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Abstract

The study of non-linear filtering for non-stationary multivariate cointegration models combines

the disciplines of engineering and time series analysis. Within this thesis we consider different

methods of filtering for multivariate cointegration models and also techniques to estimate the

parameters of the models. The effectiveness of the filtering and parameter estimation techniques

are investigated within a series of case studies utilising novel implementations of the filtering and

estimation algorithms in Object-oriented MATLAB. Finally, multivariate cointegration model

estimation techniques are applied to a set of empirical data, consisting of futures contract pairs

of indices, interest rates and bonds.



Contents

1 Introduction 9

2 Multivariate Cointegration Models 10

2.1 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Triangular Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Common Trends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Vector Error Correction Model . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Unrestricted Least Squares Method . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Engle Granger Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.3 Dynamic Ordinary Least Squares Estimation . . . . . . . . . . . . . . . . 16

2.3.4 Johansen Maximum Likelihood Method . . . . . . . . . . . . . . . . . . . 18

2.3.5 Canonical Correlation Regression Estimator . . . . . . . . . . . . . . . . . 24

2.3.6 Cointegration Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Case Study: Johansen Maximum Likelihood Estimation . . . . . . . . . . . . . . 26

2.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Case Study: Cointegration Rank Estimation . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Filtering for Multivariate Cointegration Models 38

3.1 The Filtering Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.1 State Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2.2 Derivation of the Kalman Filter Predict-Update Recursions . . . . . . . . 42

1



3.2.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2.4 Consistency and Performance . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 The Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.1 State Space Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Derivation of the Extended Kalman Filter Predict-Update Recursions . . 47

3.3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.4 Consistency and Performance . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4.1 Rejection Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Sequential Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5.1 Sequential Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.2 Sequential Importance Sampling Resampling . . . . . . . . . . . . . . . . 57

3.5.3 Auxiliary Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.4 Resampling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.6 Case Study: Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Case Study: Extended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.7.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8 Case Study: Sequential Importance Resampling Filter . . . . . . . . . . . . . . . 91

3.8.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4 Empirical Data Analysis 103

4.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Commodities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3 Commodity Market Places . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1 Commodity Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 Over the Counter Markets . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.4 Market Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 Financial Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.1 Futures Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5.2 Forward Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.5.3 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2



4.5.4 Swaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.6 Case Study: Johansen Maximum Likelihood Estimation . . . . . . . . . . . . . . 110

4.6.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Conclusion and Extensions 117

Bibliography 119

Appendices 125

A MATLAB Phillips’ Triangular Representation Estimation Implementation 125

B MATLAB Johansen Maximum Likelihood Method Implementation 127

C MATLAB Kalman Filter and Extended Kalman Filter Implementation 134

D MATLAB Sequential Importance Resampling Filter Implementation 136

E MATLAB Auxiliary Filter Implementation 139

F MATLAB Resampling Schemes Implementation 143

G Cointegration Rank Estimates for FV - TU Pair 147

H Cointegration Rank Estimates for AUD - CAD Pair 152

I Cointegration Rank Estimates for NQ - AUD Pair 157

3



List of Figures

2.1 Realisation of the measurement equation of the Case Study Model . . . . . . . . 28

2.2 Johansen Case Study: Batch Data Results . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Johansen Case Study: Sliding Window Results . . . . . . . . . . . . . . . . . . . 31

3.1 A pictorial representation of a Sequential Monte Carlo algorithm . . . . . . . . . 53

3.2 A set of typical Kalman filter results for X1,t from Data Generating System 1 . . 67

3.3 A set of typical Kalman filter innovations, e1,t, from Data Generating System 1 . 68

3.4 A set of typical Kalman filter results for X1,t from Data Generating System 2 . . 70

3.5 A set of typical Kalman filter innovations, e1,t, from Data Generating System 2 . 71

3.6 A set of typical Extended Kalman filter results for X1,t from Data Generating

System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 A set of typical Extended Kalman filter innovations, e1,t, from Data Generating

System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.8 A set of typical Extended Kalman filter results for X1,t from Data Generating

System 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 A set of typical Extended Kalman filter innovations, e1,t, from Data Generating

System 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.10 A set of typical Sequential Importance Sampling Resampling filter results for X1,t

from Data Generating System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.11 A set of typical Sequential Importance Sampling Resampling filter results for X1,t

from Data Generating System 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.1 Futures Contract prices between Australian Dollar and Canadian Dollar Interest

Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Johansen Case Study: Five Year U.S. Treasury Bill - Ten Year U.S. Treasury Bill

Futures Contract Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3 Johansen Case Study: Five Year U.S. Treasury Bill - Ten Year U.S. Treasury Bill

Futures Contract Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4



List of Tables

2.1 Summary of Estimates from the Johansen Maximum Likelihood Method . . . . . 23

2.2 Case Study Data Generating System Parameter Values . . . . . . . . . . . . . . . 28

2.3 Sugita Vector Error Correction Model (VECM) Specification, [1] . . . . . . . . . 33

2.4 Cointegration Rank Estimates for Datasets with 50 Observations . . . . . . . . . 34

2.5 Cointegration Rank Estimates for Datasets with 100 Observations . . . . . . . . 35

3.1 Kalman Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Alternate Forms for Covariance Update in the Kalman Filter . . . . . . . . . . . 45

3.3 Extended Kalman Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.4 Rejection Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Sequential Importance Sampling Algorithm . . . . . . . . . . . . . . . . . . . . . 55

3.6 Sequential Importance Sampling Resampling Algorithm . . . . . . . . . . . . . . 57

3.7 Auxiliary Particle Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.8 Multinomial Resampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.9 Residual Resampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.10 Stratified Resampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.11 Systematic Resampling Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Case Study Data Generating System (DGS) Equations . . . . . . . . . . . . . . . 63

3.13 Case Study Augmented Data Generating System (DGS) Equations . . . . . . . . 64

3.14 Case Study Augmented Data Generating System (DGS) Parameter Values . . . . 64

3.15 Kalman Filter Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.16 Signal to Noise Ratio (SNR) settings . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.17 Mean Squared Error (MSE) of the Kalman filter estimates from Data Generating

System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.18 Mean of the innovation process from Data Generating System 1 . . . . . . . . . . 73

3.19 Mean Squared Error (MSE) of the Kalman filter estimates from Data Generating

System 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.20 Mean of the innovation process from Data Generating System 2 . . . . . . . . . . 75

3.21 Case Study Data Generating System (DGS) Equations . . . . . . . . . . . . . . . 76

5



3.22 Case Study Augmented Data Generating System (DGS) Equations . . . . . . . . 77

3.23 Case Study Augmented Data Generating System (DGS) Parameter Values . . . . 78

3.24 Extended Kalman Filter Parameter Values . . . . . . . . . . . . . . . . . . . . . . 80

3.25 Signal to Noise Ratio (SNR) settings . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.26 Mean Squared Error (MSE) of the Extended Kalman filter estimates from Data

Generating System 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.27 Mean of the innovation process from Data Generating System 1 . . . . . . . . . . 84

3.28 Mean Squared Error (MSE) of the Extended Kalman filter estimates from Data

Generating System 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.29 Mean of the innovation process from Data Generating System 2 . . . . . . . . . . 89

3.30 Case Study Data Generating System (DGS) Equations . . . . . . . . . . . . . . . 91

3.31 Case Study Augmented Data Generating System (DGS) Equations . . . . . . . . 92

3.32 Case Study Augmented Data Generating System (DGS) Parameter Values . . . . 93

3.33 Components of the Sequential Importance Resampling Particle Filter . . . . . . . 94

3.34 Case Study Resampling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.35 Simulation Signal to Noise Ratio (SNR) settings . . . . . . . . . . . . . . . . . . 94

