlation on The Observation

Noise Study (Model 2)

% Implementation for the short-/long-term model using the Kalman filter

% The SDE of the short-term/long-term model under the real-world framework is:

% dchi = -kappa.chi.dt + sigma1.dZ1

% dxi = mu.dt + sigma2.dZ2

% dZ1.dZ2 = rho.dt

clear all

clc

randn(’seed’,1)

rand(’seed’,1)

mydata = importdata(’ContractDates_Synth.xls’);

ID = mydata.data(:,1);

C1 = mydata.data(:,2);

C2 = mydata.data(:,3);

C3 = mydata.data(:,4);

C4 = mydata.data(:,5);

C5 = mydata.data(:,6);

g=1;

while C1(g)~=0

g = g + 1;

end

H = 1*eye(5); % Case: constant correlation on the observation noise

% Case: increasing correlation on the observation noise

% H(1,1) = 0.002;

% H(2,2) = 0.4;

% H(3,3) = 0.6;

% H(4,4) = 0.8;

% H(5,5) = 100;

% Case: decreasing correlation on the observation noise

%H(1,1) = 100;

%H(2,2) = 0.8;

%H(3,3) = 0.6;

%H(4,4) = 0.4;
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%H(5,5) = 0.002;

% Step 1: Generate the latent process in the real-world parameters

T = 100;

kappa = 1.7; sigma1 = 1; mu = 1.1; sigma2 = 1; rho = 0.5;

chi0 = randn+0.5; xi0 = randn*2+0.3; % random initial values

X1 = []; X2 = []; X1(1) = chi0; X2(1) = xi0;

Delta = 0.01; t = [0.01:Delta:1];

mean1 = chi0 * exp(-kappa*t); mean2 = xi0 + mu*t;

for j = 1:length(t)-1

dW1 = sqrt(Delta)*randn; dW2 = sqrt(Delta)*randn;

X1(j+1) = (1 - kappa*Delta)*X1(j) + sigma1*dW1;

X2(j+1) = X2(j) + mu*Delta + sigma2*rho*dW1 + sigma2*sqrt(1-rho^2)*dW2;

end

% Step 2: Calculate the futures price and the observed futures price

lambda1 = 1.2; % The risk premium of chi

lambda2 = 0.7; % The risk premium of xi

A = @(t,T) (lambda1/kappa)*(exp(kappa*(t-T)/100)-1) - ((mu-lambda2)*(t-T)/100) ...

-(0.25/kappa)*(sigma1^2)*(exp(2*kappa*(t-T)/100)-1) ...

- 0.5*(sigma2^2)*((t-T)/100)-(rho*sigma1*sigma2/kappa)*(exp(kappa*(t-T)/100)-1);

LNP1 = @(tau) exp(kappa*(-tau/100))*X1(30-tau)+X2(30-tau)+A(30-tau,30);

LNP2 = @(tau) exp(kappa*(-tau/100))*X1(60-tau)+X2(60-tau)+A(60-tau,60);

LNP3 = @(tau) exp(kappa*(-tau/100))*X1(90-tau)+X2(90-tau)+A(90-tau,90);

LNP4 = @(tau) exp(kappa*(-tau/100))*X1(120-tau)+X2(120-tau)+A(120-tau,120);

LNP5 = @(tau) exp(kappa*(-tau/100))*X1(150-tau)+X2(150-tau)+A(150-tau,150);

s = 1;

for i=1:100

ObsNoise = mvnrnd(zeros(5),H);

if i <= 100-g

LNF1(i) = LNP1(C1(i+g)); LNF1o(i) = LNF1(i) + ObsNoise(1);

LNF2(i) = LNP2(C2(i+g)); LNF2o(i) = LNF2(i) + ObsNoise(2);

LNF3(i) = LNP3(C3(i+g)); LNF3o(i) = LNF3(i) + ObsNoise(3);

LNF4(i) = LNP4(C4(i+g)); LNF4o(i) = LNF4(i) + ObsNoise(4);

LNF5(i) = LNP5(C5(i+g)); LNF5o(i) = LNF5(i) + ObsNoise(5);

else

LNF1(i) = LNP1(C1(100)-s); LNF1o(i) = LNF1(i) + ObsNoise(1);

LNF2(i) = LNP2(C2(100)-s); LNF2o(i) = LNF2(i) + ObsNoise(2);