3.36 Mean Squared Error (MSE) and Effective Sample Size of the Sequential Impor-

tance Resampling filter estimates from Data Generating System 1 with Signal to

Noise Ratio of 10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.37 Mean Squared Error (MSE) and Effective Sample Size of the Sequential Impor-

tance Resampling filter estimates from Data Generating System 1 with Signal to

Noise Ratio of 0dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.38 Mean Squared Error (MSE) and Effective Sample Size of the Sequential Impor-

tance Resampling filter estimates from Data Generating System 1 with Signal to

Noise Ratio of -10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.39 Mean Squared Error (MSE) and Effective Sample Size of the Sequential Impor-

tance Resampling filter estimates from Data Generating System 2 with Signal to

Noise Ratio of 10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.40 Mean Squared Error (MSE) and Effective Sample Size of the Sequential Impor-

tance Resampling filter estimates from Data Generating System 2 with Signal to

Noise Ratio of 0dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.41 Mean Squared Error (MSE) and Effective Sample Size of the Sequential Impor-

tance Resampling filter estimates from Data Generating System 2 with Signal to

Noise Ratio of -10dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.1 Pair Futures Contract Price History Start and End Date . . . . . . . . . . . . . . 104

4.2 Empirical Data Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6



Notation

The following notation is used throughout the exposition: bold type represents vector quantities,

with upper case denoting random variables, and lower case their realisation. Normal type repre-

sents non-stochastic (or deterministic) quantities (vectors unless explicitly stated otherwise). The

notation for scalar quantities (including scalar random variables) will be obvious from context,

and are rarely used.
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Notation Definition
t ∈ N The time t = {1, 2 . . .}
R

tny R
ny × t+1 times. . . × R

ny

Xt ∈ R
nx A random (state) vector at time t, with nx components

xt ∈ R
nx A realisation of the random vector Xt

Y1:t ∈ R
tny The set of random vectors (observations) {Y1:t, . . . ,Yt}, each

with ny components.
y1:t ∈ R

tny The set of realisations of Y1:t, namely {y1, . . . , yt}
X̂t|t−1 : R(t−1)ny → R

nx An estimator of Xt as a function of random observations Y1:t−1

x̂t|t−1 : R(t−1)ny → R
nx An estimator of Xt as a function of random observations y1:t−1

X̃t|t−1 : R(t−1)ny → R
nx An estimation error associated with the estimator, defined as

X̃t|t−1 = Xt − X̂t|t−1

x̃t|t−1 : R(t−1)ny → R
nx An estimation error associated with the estimator, defined as

x̃t|t−1 = Xt − x̂t|t−1

x′ x transpose
Vt ∈ R

nv The observation noise vector, with nv components. Assumed to
be zero mean and white i.e. E(ViV

′
j) = δijRi ∀i, j ∈ N

Wt ∈ R
nw The observation noise vector, with nw components. Assumed to

be zero mean and white i.e. E(WiW
′
j) = δijQi ∀i, j ∈ N

ut ∈ R
nu The deterministic control vector at time t with nu components

∪ Union
∼ Distributed as
∑

Summation sign
∏

Product sign
→ Converges to, approaches
p→ Converges in probability to
d→ Converges in distribution to
i.i.d. Independent, identically distributed
lim Limit
plim Probability limit
L Lag operator
∆ Differencing operator
E Expectation
Var Variance
Cov Covariance, covariance matrix
MVN(µ,Σ) (Multivariate) normal distribution with mean (vector) µ and vari-

ance (covariance matrix) Σ
MSE Mean squared error
MMSE Minimum Mean Square Error
ARMA Autoregressive moving average (process)
MA Moving average process
VAR(p) Vector autoregressive process of order p
VECM Vector error correction model
⊗ Kronecker product
◦ Composition function
|M | Determinant of M
M−1 Inverse of M
vec Column stacking operator
vech Column stacking operator for symmetric matrices
O(·) Big Oh
o(·) Little Oh
Im (m×m) Identity matrix
T is the sample size
b·c Floor function
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Chapter 1

Introduction

The study of multivariate cointegration models is an important topic within a spectrum of

seemingly disparate fields, such as econometrics, political science and biology. In this thesis we

focus on the application of multivariate cointegration models and their estimation to the field of

econometrics. We also develop novel implementations of relevant algorithms in Object-oriented

MATLAB to produce a toolbox that can be used for the estimation and filtering of multivariate

cointegration models.

Cointegration is an important part of econometric studies, due to the almost inherent nature

of non-stationarity amongst empirical time series models. Cointegrating relationships have been

found within many areas of finance, including spot and future prices for a given commodity or

asset, the ratio of relative prices and an exchange rate and between equity prices and dividends [2].

By utilising cointegration models, the components of a time series model are allowed to deviate

from their inherent relationships in the short term, but retain their long term associations. The

long term associations between certain financial assets have in turn, been used to design of

trading strategies and optimise portfolios.

The representing multivariate cointegration models in state space form, the study of cointegra-

tion can be linked to filtering, a traditional topic in control engineering. Filtering is concerned

with elucidating the state of a system given noisy measurements. From an econometric view-

point, filtering can be used to determine the state of the various components of the multivariate

cointegration model in an on-line setting. Filters come in many forms and each places a different

set of restrictions on the dynamics of the system they estimate.

This thesis is divided into many chapters. Chapter 2 reviews multivariate cointegration models,

chapter 3 investigates filtering for multivariate cointegration models. Chapter 4, applies the

information presented in the preeding chapters to a set of empirical data. The final chapter,

chapter 5, concludes the thesis and presents avenues for further research.
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Chapter 2

Multivariate Cointegration

Models

The Wold Decomposition theorem [3] states that a single stationary time series with no deter-

ministic components has an infinite Moving Average (MA) representation. This representation

can in turn, be generally approximated by a finite Autoregressive Moving Average (ARMA) pro-

cess [4]. Financial time series are rarely stationary in practice and must be transformed before

they can be considered stationary processes. Two common transformations are differencing and

cointegration.

A series with no deterministic component which has a stationary, invertible, ARMA represen-

tation after differencing d times, is said to be integrated of order d, denoted Xi ∼ I(d) [4]. In

practice, many financial variables contain a unit root, and are thus integrated of order one.

The phenomenon of spurious regressions was first observed by Yule in 1926 [5] and in economet-

rics by Granger and Newbold [6]. Spurious regressions can arise when apparently meaningful

regression relationships are found between variables that are in fact independent. The results of

such a regression can lead to inefficient estimates, sub-optimal forecasts and invalidate signifi-

cance tests [6]. An often used technique to circumvent problems with spurious regression is to

utilise a cointegrating regression.

This chapter explores the idea of multivariate financial time series through the veil of cointe-

gration. The phenomenon of cointegration is defined in Section (2.1) and its use within differ-

ent financial applications are introduced. Different representations of cointegration models are

covered within Section (2.2), including Phillip’s triangular representation, Stock and Watson’s

common trends representation [7] and the Vector Error Correction Model (VECM) of Engle and

Granger [4]. Methods for estimating the parameters of multivariate cointegration models are pre-

sented in Section (2.3), including Unrestricted Least Squares (ULS), the Engle Granger Method,

10



Dynamic Ordinary Least Squares (DOLS), the Canonical Correlation Regression method and

the Johansen Maximum Likelihood method. A thorough derivation of the Johansen Maximum

Likelihood Estimator is also presented.

In the final two sections, we conduct two case studies, the first of which investigates the efficacy

of the Johansen Maximum Likelihood method when applied to multivariate cointegration models

in the VECM form, given in Section (2.4). In the second case study, given in Section (2.5), the

ability of the Johansen Maximum Likelihood method to estimate the cointegration rank of a

VECM is deduced.

2.1 Cointegration

The concept of cointegration was introduced by Engle and Granger in 1987 [4]. To motivate

the discussion of cointegration, we begin by assuming that there exist n time series, Xi,t where

i = 1, . . . , n, each integrated of the same order d. If a linear combination of the series,

Zt =
n
∑

i=1

βiXi,t, (2.1)

has an order of integration r < d, then the series are said to be cointegrated. The linear

combination shown in Equation (2.1) is called a cointegrating relationship [8]. Given n time series,

there can be from 0 to at most n - 1 cointegrating relationships. A cointegrating relationship

may be seen as a long-term equilibrium phenomenon which allows the cointegrating variables, the

Xi,t, to deviate from their relationships in the short term, but retain their long term associations.

Cointegrating relationships are found within many areas of finance, including spot and future

prices for a given commodity or asset, the ratio of relative prices and an exchange rate and

between equity prices and dividends [2]. The relationship between spot and futures prices is

to be expected, since they represent prices for the same underlying asset at different points in

time. As a result, both prices will be affected by new information in similar ways. The long-run

relationship between spot and futures prices can be expressed by the cost of carry model, see

[9]. Other applications of cointegration in finance is within the design of trading strategies and

portfolio optimisation, see [10].

2.2 Representation

Three different specifications of a cointegrated system have been used extensively in the literature

on the representation, estimation and inference of cointegrated systems: Phillip’s triangular

representation, Stock and Watson’s common trends representation [7] and the Vector Error
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Correction Model (VECM) [11]. The three representations are investigated in the following

sections.

2.2.1 Triangular Representation

The triangular representation was first introduced by Phillips in 1991 [12]. The innovation behind

the triangular representation is to partition an n-dimensional, I(1) time series vector, Xt and εt,

an nx-dimensional stationary time series with non-singular covariance matrix Σ, into subvectors,

nx1 and nx2 where nx = nx1 + nx2. The representation assumes that the cointegrated system is

given by,

X1,t = β′X2,t + ε1,t,

∆X2,t = ε2,t,

where,

β: Rnx → R
nx is a matrix of coefficients,

X1,t ∈ R
nx1 ,

∆X2,t ∈ R
nx2 ,

ε1,t ∈ R
nx1 ,

ε2,t ∈ R
nx2 .

2.2.2 Common Trends

The relationship between cointegration and common trends was first elucidated by Stock and

Watson in 1988 [7]. In the Common Trends representation, an nx-dimensional cointegrated

process Xt, with r < nx cointegrating relationships, can be represented formally in terms of

nx − r integrated series, called common trends, plus stationary components [7]. The Common

Trends representation is given by,

Xi,t =

nx−r
∑

j=1

γjUj,t + εi,t,

where,

Xi,t ∈ R
nx is the ith cointegrated process at time t,

γj is the jth loading matrix,

Uj,t is the jth common trend,

εi,t ∈ R
nx is the stationary disturbance.
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2.2.3 Vector Error Correction Model

The Error Correction Model (ECM) formulation created by Engle and Granger in 1987 is directly

derived from the Granger Representation Theorem [4]. The theorem states that a multivariate

integrated process is cointegrated if and only if it can be represented in the ECM form with

appropriate restrictions. The converse is also held to be true. Precursors to the ECM formulation

utilised by Engle and Granger include those of Phillips [13], who introduced the concept of

error correction in econometrics, Sargan [14], who introduced different methods to estimating

structural equations with autocorrelated errors and finally Hendry [15].

An nx-dimensional Vector Autoregressive process of order p, VAR(p), can be represented in the

Error Correction Model form as follows,

∆Xt = ΠXt−1 +

p−1
∑

i=1

Γi∆Xt−i + φDt + εt,

where,

∆Xt ∈ R
nx = Xt −Xt−1,

Π : Rnx → R
nx is the long-run multiplier matrix,

Γi : R
nx → R

nx is ith the lag matrix,

Φ : Rnx → R
nx ,

Dt ∈ R
nx is a vector of deterministic terms, defined as a polynomial in time

t,

εt ∈ R
nx is independent identically distributed multivariate, correlated er-

rors .

The term in levels, Π, can be placed at any Xt−i. The appeal of the VECM formulation is that

it combines flexibility in dynamic specification with desirable long-run properties [16], which are

mentioned below.

The cointegration properties of the VECM model depend on the rank r of the long-run multiplier

matrix Π. If r = 0, then the VECM model does not exhibit any cointegration relationship and

it can be estimated as a stable process in first differences. If r = nx, that is, if the matrix Π is of

full rank, then the VAR(p) model itself is stable and can be estimated as a stationary process. If,

however, the rank r is intermediate, 0 < r < nx, then the VECM process exhibits cointegration.

In this case, we can write the matrix Π as the product Π = αβ′ where both α and β are nx × r

matrices of rank r. The r columns of the matrix β are the cointegrating vectors of the process.

The β′Xt reflect common trends while α contains the loading factors of the common trends.

Therefore, a cointegrated VECM can be represented by,
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∆Xt = αβ′Xt−1 +

p−1
∑

i=1

Γi∆Xt−i + φDt + εt, (2.2)

where,

α : Rnx → R
r contains the loading factors for the common trends,

β : Rnx → R
r contains the cointegrating vectors.

It is important to note that the decomposition of the long-run multiplier matrix Π into αβ′ is

not unique. In fact, for every non-singular matrix Q : Rr → R
r, we can define α? = αQ′ and

β? = βQ−1 and get Π = α?β?′

. This shows that the cointegration relations are not unique [17].

If cointegration exists, the VECM representation will generate better forecasts than the corre-

sponding representation in first-differenced form, particularly over medium and long-run hori-

zons. This is because under cointegration, Zt, Equation (2.1), will have finite forecast error

variance, whereas any other linear combination of the forecasts of the individual series in Xt will

have infinite variance [18]. An example application of the VECM representation is [2] and [19],

where the VECM representation was used to model changes in the log of a stock index.

2.3 Parameter Estimation

The methods for estimating the parameters in a multivariate cointegration model can be split

into two brances: Least Squares estimators and Maximum Likelihood estimators. Examples of

Least Squares estimation methods include, Unrestricted Least Squares (ULS), the Engle Granger

Method, Dynamic Ordinary Least Squares (DOLS) and the Canonical Correlation Estimator,

each of which will be explored in the proceeding sections. The Maximum Likelihood estimation

method that will be explored further is the Johansen Maximum Likelihood method.

2.3.1 Unrestricted Least Squares Method

To motivate the discussion of the Unrestricted Least Squares (ULS) method for parameter esti-

mation of Vector Error Correction Models (VECM), we begin by considering a VECM of order

p without deterministic terms, given by,

∆Xt = ΠXt−1 +

p−1
∑

i=1

Γi∆Xt−i + εt, εt ∼ N(0,Σu) (2.3)

where the notation has been previously defined in Section (2.2.3). It is convenient to transform

the VECM shown in Equation (2.3) into matrix notation, as follows,
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∆Y = ΠX−1 + Γ∆X+ E, (2.4)

where,

∆Y = [∆X1, . . . ,∆Xt],

X−1 = [X0, . . . ,Xt−1],

Γ = [Γ1, . . . ,Γp−1],

∆X = [∆Xt−1, . . . ,∆Xt−p+1]
′
,

E = [ε1, . . . , εT ].

The Least Squares estimation of the matrix parameters under the formulation, shown in Equation

(2.4), can be shown to be [17],

[

Π̂ : Γ̂
]

=
[

∆YX′
−1 : ∆Y∆X′

]

[

X−1X
′
−1 X−1∆X′

∆XX′
−1 ∆X∆X

]

, (2.5)

Σ̂u = (T − nxp)
−1
(

∆Y− Π̂X−1 − Γ̂∆X
)(

∆Y− Π̂X−1 − Γ̂∆X
)′

. (2.6)

Asymptotic Properties

The asymptotic properties of the Least Squares estimator, shown in Equations (2.5) and (2.6),

respectively, are consistent and have a central limit theorem given by [17],

√
Tvec

([

Π̂ : Γ̂
]

− [Π : Γ]
)

d→ N(0,Σco),

where,

0 Σco =

([

β 0

0 Inxp−nx

]

Ω−1

[

β′ 0

0 Inxp−nx

])

⊗ Σu,

Ω = plim 1
T

[

β′X−1X−1β β′X−1∆X′

∆XX′
−1β ∆X∆X

]

.

The matrix

([

β 0

0 Inxp−nx

]

Ω−1

[

β′ 0

0 Inxp−nx

])

is consistently estimated by,

T

[

Y−1Y
′
−1 Y−1∆X′

∆XY′
−1 ∆X∆X

]−1

,

and Σ̂ is a consistent estimator of Σu.

An interesting point to note is that if the cointegrating rank r = 0 then the LS estimate converges

faster than the usual rate of
√
T . This is summarised by the result,
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√
T
(

Π̂−Π
)

= op(1).