LNF3(i) = LNP3(C3(100)-s); LNF3o(i) = LNF3(i) + ObsNoise(3);

LNF4(i) = LNP4(C4(100)-s); LNF4o(i) = LNF4(i) + ObsNoise(4);

LNF5(i) = LNP5(C5(100)-s); LNF5o(i) = LNF5(i) + ObsNoise(5);
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s = s + 1;

end

end

% Step 3: Using the Kalman filter to estimate the mean and covariance

% Firstly, establish the system matrices

W = @(k) [exp(kappa*(k-30)/100) 1; exp(kappa*(k-60)/100) 1; exp(kappa*(k-90)/100) 1;

exp(kappa*(k-120)/100) 1; exp(kappa*(k-150)/100) 1];

d = @(k) [A(k,30); A(k,60); A(k,90); A(k,120); A(k,150)];

TT = [exp(-kappa*Delta) 0; 0 1];

c = [0; mu*Delta];

R = eye(2);

Q = @(k) [

(1-exp(-2*kappa*Delta))*(sigma1^2/(2*kappa)) (1-exp(-kappa*Delta))*(rho*sigma1*sigma2/kappa)

(1-exp(-kappa*Delta))*(rho*sigma1*sigma2/kappa) (sigma2^2)*Delta];

% Run the Kalman filter algorithm

a(:,1) = [0.5*rand+chi0; 0.5*rand+xi0]; % Initial value of the mean

P(:,:,1) = [2 0; 0 2]; % Initial value of the covariance

for i = 2:100

aa(:,i) = TT*a(:,i-1) + c;

PP(:,:,i) = TT*P(:,:,i-1)*TT’ + R*Q(i)*R’;

z(:,i) = [LNF1o(i) ; LNF2o(i); LNF3o(i); LNF4o(i); LNF5o(i)];

F(:,:,i) = W(i)*PP(:,:,i)*(W(i))’ + H;

a(:,i) = aa(:,i) + PP(:,:,i)*(W(i))’*inv(F(:,:,i))*(z(:,i) - W(i)*aa(:,i) - d(i));

P(:,:,i) = PP(:,:,i) - PP(:,:,i)*(W(i))’*inv(F(:,:,i))*W(i)*PP(:,:,i);

end

figure(1)

subplot(2,1,1),plot(t,X1,’k’)

hold on

errorbar(t,a(1,:),P(1,1,:))

xlabel t(days/100)

ylabel Chi

subplot(2,1,2),plot(t,X2,’k’)

hold on

errorbar(t,a(2,:),P(2,2,:))

xlabel t(days/100)

ylabel Xi

save shortlongF -v7.3
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19 Appendix 8: Matlab Code - Kalman Filter for The Length

of A Contract Study (Model 2)

% Implementation for the short-/long-term model using the Kalman filter

% The SDE of the short-term/long-term model under the real-world framework is:

% dchi = -kappa.chi.dt + sigma1.dZ1

% dxi = mu.dt + sigma2.dZ2

% dZ1.dZ2 = rho.dt

clear all

clc

randn(’seed’,1)

rand(’seed’,1)

mydata = importdata(’ContractDates_Synth_LengthStudy_90.xls’);

ID = mydata.data(:,1);

C1 = mydata.data(:,2); % 1 futures contract

g=1;

while C1(g)~=0

g = g + 1;

end

H = 10*eye(1);

% Step 1: Generate the latent process under the real-world framework

T = 100;

kappa = 1.7; mu = 1.1; sigma1 = 1; sigma2 = 1; rho = 0.5;

chi0 = randn+0.5; xi0 = randn*2+0.3; % random initial values

X1(1) = chi0; X2(1) = xi0;

Delta = 0.01; t = [0.01:Delta:1];

mean1 = chi0 * exp(-kappa*t);

mean2 = xi0 + mu*t;

for j = 1:length(t)-1

dW1 = sqrt(Delta)*randn;

dW2 = sqrt(Delta)*randn;

X1(j+1) = (1 - kappa*Delta)*X1(j) + sigma1*dW1;