2.3.2 Engle Granger Method

The Engle and Granger estimation method [4] is based upon the Vector Error Correction Model

(VECM) representation and proceeds in two steps. Assuming that all variables in the cointegrat-

ing regression are I(1), we first estimate the cointegration regression equation, Equation (2.7),

by Ordinary Least Squares (OLS),

X1,t = µ+ βX2,t + εt. (2.7)

The residuals of the cointegration regression, ε̂t, are then tested to see if they are I(1). This test

can be carried out via number of unit root tests, an example of which is the Dickey-Fuller (DF)

test for unit roots [20]. The DF test on the residual sequence, ε̂t, considers the autoregression of

the residuals,

∆ε̂t = ρε̂t−1 + νt, (2.8)

and examines the following hypotheses,

H0 : ρ = 0

H1 : ρ < 1.

If we reject the null hypothesis of the Dickey Fuller test, then the OLS estimate of β, β̂, is super-

consistent [21], that is, the estimator β̂ has a convergence rate equal to the sample size. Other

unit root tests that could be considered include the Phillips-Peron test [22] and the Augmented

Dickey-Fuller test [23].

The ε̂t−1 term in Equation (2.8) is then included in the VECM formulation and the remain-

ing parameters can be estimated by OLS. Given the super-consistency of β̂, the asymptotic

distributions of the estimates will be identical to using the true value of β [4].

2.3.3 Dynamic Ordinary Least Squares Estimation

The Dynamic Ordinary Least Squares (DOLS) estimation procedure proposed by Stock and

Watson [24], estimates the parameter β via the following regression,
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X1,t = β′X2,t + d(L)δX2,t + εt. (2.9)

The regression equation used by Stock and Watson, Equation (2.9), can be derived by first con-

sidering the triangular representation for Xt, shown in Equations (2.10) and (2.11), respectively,

X1,t = β′X2,t + ε1,t, (2.10)

∆X2,t = ε2,t, (2.11)

where εt ∼ i.i.d. N(0,Σ) and the covariance matrix Σ is block diagonal, the Ordinary Least

Squares (OLS) estimator of β is the Maximum Likelihood (ML) estimator.

Making ε2,t independent of ε1,t, yields,

E [ε1,t| {∆X2,t}] = E [ε1,t| {ε2,t}]
= d(L)∆X2,t,

where,

d(L)
+q
∑

j=−q

djLj .

Thus, Equation (2.10), can be written as,

X1,t = β′X2,t + d(L)∆X2,t + ν2t , (2.12)

where,

ν2t = ε1,t − E [ε1,t| {ε2,t}].

By assuming that εt is Gaussian and the data is generated by the Triangular representation,

Equations (2.10) and (2.11), respectively, can be reformulated into its two sided analogue, shown

in Equation (2.9).

The Maximum Likelihood estimator of β can then be calculated by estimating β in Equation

(2.9) by Generalised Least Squares (GLS) methods. Since X1,t in Equation (2.11) is I(1), an

asymptotically equivalent estimator of β can be obtained by estimating β by Ordinary Least

Squares (OLS). This estimator is known as the Dynamic OLS (DOLS) estimator.
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2.3.4 Johansen Maximum Likelihood Method

Maximum Likelihood (ML) estimation for Vector Autoregressive (VAR) models was first devel-

oped by Søren Johansen in 1991 [25]. The ML method is often known as the Johansen method.

A novel implementation of the Johansen ML method in Object-oriented MATLAB is given in

Appendix (B).

Consider an Vector Error Correction Model of order p,

∆Xt = αβ′Xt−1 +

p−1
∑

i=1

Γi∆Xt−i + φDt + εt, εt ∼ MVN(0,Σ), (2.13)

where, the parameters of the VECM are as defined in Section (2.2.3).

The aim of the Johansen method is to determine a linear combination Zt = β′Xt which is I(0).

Equation (2.13) can also be represented by,

Z0t = αβ′Z1t +ΨZ2t + εt, (2.14)

εt = Z0t − αβ′Z1t +ΨZ2t, (2.15)

where,

Z0t = ∆Xt,

Z1t = Xt−1,

Ψ = (Γ1, · · · ,Γk−1,Φ),

Z2t = (∆Xt, · · · ,∆Xt−p+1, Dt)
′
,

εt is independent identically distributed multivariate, correlated,

Gaussian noise with covariance Ω.

By assuming that εt are independently sampled from an identical multivariate Gaussian distri-

bution with covariance Ω and zero mean, we can solve for the model parameters by maximising

the log likelihood function for a sample size T of Equation (2.14) as follows,
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logL(α, β,Ψ,Ω) =
1√
2πΩ

exp

(

−1

2

T
∑

t=1

(εt)
′Ω−1(εt)

)

= constants− T

2
log(|Ω|)− 1

2

T
∑

t=1

(εt)
′Ω−1(εt)

= constants− T

2
log(|Ω|)

− 1

2

T
∑

t=1

(Z0t − αβ′Z1t +ΨZ2t)
′
Ω−1 (Z0t − αβ′Z1t +ΨZ2t) . (2.16)

We proceed by minimising the log-likelihood with respect to the Ψ matrix, keeping all other

parameters fixed. The matrix derivative of Equation (2.16), ignoring the irrelevant constant

term, is defined by,

∂logL(α, β,Ψ,Ω)

∂Ψkl
=

∂

∂Ψkl

{

−T

2
log(|Ω|)− 1

2

T
∑

t=1

(Z0t,α − (αβ′Z1t)α +ΨαγZ2t,γ)

· Ω−1
αβ(Z0t,β − (αβ′Z1t)β +ΨβδZ2t,δ)

}

=
1

2

T
∑

t=1

{

(Z0t,α − (αβ′Z1t)α +ΨαγZ2t,γ)Ω
−1
αkZ2t,γ+

Z2t,lΩ
−1
kβ (Z0t,β − (αβ′Z1t)β +ΨβδZ2t,δ)

}

. (2.17)

Upon assuming that the log-likelihood function is convex, the minima of Equation (2.17) is given

by,

T
∑

t=1

(Z0t − αβ′Z1t +ΨZ2t)Z
′
2t = 0. (2.18)

Solving for Ψ, we substitute the results back into Equation (2.16) and proceed to minimise the

log-likelihood with respect to α with β and Ω held fixed. By defining the product moment

matrices,

Mij =
1

T

T
∑

t=1

ZitZ
′

jt i, j = 0, 1, 2,

the solution of Equation (2.18) with respect to Ψ is given by,

Ψ̂ = M02M
−1
12 − αβ′M12M

−1
22 . (2.19)
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Next we remove the short run transitory effects, Ψ̂Z2t, in Equation (2.14). By using the Frisch-

Waugh-Lovell theorem [26], we define the following auxiliary regressions,

Z0t = M02M
−1
22 Z2t +R0t,

Z1t = M12M
−1
22 Z2t +R1t.

The residuals of the auxiliary regressions can then be used to define a “concentrated” model,

R0t = αβ′R1t + εt, εt ∼ MVN(0,Σ),

εt = R0t − αβ′R1t. (2.20)

The concentrated model is important for understanding both the statistical and economic prop-

erties of the VECM in Equation (2.13). The VECM model contains both short-run adjustment

and intervention effects, whereas the concentrated model contains long-run adjustments [27].