X2(j+1) = X2(j) + mu*Delta + sigma2*rho*dW1 + sigma2*sqrt(1-rho^2)*dW2;

end

XX1(1) = chi0; XX2(1) = xi0;

t1 = [0.0001:0.0001:1];

for j = 1:length(t1)-1

dW1 = sqrt(0.0001)*randn;

dW2 = sqrt(0.0001)*randn;
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XX1(j+1) = (1 - kappa*0.0001)*XX1(j) + sigma1*dW1;

XX2(j+1) = XX2(j) + mu*0.0001 + sigma2*rho*dW1 + sigma2*sqrt(1-rho^2)*dW2;

end

% Step 2: Calculate the futures price and the observed futures price

lambda1 = 1.2; % The risk premium of chi

lambda2 = 0.7; % The risk premium of xi

A = @(t,T) (lambda1/kappa)*(exp(kappa*(t-T)/100)-1)-((mu-lambda2)*(t-T)/100) ...

- (0.25/kappa)*(sigma1^2)*(exp(2*kappa*(t-T)/100)-1) ...

-0.5*(sigma2^2)*((t-T)/100)-(rho*sigma1*sigma2/kappa)*(exp(kappa*(t-T)/100)-1);

LNP1 = @(tau) exp(kappa*(-tau/100))*X1(90-tau)+X2(90-tau)+A(90-tau,90);

s = 1;

for i = 1:100

ObsNoise = mvnrnd(zeros(1),H);

if i <= 100-g

LNF1(i) = LNP1(C1(i+g));

LNF1o(i) = LNF1(i) + ObsNoise(1);

else

LNF1(i) = LNP1(C1(100)-s);

LNF1o(i) = LNF1(i) + ObsNoise(1);

s = s + 1;

end

end

% Step 3: Using the Kalman filter to estimate the mean and covariance

% Firstly, establish the system matrices

W = @(k) [exp(kappa*(k-90)/100) 1];

d = @(k) [A(k,90)];

TT = [exp(-kappa*Delta) 0; 0 1];

c = [0; mu*Delta];

R = eye(2);

Q = @(k) [

(1-exp(-2*kappa*Delta))*(sigma1^2/(2*kappa)) (1-exp(-kappa*Delta))*(rho*sigma1*sigma2/kappa)

(1-exp(-kappa*Delta))*(rho*sigma1*sigma2/kappa) (sigma2^2)*Delta];

% Run the Kalman filter algorithm

a(:,1) = [0.5*rand+chi0; 0.5*rand+xi0]; % Initial value of the mean

P(:,:,1) = [2 0; 0 2]; % Initial value of the covariance

for i = 2:90

aa(:,i) = TT*a(:,i-1) + c;

PP(:,:,i) = TT*P(:,:,i-1)*TT’ + R*Q(i)*R’;

z(i) = [LNF1o(i)];

F(i) = W(i)*PP(:,:,i)*(W(i))’ + H;
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a(:,i) = aa(:,i) + PP(:,:,i)*(W(i))’*inv(F(i))*(z(:,i)-W(i)*aa(:,i)-d(i));

P(:,:,i) = PP(:,:,i) - PP(:,:,i)*(W(i))’*inv(F(i))*W(i)*PP(:,:,i);

end

figure(1)

subplot(2,1,1),plot(t(1:90),X1(1:90),’k’)

hold on

errorbar(t(1:90),a(1,:),P(1,1,:))

xlabel t(days/100)

ylabel Chi

subplot(2,1,2),plot(t(1:90),X2(1:90),’k’)

hold on

errorbar(t(1:90),a(2,:),P(2,2,:))

xlabel t(days/100)

ylabel Xi

save shortlongFsim90 -v7.3

20 Appendix 9: Matlab Code - Extended Kalman Filter for

Five Futures Contracts with maturity of 30 Days (Model 3)

% Implementation for the 3 factor model using the Extended Kalman filter

% The SDE of the 3-factor model (under the risk neutral framework) is:

% dS = (r-Delta).S.dt + sigma1.S.dZ1

% dDelta = kappa.(alpha-Delta).dt + sigma2.dZ2 (here alpha implies

% alpha_hat)

% dr = a.(m-r).dt + sigma3.dZ3 (here m implies m*)

% dZ1.dZ2 = rho12.dt, dZ1.dZ3 = rho13.dt, dZ2.dZ3 = rho23.dt

clear all

clc

randn(’seed’,1)

rand(’seed’,1)

mydata = importdata(’ContractDates_Synth.xls’);

ID = mydata.data(:,1);

C1 = mydata.data(:,2);

C2 = mydata.data(:,3);

C3 = mydata.data(:,4);

C4 = mydata.data(:,5);

C5 = mydata.data(:,6);

g=1;

while C1(g)~=0
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g = g + 1;

end

g = g - 1;

H = 1*eye(5);

T = 100;

mu = 1.5; sigma1 = 2; sigma2 = 0.5; sigma3 = 0.1;

kappa = 1.4; a = 1.1; alpha = 0.85; m = 0.7;

rho12 = 0.8; rho23 = 0.3; rho13 = 0.1;

lambda1 = 1.2; % The risk premium of Delta

lambda2 = 0.7; % The risk premium of r

alpha1 = alpha - (lambda1/kappa); m1 = m - (lambda2/a);

S0 = 2*randn; Delta0 = randn+0.5; r0 = randn^2;

Delta = 0.01; t = [0.01:Delta:1];

Deta = 0.001; t0 = [0.001:Deta:1];

v = 1;

truth1 = []; truth2 = []; truth3 = [];

for u = 1:1000

XE1 = []; XE2 = []; XE3 = [];

XE1(1) = S0; XE2(1) = Delta0; XE3(1) = r0;

for j = 1:length(t0)-1

dW1 = sqrt(Deta)*randn;

dW2 = sqrt(Deta)*randn;

dW3 = sqrt(Deta)*randn;

XE1(j+1) = XE1(j) + (mu-XE2(j))*XE1(j)*Deta + sigma1*XE1(j)*dW1;

XE2(j+1) = XE2(j) + kappa*(alpha-XE2(j))*Deta + sigma2*rho12*dW1 ...

+ sigma2*sqrt(1-rho12^2)*dW2;

XE3(j+1) = XE3(j) + a*(m-XE3(j))*Deta + sigma3*rho13*dW1 ...

+ sigma3*sqrt(1-rho13^2)*dW3;

end

for k = 1:100

truth1(u,k) = XE1(k*10);

truth2(u,k) = XE2(k*10);

truth3(u,k) = XE3(k*10);

end

end

for k = 1:100

truemean1(k) = mean(truth1(:,k));

truemean2(k) = mean(truth2(:,k));
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truemean3(k) = mean(truth3(:,k));

end

truth1=[]; truth2=[]; truth3=[];

XE1=[]; XE2=[]; XE3=[];

LNF1 = []; LNF1o = [];

% Calculate the futures price and the observed futures price

A = @(t,T) (rho23*sigma2*sigma3/(kappa*a*(kappa+a)))*(exp((kappa+a)*(t-T)/100)-1) ...

- (sigma2^2/(4*(kappa^3)))*(exp(2*kappa*(t-T)/100)-1) ...

- (sigma3^2/(4*(a^3)))*(exp(2*a*(t-T)/100)-1) ...

+ ((sigma2^2/(kappa^3))-(alpha1/kappa)-(rho12*sigma1*sigma2/(kappa^2)) ...

- (rho23*sigma2*sigma3/((kappa^2)*a)))*(exp(kappa*(t-T)/100)-1) ...

+ ((m1/a)+(sigma3^2/(a^3))-(rho23*sigma2*sigma3/(kappa*(a^2))) ...

+ (rho13*sigma1*sigma3/(a^2)))*(exp(a*(t-T)/100)-1) ...

+ (alpha1-m1-(sigma2^2/(2*(kappa^2)))-(sigma3^2/(2*(a^2))) ...

+ (rho12*sigma1*sigma2/kappa)+(rho23*sigma2*sigma3/(kappa*a)) ...

- (rho13*sigma1*sigma3/a))*((t-T)/100);

LNP1 = @(tau) truemean1(30-tau)+(1/kappa)*(exp(-kappa*tau/100)-1)*truemean2(30-tau) ...

+ (1/a)*(1-exp(-a*tau/100))*truemean3(30-tau)+A(30-tau,30);

LNP2 = @(tau) truemean1(60-tau)+(1/kappa)*(exp(-kappa*tau/100)-1)*truemean2(60-tau) ...

+ (1/a)*(1-exp(-a*tau/100))*truemean3(60-tau)+A(60-tau,60);

LNP3 = @(tau) truemean1(90-tau)+(1/kappa)*(exp(-kappa*tau/100)-1)*truemean2(90-tau) ...