The log-likelihood of the concentrated model, Equation (2.20), can be expressed as,

logL(α, β,Ω) = constants− T

2
log(|Ω|)− 1

2

T
∑

t=1

(R0t − αβ′R1t)
′Ω−1(R0t − αβ′R1t). (2.21)

We proceed by minimising Equation (2.21), with respect to α with Ω and β held fixed,

∂logL(α, β,Ω)

∂αkl
=

∂

∂αkl

{

−T

2
log(|Ω|)− 1

2

T
∑

t=1

(R0t,α − ααγ(β
′R1t)γ)Ω

−1
αβ

· (R0t,β − αβδ(β
′R1t)δ)}

=
1

2

T
∑

t=1

{

(R0t,α − ααγ(β
′R1t)γ)Ω

−1
αk (β

′R1t)l + (β′R1t)lΩ
−1
kβ

· (R0t,β − αβδ(β
′R1t)δ} . (2.22)

Upon assuming that the log-likelihood function is convex, the minima of Equation (2.22) corre-

sponds to the solution of,

T
∑

t=1

(R0t − α(β′R1t))(β
′R1t)

′ = 0. (2.23)
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By defining the residual sum of squares as matrices,

Sij =
1

T

T
∑

t=1

RitR
′

jt i, j = 0, 1

the solution of Equation (2.23) with respect to α is given by,

α̂ = S01β(β
′S11β)

−1. (2.24)

Substituting Equation (2.24) into Equation (2.21), we minimise the result with respect to Ω with

β held fixed. For convenience we will use the notation M(β) = S01β(β
′S11β)

−1β′. Solving for

Ω,

∂logL(β,Ω)

∂Ωkl
= −T

2
Ω−1

kl +
1

2

T
∑

t=1

(R0t,α −M(β)αγR1t,γ)Ω
−1
αkΩ

−1
lβ (R0t,β −M(β)βδR1t,δ)

= −T

2
Ω−1

kl +

T
∑

t=1

{

Ω−1
αkR0t,αR0t,βΩ

−1
lβ − Ω−1

αkR0t,αM(β)βδR1t,δΩ
−1
lβ

− Ω−1
αkM(β)αγR1t,γR0t,βΩ

−1
lβ

+ Ω−1
αkM(β)αγR1t,γR1t,γM(β)βδR1t,δΩ

−1
lβ

}

.

In matrix form this reduces to,

∂logL(β,Ω)

∂Ω
= −T

2
Ω−1 +

1

2

T
∑

t=1

(Ω−1)′ {R0tR
′
0t −R0tR

′
1tM(β)′ −M(β)R1tR

′
0t

+ M(β)R1tR
′
1tM(β)′} (Ω−1)′

= −T

2
Ω−1 +−T

2
(Ω−1)′ + {S00 − S01M(β)′ −M(β)S10

+ M(β)S11M(β)′} (Ω−1)′. (2.25)

Multiplying both sides of Equation (2.25) by Ω yields,

Ω = S00 − S01M(β)′ −M(β)S10 +M(β)S11M(β)′. (2.26)

By noting that,
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S01M(β)′ = S01S01β(β
′S11β)

−1β′′

= S01β(β
′S′

11β)
−1′β′S′

01

= S01β(β
′S′

11β)
−1β′S01

= M(β)S10,

and

M(β)S11M(β)′ = S01β(β
′S′

11β)
−1β′S11β(β

′S′
11β)

−1 β′S10

= S01β(β
′S′

11β)
−1β′S01,

Equation (2.26), can be written as,

Ω̂ = S00 − S01β(β
′S′

11β)
−1β′S01. (2.27)

For a multivariate normal distribution, up to an overall constant, the maximum possible value

of the likelihood function is |Ω|−T
2 , which is also denoted by,

L
− 2

T
max(β) = |Ω(β)|

= |S00 − S01β(β
′S′

11β)
−1β′S01|. (2.28)

Therefore, the problem of maximising the likelihood function reduces to finding the matrix β

which maximises the determinant of Equation (2.28). To find the determinant we make use of

the expression,

M =

(

S00 S01β

β
′

S01 β
′

S01β

)

,

and note that the determinant of M is,

|M | = |S00||β′S01β − β′S10S
−1
00 S01β|

= |β′S01β||S00 − S01β(β
′S11β)

−1β′S10|. (2.29)
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We see that the determinant of Ω is contained in Equation (2.29). Solving for |Ω| yields,

|Ω| = |S00|
|β′

S11β − β
′

S10S
−1
00 S01β|

|β′S11β|

= |S00|
|β′

(S11 − S10S
−1
00 S01)β|

|β′S11β|
.

The values of β which maximise the likelihood function are the solutions to,

(S11 − S10S
−1
00 S01)~v

i = piS11~v
i,

or equivalently for λi = 1− pi,

S10S
−1
00 S01~v

i = λiS11~v
i. (2.30)

The vectors ~vi represent cointegration relations. By choosing the normalisation ~viS11~v
j =

Inx
if i = j and 0 otherwise, then β′S10S

−1
00 S01β = diag(λ1, λ2, . . .). With this choice of β,

the maximum likelihood function is then,

L
− 2

T
max =

(

|S00|
r
∏

i=1

(1 − λ̂i)

)

. (2.31)

In summary, the Johansen Maximum Likelihood method produces estimates of the parameters of

a Vector Error Correction Model (VECM) of the form given in Equation (2.13). The parameter

estimates and the resulting likelihood function are summarised in Table (2.1), noting that here

r represents the cointegration rank.

Table 2.1: Summary of Estimates from the Johansen Maximum Likelihood Method

Estimator Form
α̂ S01β(β

′S11β)
−1

β̂
[

~v1, . . . , ~vr
]′
S
−1/2
11

Ω̂ S00 − S01β(β
′S′

11β)
−1β′S01

Ψ̂ M02M
−1
12 − αβ′M12M

−1
22

Maximum Likelihood

(

|S00|
r
∏

i=1

(1− λ̂i)

)

Asymptotic Properties

The Maximum Likelihood (ML) estimators of the parameters of the Vector Error Correction

Model in Equation (2.13) are consistent and have the following central limit theorem [17],
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√
Tvec

(

[Π̂ : Γ̂]− [Π : Γ]
)

d→ N(0,Σco),

where,

Σco =

([

β 0

0 Inxp−nx

]

Ω−1

[

β′ 0

0 Inxp−nx

])

and

√
Tvech

(

Σ̃u − Σu

)

d→ N(0, 2D+
nx

(Σu ⊗ Σu)D
+′

nx
)

where,

Dnx
is the duplication matrix

D+
nx

= (D
′

nx
Dnx

)−1D
′

nx
, the Moore-Pemrose generalised inverse of

Dnx

Furthermore, Σ̃ is asymptotically independent of Π̂ and Γ̂.

The ML estimator of [Π : Γ] has the same asymptotic distribution as the LS estimator presented

in Section (2.3.1).

2.3.5 Canonical Correlation Regression Estimator

The use of canonical correlation analysis (CCA) was first proposed by Bossaerts in 1988 [8]. A

more rigorous methodology was introduced by Bewley and Yang in 1995, allowing for determinis-

tic trends and other variables explaining short-run dynamics, termed Level Canonical Correlation

Analysis (LCCA) [28]. In the LCCA methodology the canonical correlations are computed in

levels, that is, the first differences of Xt.

The Level Canonical Correlation Analysis (LCCA) estimation method is computationally similar

to the Johansen method, covered in Section (2.3.4). In the LCCA method, exogenous variables

are removed by regressing Xt and Xt−1 onto those variables. The residuals from the regression,

R0t and R1t, are then used in the following regression,

R0t = BR1t + εt. (2.32)

The canonical correlations in Equation (2.32) are determined by solving the following eigenvalue

problem,

∣

∣S10S
−1
00 S01 − λS11

∣

∣ = 0, (2.33)

where,
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Sij =
1

T

T
∑

t=1

RitR
′

jt i, j = 1, 2.

.

The eigenvalue problem solved in the LCCA method, Equation (2.33), is the same as that solved

in the Johansen method, Equation (2.30). However, different interpretations are given to the

results, since in the LCCA method we are seeking canonical correlations between variables in

levels while in the Johansen methods we correlate both levels and differences [8]. The LCCA

method incorporates four types of cointegration rank tests, two Dickey-Fuller type tests, a trace

test, and a maximum eigenvalue test.

2.3.6 Cointegration Rank

The Johansen maximum likelihood estimation method and its extensions critically depend on

correctly estimating the number of cointegrating relationships, r. Two Likelihood Ratio (LR)

tests for the determination of cointegration rank r have been suggested in relationship with the

Johansen method: the trace test and the maximum eigenvalue test. It is important to note that

the distribution of the LR test statistics for both the trace and maximum eigenvalue tests are

non-standard and as such have been tabulated in [29] and [30].