+ (1/a)*(1-exp(-a*tau/100))*truemean3(90-tau)+A(90-tau,90);

LNP4 = @(tau) truemean1(120-tau)+(1/kappa)*(exp(-kappa*tau/100)-1)...

* truemean2(120-tau)+(1/a)*(1-exp(-a*tau/100))*truemean3(120-tau) + A(120-tau,120);

LNP5 = @(tau) truemean1(150-tau)+(1/kappa)*(exp(-kappa*tau/100)-1)*truemean2(150-tau) ...

+ (1/a)*(1-exp(-a*tau/100))*truemean3(150-tau)+A(150-tau,150);

s = 1;

for k = 1:100

ObsNoise = mvnrnd(zeros(5),H);

if k <= 100-g

LNF1(k) = LNP1(C1(k+g));

LNF1o(k) = LNF1(k) + ObsNoise(1);

LNF2(k) = LNP2(C2(k+g));

LNF2o(k) = LNF2(k) + ObsNoise(2);

LNF3(k) = LNP3(C3(k+g));

LNF3o(k) = LNF3(k) + ObsNoise(3);

LNF4(k) = LNP4(C4(k+g));

LNF4o(k) = LNF4(k) + ObsNoise(4);

LNF5(k) = LNP5(C5(k+g));

LNF5o(k) = LNF5(k) + ObsNoise(5);
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else

LNF1(k) = LNP1(C1(100)-s);

LNF1o(k) = LNF1(k) + ObsNoise(1);

LNF2(k) = LNP2(C2(100)-s);

LNF2o(k) = LNF2(k) + ObsNoise(2);

LNF3(k) = LNP3(C3(100)-s);

LNF3o(k) = LNF3(k) + ObsNoise(3);

LNF4(k) = LNP4(C4(100)-s);

LNF4o(k) = LNF4(k) + ObsNoise(4);

LNF5(k) = LNP5(C5(100)-s);

LNF5o(k) = LNF5(k) + ObsNoise(5);

s = s + 1;

end

end

% Using the Extended Kalman filter to generate the mean and covariance

% Firstly, establish the system matrices

f = @(S,delta,r,k) [

A(k,30)+log(S)+(1/kappa)*(exp(kappa*(k-30)/100)-1)*delta+(1/a)*(1-exp(a*(k-30)/100))*r;

A(k,60)+log(S)+(1/kappa)*(exp(kappa*(k-60)/100)-1)*delta+(1/a)*(1-exp(a*(k-60)/100))*r;

A(k,90)+log(S)+(1/kappa)*(exp(kappa*(k-90)/100)-1)*delta+(1/a)*(1-exp(a*(k-90)/100))*r;

A(k,120)+log(S)+(1/kappa)*(exp(kappa*(k-120)/100)-1)*delta+(1/a)*(1-exp(a*(k-120)/100))*r;

A(k,150)+log(S)+(1/kappa)*(exp(kappa*(k-150)/100)-1)*delta+(1/a)*(1-exp(a*(k-150)/100))*r];

h = @(S,delta,r) [S + (mu - delta)*S*Delta

delta + kappa*(alpha - delta)*Delta

r + a*(m - r)*Delta];

W = @(S,k) [

1/S (1/kappa)*(exp(kappa*(k-30)/100)-1) (1/a)*(1 - exp(a*(k-30)/100));

1/S (1/kappa)*(exp(kappa*(k-60)/100)-1) (1/a)*(1 - exp(a*(k-60)/100));

1/S (1/kappa)*(exp(kappa*(k-90)/100)-1) (1/a)*(1 - exp(a*(k-90)/100));

1/S (1/kappa)*(exp(kappa*(k-120)/100)-1) (1/a)*(1 - exp(a*(k-120)/100));

1/S (1/kappa)*(exp(kappa*(k-150)/100)-1) (1/a)*(1 - exp(a*(k-150)/100));];

TT = @(S,delta) [1+(mu-delta)*Delta 0 0

-S*Delta 1-kappa*Delta 0

0 0 1-a*Delta];

R = @(S) [

sigma1*S*sqrt(Delta) 0 0

sigma2*rho12*sqrt(Delta) sigma2*sqrt(Delta*(1-(rho12^2))) 0

sigma3*rho13*sqrt(Delta) 0 sigma3*sqrt(Delta*(1-(rho13^2)))];