Trace Test

The trace test is immediately suggested by the Johansen method and examines the following

hypotheses,

H0 : rank(Π) ≤ r (or Π = αβ′)

H1 : rank(Π) = nx (or Π is full rank)

The LR test and resulting test statistic is given by,

Q (H0/H1) =

|S00|
r
∏

i=1

(

1− λ̂i

)

|S00|
nx
∏

i=1

(

1− λ̂i

)

logQ (H0/H1) = −
nx
∑

i=r+1

log
(

1− λ̂i

)

.
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The trace statistic has a limit distribution which can be expressed in terms of a (nx − r)-

dimensional Brownian motion B with i.i.d. components [25] as,

tr

{

∫

(dB)F
′

[
∫

FF
′

du

]−1 ∫

F (dB)
′

}

(2.34)

where,

F
′

= (F
′

1, F
′

2),

F1i(t) = B1(t)−
∫

Bi(u)du,

F2(t) = t− 1
2 .

The trace test does not provide the exact number of unit roots. Therefore, to estimate the value

of r a sequence of trace tests must be performed.

Maximum Eigenvalue Test

The Maximum Eigenvalue test examines the following hypotheses,

H0 : rank(Π) = r

H1 : rank(Π) = r + 1

The LR test and resulting test statistic is given by,

Q (H0/H1) =

|S00|
r
∏

i=1

(

1− λ̂i

)

|S00|
r+1
∏

i=1

(

1− λ̂i

)

logQ (H0/H1) = −log
(

1− λ̂r+1

)

. (2.35)

The LR test statistic, Equation (2.35), is asymptotically distributed as the maximum eigenvalue

of the matrix given in Equation (2.34).

2.4 Case Study: Johansen Maximum Likelihood Estima-

tion

The Johansen Maximum Likelihood (ML) estimation method provides estimates of the parame-

ters Vector Autoregressive Model (VECM) of order p. In this study we evaluate the efficacy of
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the Johansen ML method at estimating the parameters of a cointegrated VECM with a deter-

ministic term. The case study utilises the novel implementation of the Johansen ML method in

Object-oriented MATLAB is given in Appendix (B).

2.4.1 Model

Consider a data generating system (DGS) defined by the following two equations,

Mt = AMt−1 + ηt, ηt ∼ MVN(0,Σ) (2.36)

Yt = Mt + αβ′Xt−1 + Γ(Xt −Xt−1) + εt, εt ∼ MVN(0,Ω) (2.37)

where,

Mt ∈ R
nx is the state vector,

Yt ∈ R
nx is the measurement vector,

A : Rnx → R
nx is the system matrix,

ηt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Σ,

α : Rnx → R
nx is the loading factor matrix,

β : Rnx → R
nx is the cointegration vector matrix,

Γ : Rnx → R
nx is the lag matrix,

εt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Ω.

Equation (2.36) is known as the system equation and Equation (2.37) is known as the measure-

ment equation. We note that the system equation is Vector Autoregressive (VAR) process of

order 1. The measurement equation is in the form of a Vector Error Correction Model (VECM)

of order 2 with a deterministic term Mt, which is driven by a latent process, given by the system

equation.

A total of 50 data sets were generated from the DGS, with each data set containing 10,000

observations. The set of parameters used to generate the data from the DGS are shown in Table

(2.2) and constitute the “true” set of parameters, against which the estimates of the Johansen

ML method will be compared.

Using the current settings for the α and β matrices, we can see that the measurement equation

of the DGS, Equation (2.37), is actually a cointegrated VECM; since, rank(αβ′) = 1 which is

less than nx.

A typical realisation of the measurement equation is shown in Figure (2.1).
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Table 2.2: Case Study Data Generating System Parameter Values

Parameter Value
nx 2

A

(

0.1 0.1
0.1 0.1

)

Σ

(

0.1 0
0 0.1

)

α

(

0.2 0.2
0.2 0.2

)

β

(

1 0
−1 −1

)

Γ

(

0.1 0.1
0.1 0.1

)

Ω

(

0.1 0
0 0.1

)

r 1
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Figure 2.1: A typical realisation of the measurement equation of the Case Study Model. Note
that there are two series, which corresponds with the choice of nx, in the DGS, shown in Table
(2.2).

2.4.2 Method

The observations generated from the measurement equation, Equation (2.37), Data Generating

System (DGS) were presented to the Johansen Maximum Likelihood (ML) method in two ways:

batch and sliding window. The order of the Vector Error Correction Model (VECM) estimated

by the Johansen ML method was set to 2.

In the batch procedure, the data sets were partitioned into subsets, each with an incrementally

increasing number of observations, where the size of the increments was a predefined constant,

Batch size. At each time step, t, a subset of data Y1:t = {y1, . . . , yt+Batch size} was used within
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the Johansen ML method. By presenting the data in batch subsets, it is possible to evaluate the

effect of increasing the number of observations on the performance of the Johansen ML method.

In the sliding window procedure, each of the data sets were partitioned into subsets, each with

a constant number of observations. At each time step, t, a subset of data Yt:(t+Window size) =

{yt, . . . , yt+Window size} was used within the Johansen ML method. By presenting the data in slid-

ing window subsets, it is possible to evaluate the dynamics of the parameter estimates throughout

different sections of the observation series.

2.4.3 Results

A summary of the results of the Johansen ML method for both batch and sliding window esti-

mation is provided in the proceeding sections.

Batch Estimation

The results of the batch estimation method are presented in Figure (2.2). The figure shows the

Mean Square Error (MSE) associated with the average estimated parameter over all 50 data sets

for a given batch data size.

From Figure (2.2) it is evident that the estimates produced by the Johansen ML method vary

with the size of the observations. The estimates generated with smaller batch data sizes are, in

most cases, largely different from those produced with larger batch subset sizes. For example,

the Mean Square Error (MSE) of α̂ in batch number 1 is larger than 1× 10−4, whereas for batch

number 20, which uses all available data, the MSE is below 1× 10−4. The most marked example

of this phenomenon is the MSE of the trace of the estimated Lag matrix, Γ̂. In general, the

gradual increase of the number of observations used within the Johansen ML method shows a

stabilisation in the MSE of the estimated parameters. The exception to this rule is the MSE of

the estimated cointegration rank, r̂, which continues to fluctuate irrespective of the number of

observations.

The results of the batch estimation procedure shows that the Johansen ML method produces

estimates of the parameters of a given Vector Error Correction Model (VECM) with increasing

efficacy as the number of observations are increased. The small MSE of the estimates over

all batch sizes demonstrates the ability of the Johansen ML method to correctly estimate the

parameters of a VECM with a deterministic term.

Sliding Window Estimation

The results of the sliding window estimation method are presented in Figure (2.3). The figure

shows the Mean Square Error (MSE) associated with the average estimated parameter over all

50 data sets for a given sliding window.
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Figure 2.2: Johansen Case Study: Batch Data Results. The figures, from top to bottom, rep-
resent the Mean Square Error (MSE) of the α̂, β̂, M̂t, r̂ and trace(Γ̂), estimates for each batch
subset over all data sets, respectively. In the first three Figures, the blue and green plots relate
to the first and second components of the α̂, β̂ and M̂t vectors.

From Figure (2.3) it is evident that the estimates produced by the Johansen ML method vary

over the history of the observations series. The estimates generated with the initial sliding

window data are, in most cases, largely different from those produced with latter sliding window

data. For example, the Mean Square Error (MSE) of α̂ in sliding window number 1 is larger

than 9 × 10−5, whereas for the final sliding window, the MSE is below 6 × 10−5. The most

marked example of this phenomenon is the MSE of the trace of the estimated Lag matrix, Γ̂,
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Figure 2.3: Johansen Case Study: Sliding Window Results. The figures, from top to bottom,
represent the Mean Square Error (MSE) of the α̂, β̂, M̂t, r̂ and trace(Γ̂), estimates for each
sliding window over all data sets, respectively. In the first three Figures, the blue and green plots
relate to the first and second components of the α̂, β̂ and M̂t vectors.

which exhibits large fluctuations in the MSE of the estimate between sliding window numbers

5000 and 6000 and 7000 and 7500. The use of sliding window estimation technique shows that,

in general, the MSE of the estimates produced by the Johansen ML method do not stabilise,

that is, they are different for each sliding window. A notable exception to this is the estimate of

the deterministic term, M̂t, which appears to have a relatively state MSE over the course of the

observation history.
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By comparing the Mean Square Error (MSE) of the estimates produced by the batch and sliding

window estimation procedure, it is clear that they are lower in the batch estimation procedure.