Q = eye(3);

% Run the Extended Kalman filter algorithm
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aa(:,1) = [0.5*randn+S0; 0.5*randn+Delta0; 0.5*randn + r0]; %initial mean

P(:,:,1) = [2 0 0; 0 2 0; 0 0 2]; % initial covariance

for k = 2:100

Tk_hat = TT(aa(1,k-1),aa(2,k-1));

Rk_hat = R(aa(1,k-1));

am(:,k) = h(aa(1,k-1),aa(2,k-1),aa(3,k-1));

Pm(:,:,k) = Tk_hat*P(:,:,k-1)*(Tk_hat)’ + Rk_hat*Q*(Rk_hat)’;

z(k) = [LNF1o(k)];

F(:,:,:,:,:,k) = W(am(1,k),k)*Pm(:,:,k)*(W(am(1,k),k))’ + H;

aa(:,k) = am(:,k) + Pm(:,:,k)*(W(am(1,k),k))’*inv(F(:,:,:,:,:,k))*(z(k) ...

- f(am(1,k),am(2,k),am(3,k),k));

P(:,:,k) = Pm(:,:,k) - Pm(:,:,k)*(W(am(1,k),k))’*inv(F(:,:,:,:,:,k)) ...

*W(am(1,k),k)*Pm(:,:,k);

Tk_hat = []; Rk_hat = [];

end

figure(1)

plot(t,truemean1,’k’)

hold on

errorbar(t,aa(1,:),P(1,1,:))

legend(’True mean’,’EKF mean’)

%title(’Spot price (3 factor model)’)

xlabel t(days/100)

ylabel S

hold off

figure(2)

plot(t,truemean2,’k’)

hold on

errorbar(t,aa(2,:),P(2,2,:))

legend(’True mean’,’EKF mean’)

%title(’Convenience yield (3 factor model)’)

xlabel t(days/100)

ylabel delta

hold off

figure(3)

plot(t,truemean3,’k’)

hold on

errorbar(t,aa(3,:),P(3,3,:))

legend(’True mean’,’EKF mean’)

%title(’Interest rate (3 factor model)’)

xlabel t(days/100)
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ylabel r

hold off

save EKFMod3_5Contracts -v7.3

21 Appendix 10: Matlab Code - Particle Filter for One Futures

Contract with Maturity of 30 Days (Model 3)

function [XX, WW] = GenericPF(X,W,LNFo,LNF,path,Ns,NT,k)

% Generic Particle Filter algorithm

for i = 1:Ns

XX(i) = path(i,k); % + noise-state!!!

WW(i) = normpdf(LNFo(i),LNF(i),1);

end

h = sum(WW(:));

for i = 1:Ns

WW(i) = WW(i)/h;

end

Neff = 1/(sum(WW(:).^2));

if Neff < NT

% Resampling Algorithm

c(1) = 0;

for i = 2:Ns

c(i) = c(i-1) + WW(i);

end

i = 1;

u(1) = (1/Ns)*rand;

for j = 1:Ns

u(j) = u(1) + (1/Ns)*(j-1);

while i <= Ns && u(j) > c(i)

i = i + 1;

end

if i > Ns

i = i - 1;

end

XX(j,k) = XX(i);

WW(j,k) = 1/Ns;

end

end

end
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% Implementation for the 3 factor model using the Particle filter

% The SDE of the 3-factor model (under the risk neutral framework) is:

% dS = (r-Delta).S.dt + sigma1.S.dZ1

% dDelta = kappa.(alpha-Delta).dt + sigma2.dZ2 (here alpha implies

% alpha_hat)

% dr = a.(m-r).dt + sigma3.dZ3 (here m implies m*)

% dZ1.dZ2 = rho12.dt, dZ1.dZ3 = rho13.dt, dZ2.dZ3 = rho23.dt

clear all

clc

randn(’seed’,1)

rand(’seed’,1)

mydata = importdata(’ContractDates_Synth.xls’);

ID = mydata.data(:,1);

C1 = mydata.data(:,2);

g=1;

while C1(g)~=0

g = g + 1;

end

H = eye(1);

% Step 1: Generate the latent process in the real-world parameters

%Ns = 200; NT = 100; % Case: choosing 200 particles, and a threshold of 100

%Ns = 5000; NT = 200; % Case: choosing 5000 particles, and a threshold of 200

Ns = 1000; NT = 200; % Case: choosing 1000 particles, and a threshold of 200

T = 100;

mu = 1.5; sigma1 = 2; sigma2 = 0.5; sigma3 = 0.1;

kappa = 1.4; a = 1.1; alpha = 0.85; m = 0.7;

rho12 = 0.8; rho23 = 0.3; rho13 = 0.1;

lambda1 = 1.2; % The risk premium of Delta

lambda2 = 0.7; % The risk premium of r

alpha1 = alpha - (lambda1/kappa); m1 = m - (lambda2/a);

S0 = 2*randn; Delta0 = randn+0.5; r0 = randn^2;

Delta = 0.01; t = [0.01:Delta:1];

Deta = 0.001; t0 = [0.001:Deta:1];

v = 1;

truth1 = []; truth2 = []; truth3 = [];

for u = 1:1000

XE1 = []; XE2 = []; XE3 = [];

XE1(1) = S0; XE2(1) = Delta0; XE3(1) = r0;
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for j = 1:length(t0)-1

dW1 = sqrt(Deta)*randn;

dW2 = sqrt(Deta)*randn;

dW3 = sqrt(Deta)*randn;

XE1(j+1) = XE1(j) + (mu-XE2(j))*XE1(j)*Deta + sigma1*XE1(j)*dW1;

XE2(j+1) = XE2(j) + kappa*(alpha-XE2(j))*Deta + sigma2*rho12*dW1 ...

+ sigma2*sqrt(1-rho12^2)*dW2;

XE3(j+1) = XE3(j) + a*(m-XE3(j))*Deta + sigma3*rho13*dW1 ...

+ sigma3*sqrt(1-rho13^2)*dW3;

end

for k = 1:100

truth1(u,k) = XE1(k*10);

truth2(u,k) = XE2(k*10);

truth3(u,k) = XE3(k*10);

end

end

for k = 1:100

truemean1(k) = mean(truth1(:,k));

truemean2(k) = mean(truth2(:,k));

truemean3(k) = mean(truth3(:,k));

end

truth1=[]; truth2=[]; truth3=[];

XE1=[]; XE2=[]; XE3=[];

LNF1 = []; LNF1o = [];

for i = 1:Ns

X1 = []; X2 = []; X3 = [];

X1(1) = S0; X2(1) = Delta0; X3(1) = r0;

for k = 2:length(t)

dW1 = sqrt(Delta)*randn;

dW2 = sqrt(Delta)*randn;

dW3 = sqrt(Delta)*randn;

X1(k) = X1(k-1) + (mu-X2(k-1))*X1(k-1)*Delta + sigma1*X1(k-1)*dW1 ...

+ 0.5*(sigma1^2)*X1(k-1)*((dW1^2)-Delta);

X2(k) = X2(k-1) + kappa*(alpha-X2(k-1))*Delta + sigma2*rho12*dW1 ...

+ sigma2*sqrt(1-rho12^2)*dW2;

X3(k) = X3(k-1) + a*(m-X3(k-1))*Delta + sigma3*rho13*dW1 ...

+ sigma3*sqrt(1-rho13^2)*dW3;

end

for k = 1:length(t)

path1(i,k) = X1(k);
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path2(i,k) = X2(k);

path3(i,k) = X3(k);

end

% Calculate the futures price and the observed futures price

A = @(t,T) (rho23*sigma2*sigma3/(kappa*a*(kappa+a)))*(exp((kappa+a)*(t-T)/100)-1) ...

-(sigma2^2/(4*(kappa^3)))*(exp(2*kappa*(t-T)/100)-1) ...

-(sigma3^2/(4*(a^3)))*(exp(2*a*(t-T)/100)-1) ...

+((sigma2^2/(kappa^3))-(alpha1/kappa)-(rho12*sigma1*sigma2/(kappa^2)) ...

-(rho23*sigma2*sigma3/((kappa^2)*a)))*(exp(kappa*(t-T)/100)-1) ...

+((m1/a)+(sigma3^2/(a^3))-(rho23*sigma2*sigma3/(kappa*(a^2))) ...

+(rho13*sigma1*sigma3/(a^2)))*(exp(a*(t-T)/100)-1) ...