By using batch data, the wild fluctuations in parameter estimates within each sliding window,

are mitigated. However, the sliding window estimation procedure is particularly useful when we

wish to examine the stochasticity of the parameters in the VECM specification over the course

of the observation series.
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2.5 Case Study: Cointegration Rank Estimation

The purpose of this case study is to evaluate the efficacy of the Johansen Maximum Likeli-

hood (ML) method at predicting the cointegration rank, r, of Vector Error Correction Models

(VECM) with different rank specifications. The case study utilises the novel implementation of

the Johansen ML method in Object-oriented MATLAB is given in Appendix (B).

2.5.1 Model

The Vector Error Correction Models (VECM)’s investigated were derived from a study by Sugita

in 2002 [1]. In the study, Sugita specified five VECM’s of order 1, each with an incrementally

increasing number of cointegrating relationships, summarised by the rank, r.

The specifications of the five VECM’s are shown in Table (2.3).

Table 2.3: Sugita Vector Error Correction Model (VECM) Specification, [1]. In the model

specification, ∆Yt = Yt − Yt−1, µ =
[

0.1 0.1 0.1 0.1
]′

and εt ∼ N(0, I4)

Model Number Model Specification Rank
1 ∆Yt = µ+ εt 0

2 ∆Yt = µ+









−0.2
−0.2
−0.2
−0.2









[

1 0 0 −1
]

Yt−1 + εt 1

3 ∆Yt = µ+









−0.2 −0.2
0.2 −0.2
0.2 0.2
−0.2 0.2









[

1 0 0 −1
0 1 0 −1

]

Yt−1 + εt 2

4 ∆Yt = µ+









−0.2 −0.2 −0.2
0.2 −0.2 −0.2
0.2 0.2 −0.2
0.2 0.2 0.2













1 0 0 −1
0 1 0 −1
0 0 1 −1



Yt−1 + εt 3

5 ∆Yt = µ+









−0.2 −0.2 −0.2 −0.2
0.2 −0.2 −0.2 −0.2
0.2 0.2 −0.2 −0.2
0.2 0.2 0.2 −0.2

















1 0 0 −1
0 1 0 −1
0 0 1 −1
0 0 0 −1









Yt−1 + εt 4

A total of 2000 data sets were generated for each of the five models; 1000 containing 50 observa-

tions and 1000 containing 100 observations.

2.5.2 Method

The efficacy of the Johansen ML method at estimating the cointegration rank, r, of a Vector

Error Correction Model (VECM) was evaluated by using all five models in Table (2.3).

33



An estimate of the cointegrating rank, r, was calculated using the Maximum Eigenvalue test,

shown in Section (2.3.6), by a p-value with a 5 percent significance level. The frequency of each

estimated rank was then counted over all data sets for both 50 observations and 100 observations,

to produce a rate at which the estimated rank was chosen.

2.5.3 Results

The frequency with which the Johansen ML estimation method estimated each possible cointe-

grating rank, r, for the five models are shown in Table (2.4) and Table (2.5). Table (2.4) shows

the estimation results for the 1000 data sets with 50 observations, whereas Table (2.5) shows the

results for the 1000 data sets with 100 observations.

Table 2.4: Cointegration Rank Estimates for Datasets with 50 Observations. The most frequently
estimated rank is shown in bold.

Model Number (Rank) Estimated Rank Frequency of Estimation

1 (0)

0 0.8870

1 0.0590
2 0.0010
3 0.0010
4 0.0520

2 (1)

0 0.0220
1 0.7460

2 0.1150
3 0.0210
4 0.0960

3 (2)

0 0.0040
1 0.0750
2 0.7480

3 0.0720
4 0.1010

4 (3)

0 0.0020
1 0.1960
2 0.4450

3 0.1330
4 0.2240

5 (4)

0 0.0000
1 0.0030
2 0.1280
3 0.0400
4 0.8290

34



Table 2.5: Cointegration Rank Estimates for Datasets with 100 Observations. The most fre-
quently estimated rank is shown in bold.

Model Number (Rank) Estimated Rank Frequency of Estimation

1 (0)

0 0.9120

1 0.0600
2 0.0000
3 0.0020
4 0.0260

2 (1)

0 0.0000
1 0.7710

2 0.0900
3 0.0200
4 0.1190

3 (2)

0 0.0000
1 0.0000
2 0.8770

3 0.0610
4 0.0620

4 (3)

0 0.0000
1 0.0000
2 0.2550
3 0.5190

4 0.2260

5 (4)

0 0.0000
1 0.0000
2 0.0000
3 0.0010
4 0.9990
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The results in Tables (2.4) and (2.5), respectively, show that, in general, the most frequently

estimated rank is the true rank of each model. The sole exception to this rule is Model Number

4 in Table (2.4). In this particular case, the rank was most frequently estimated as r = 2, when

in fact the true rank was r = 3.

The results also show that the Johansen ML estimation method suffers from a shortage of obser-

vations. Upon comparing Table (2.5) to Table (2.4) it is evident that the estimated rank is more

frequently correct with 100 observations than with 50 observations. An increase in the number

of observations also improves the frequency with which estimated rank of Model Number 4 is

correct; increasing the number of observations to 100 increases the frequency of estimating the

true rank, r = 3, from 0.1330 to 0.5190. This degeneracy is especially present in the models with

higher true rank.
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2.6 Summary

Within this chapter we have presented the definition, specification and estimation of multivariate

cointegration models within finance. The most popular estimation technique, Johansen’s Max-

imum Likelihood method, was derived and its efficacy evaluated in two separate case studies.

The Johansen Maximum Likelihood method was demonstrated to be an effective estimator of the

parameters of a Vector Error Correction Model (VECM) and also of the cointegrating rank of the

VECM. However, it was shown that the efficacy of the Johansen method is reduced when data

is scarce. A common limitation to the estimation procedures introduced in this chapter is that

they operate on batches of data and are not generally amenable to situations where estimation

is required to be on-line. We now proceed to investigate techniques for the on-line estimation of

a set of latent parameters given potentially noisy data.
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Chapter 3

Filtering for Multivariate

Cointegration Models

Filtering and estimation are two of the most pervasive tools of engineering. Whenever the state of

a system must be estimated from noisy measurements, some kind of state estimator is employed

to combine measurement from many sources together to produce an accurate estimate of the

true system state.

This chapter provides an exposition on filtering techniques for multivariate cointegration models.

We begin the chapter with an explanation of the general filtering problem for stochastic, discrete

state space model and motivate its optimal Bayesian solution, in Section (3.1). The Kalman

filter is then introduced as a tractable Bayesian optimal estimator, under a restricted state space

model, in Section (3.2). An extension to the Kalman filter for non-linear state space models, the

Extended

Kalman filter, is then presented in Section (3.3).

A succinct introduction to Monte Carlo methods, in conjunction with two fundamental Monte

Carlo sampling techniques, rejection sampling and importance

sampling is introduced in Section (3.4). The Sequential Monte Carlo (SMC) paradigm, based

on the importance sampling technique, is then presented in the following section, Section (3.5).

Three SMC algorithms, Sequential Importance Sampling, Sequential Importance Sampling Re-

sampling (SISR) and the Auxiliary Particle Filter are also introduced. Resampling schemes used

within SMC methods are reviewed in Section (3.5.4), including Multinomial, Residual, Stratified

and Systematic resampling. The properties of the different schemes are also stated.

In the final sections we conduct three case studies, the first of which examines the effectiveness

of the Kalman filter at deducing the state of a latent process within a Vector Error Correction
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Model (VECM), (3.6). In Section (3.7), the second study, we investigate the efficacy of the

Extended Kalman filter at estimating the state of a non-linear

latent process within a VECM. The effect of each resampling scheme on the ability of the SISR

filter to elucidate the state of a two non-linear latent processes within a VECM was researched

in Section (3.8).