+(alpha1-m1-(sigma2^2/(2*(kappa^2)))-(sigma3^2/(2*(a^2))) ...

+(rho12*sigma1*sigma2/kappa)+(rho23*sigma2*sigma3/(kappa*a)) ...

-(rho13*sigma1*sigma3/a))*((t-T)/100);

LNP1 = @(tau) X1(30-tau)+(1/kappa)*(exp(-kappa*tau/100)-1)*X2(30-tau) ...

+(1/a)*(1-exp(-a*tau/100))*X3(30-tau)+A(30-tau,30);

s = 1;

for k = 1:100

ObsNoise = mvnrnd(zeros(1),H);

if k <= 100-g

LNF1(i,k) = LNP1(C1(k+g));

LNF1o(i,k) = LNF1(i,k) + ObsNoise(1);

else

LNF1(i,k) = LNP1(C1(100)-s);

LNF1o(i,k) = LNF1(i,k) + ObsNoise(1);

s = s + 1;

end

end

end

% Using the Particle filter

Xp1 = []; Xp2 = []; Xp3 = [];

Wp1 = []; Wp2 = []; Wp3 = [];

for i = 1:Ns

Xp1(i,1) = 0.5*randn + S0;

Xp2(i,1) = 0.5*randn + Delta0;

Xp3(i,1) = 0.5*randn + r0;

Wp1(i,1) = 1/Ns;

Wp2(i,1) = 1/Ns;

Wp3(i,1) = 1/Ns;

end
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for k = 2:length(t)

[Xo1, Wo1] = GenericPF(Xp1(:,k-1),Wp1(:,k-1),LNF1o(:,k),LNF1(:,k),path1,Ns,NT,k);

[Xo2, Wo2] = GenericPF(Xp2(:,k-1),Wp2(:,k-1),LNF1o(:,k),LNF1(:,k),path2,Ns,NT,k);

[Xo3, Wo3] = GenericPF(Xp3(:,k-1),Wp3(:,k-1),LNF1o(:,k),LNF1(:,k),path3,Ns,NT,k);

for i = 1:Ns

Xp1(i,k) = Xo1(i);

Xp2(i,k) = Xo2(i);

Xp3(i,k) = Xo3(i);

Wp1(i,k) = Wo1(i);

Wp2(i,k) = Wo2(i);

Wp3(i,k) = Wo3(i);

end

Xo1 = []; Xo2 = []; Xo3 = []; Wo1 = []; Wo2 = []; Wo3 = [];

end

% Calculate the mean obtained by the Particle filter

for k = 1:length(t)

XP1(k) = sum(Xp1(:,k).*Wp1(:,k));

XP2(k) = sum(Xp2(:,k).*Wp2(:,k));

XP3(k) = sum(Xp3(:,k).*Wp3(:,k));

end

% Calculate the standard deviations of the estimate points generated by the Particle filter

for k = 1:length(t)

Std_SpotPrice(k) = sqrt(mean(Wp1(:,k).*((Xp1(:,k)-truemean1(k)).^2)));

Std_ConvenienceYield(k) = sqrt(mean(Wp2(:,k).*((Xp2(:,k)-truemean2(k)).^2)));

Std_InterestRate(k) = sqrt(mean(Wp3(:,k).*((Xp3(:,k)-truemean3(k)).^2)));

end

figure(1)

plot(t,truemean1,’k’)

hold on

errorbar(t,XP1,Std_SpotPrice)

legend(’True mean’,’Particle filter mean’,’Location’,’NorthWest’)

%title(’Spot price factor (3 factor model)’)

xlabel t(days/100)

ylabel Spotprice

hold off

figure(2)

plot(t,truemean2,’k’)

hold on

errorbar(t,XP2,Std_ConvenienceYield)

legend(’True mean’,’Particle filter mean’,’Location’,’NorthWest’)
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%title(’Convenience yield factor (3 factor model)’)

xlabel t(days/100)

ylabel Convenienceyield

hold off

figure(3)

plot(t,truemean3,’k’,t,XP3)

hold on

errorbar(t,XP3,Std_InterestRate)

legend(’True mean’,’Particle filter mean’,’Location’,’NorthWest’)

%title(’Interest rate factor (3 factor model)’)

xlabel t(days/100)

ylabel Interestrate

hold off

save Mod3ParticleFilter1Contract -v7.3
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