3.1 The Filtering Problem

To motivate the discussion of the filtering problem in a general context, first consider two stochas-

tic discrete-time state space models of the form,

Xt = ft (Xt−1,Wt−1) (3.1)

Yt = ht (Xt,Vt) , (3.2)

where,

Xt ∈ R
nx is the state vector,

Yt ∈ R
ny is the measurement vector,

ft(·, ·) : Rnx × R
nv → R

nx is a non-linear, time variant, deterministic

function,

ht(·, ·) : Rnx × R
nv → R

nx is a non-linear, time variant, deterministic

function,

{Wt−1, t ∈ N} i.i.d. system noise sequences,

{Vt, t ∈ N} i.i.d. measurement noise sequences.

Equation (3.1) is known as the system equation and Equation (3.2) is known as the measurement

equation. It is of interest to note that the system equation is a Markov process of order one.

The general objective of filtering is to provide a sequence of estimates from the system equa-

tion, {xt, t ∈ N}, based on the set of all observations from the measurement equation, Y1:t =

{yi, i = 1, · · · , t} up to time t.

From the Bayesian viewpoint, the aim of the filtering problem is to calculate a posterior distri-

bution p (Xt|Y1:t) which encompasses the degree of belief in the state xt taking different values

given the observed data y1:t. Given then the initial probability distribution function of the state

vector, p(Xt), also known as the prior, the posterior distribution may be obtained recursively in

two stages: prediction and update.
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Prediction Stage

The prediction stage calculates an a priori estimate of the posterior distribution p (Xt|Y1:t) at

time t. The a priori estimate is calculated by using the a posteriori estimate at the previous time

step and the identity, p (Xt|Xt−1,Y1:t−1) = p (Xt|Xt−1), in the Chapman-Kolmogorov equation,

as follows,

p(Xt|Y1:t−1) =

∫

p(Xt,Xt−1|Y1:t−1)dXt−1

=

∫

p(Xt|Xt−1,Y1:t−1)p(Xt−1|Y1:t−1)dXt−1

=

∫

p(Xt|Xt−1)p(Xt−1|Y1:t−1)d Xt−1. (3.3)

Update Stage

The update stage produces an a posteriori estimate of the posterior distribution at time t, given

a measurement, yt. The a posteriori estimate is calculated through the following equations,

p(Xt|Y1:t) =
p(Y1:t|Xt)p(Xt)

p(Y1:t)

=
p(Yt,Y1:t−1|Xt)p(Xt)

p(Yt,Y1:t−1)

=
p(Yt|Y1:t−1,Xt)p(Y1:t−1|Xt)p(Xt)

p(Yt|Y1:t−1)p(Y1:t−1)

=
p(Yt|Y1:t−1,Xt)p(Xt|Y1:t−1)p(Y1:t−1)p(X t)

p(Yt|Y1:t−1)p(Y1:t−1)p(Xt)

=
p(Yt|Xt)p(Xt|Y1:t−1)

p(Yt|Y1:t−1)
, (3.4)

where the normalizing constant in Equation (3.4) is given by,

p(Yt|Y1:t−1) =

∫

p (Yt|Xt) p (Xt|Y1:t−1) .

In the update stage, the measurement yt is used to modify the prior density to obtain the required

posterior density of the current state.

The recursive structure of the optimal Bayesian solution to the filtering problem is clearly evident

from Equations (3.3) and (3.4), respectively. However, the optimal solution is conceptual, due to

the fact that, in general, the integrals in the prediction and update stages are high dimensional

and cannot be determined analytically.
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By restricting the nature of the system and measurement equations, an optimal solution may be

tractable, an example of an algorithm that utilises this approach is the Kalman filter [31]. In

situations where imposing restrictions is undesirable, algorithms that approximate the optimal

Bayesian solution can be used, two examples of which are Extended Kalman filter and Sequential

Monte Carlo methods [32].

3.2 The Kalman Filter

The Kalman filter was introduced in 1960 by R.E. Kalman and is a recursive Bayesian optimal

estimator for linear systems with Gaussian noise characteristics [31]. Since its introduction, the

Kalman filter has been widely used for state, parameter and system identification for both linear

and non-linear systems.

The earliest precursor to the Kalman filter was the invention and usage of the Least Squares

estimation technique by Gauss in the study of planetary orbits [33]. The application of the

Least Squares estimation technique to the estimation of stochastic processes was pioneered by

Kolmogorov in 1941 and Weiner in 1942 and resulted in the development of the Minimum Mean

Square Error (MMSE) technique [34]. The use of recursive estimation in systems where there

is dynamic evolution of the quantity being estimated was established by Follins in 1956 [34].

Kalman combined and extended the aforementioned techniques to derive Bayesian optimal esti-

mator for linear systems with Gaussian noise characteristics.

The Kalman filter consists of a set of recursive equations used to propagate states of a system

with a given approximate dynamic model and a set of noisy measurements. In the presence of

Gaussian posterior densities, the Kalman filter is considered to be an optimal filter that can be

completely characterised by the mean and covariance at each time step t, see [35].

3.2.1 State Space Representation

The Kalman filter applies to state space models as defined below,

Xt = FtXt−1 +Wt−1, Wt−1 ∼ N(0, Qt) (3.5)

Yt = HtXt +Vt, Vt ∼ N(0, Rt) (3.6)

where,
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Xt ∈ R
nx is the state vector,

Yt ∈ R
ny is the measurement vector,

Ft: R
nv → R

nx is the system matrix,

Wt ∈ R
nx is the white, Gaussian, zero mean noise vector with covariance Qt,

Ht: R
nv → R

nx is the measurement matrix,

Vt ∈ R
nx is the white, Gaussian, zero mean measurement noise vector with

covariance Rt.

Equation (3.5) is known as the system equation and Equation (3.6) is known as the measurement

equation. The system and measurement matrices, Ft and Ht, respectively, as well as the noise

parameters Wt and Vt, respectively, are time variant.

3.2.2 Derivation of the Kalman Filter Predict-Update Recursions

An overview of the derivation of the prediction and update stages of the Kalman filter are shown

in the proceeding sections. Here, we assume that X0, Wt and Vt are Gaussian for all t ≥ 0

and Y1:t = {yi, i = 1, · · · , t} is the set of all measurements from the measurement equation up

to time t.

Prediction Equations

To begin, we apply the projection operator to the system equation, Equation (3.5), giving an a

priori prediction of the state of the system at time t+ 1, given measurements Yt.

X̃t+1|t
4
= E(FtXt|t +Wt|Yt)

= FtX̂t|t. (3.7)

The a priori error covariance matrix associated with X̃t+1|t is given by,

P̃t+1|t
4
= E(X̃t+1|tX̃

′

t+1|t|Yt)

= FtPt|tF
′

t +Qt. (3.8)

The innovation, the difference between the real value and its estimate, is given by,
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et+1 = Yt+1 − Ỹt+1|t

= (Ht+1Xt+1 +Vt+1)−Ht+1X̃t+1|t

= Ht+1Xt+1 +Vt+1. (3.9)

The covariance matrix associated with the innovation, denoted by St+1, can then be calculated

as follows,

St+1 = E(et+1e
′

t+1|Yt)

= Ht+1P̃t+1|tH
′

t+1 +Rt+1. (3.10)

The covariance between the a priori state estimate, Equation (3.7), and the innovation, Equation

(3.9), is given by,

E(X̃t+1|te
′

t+1|Yt) = P̃t+1|tH
′

t+1. (3.11)

The Kalman gain can then be calculated using the innovation covariance, Equation (3.10), and

the covariance between the state and the measurement, Equation (3.11). The Kalman gain is

the component of the Kalman Filter algorithm that ensures that the filter yields the MMSE

estimate,

Kt+1 = P̃t+1|tH
′

t+1S
−1
t+1. (3.12)

From Equation (3.12), we can see that the Kalman gain is proportional to the a priori error

covariance matrix and inversely proportional to the innovation covariance matrix.

Update Equations

An a posteriori estimate of the state at time t utilises the prediction equations as follows,

X̂t+1|t+1 = X̃t+1|t +Kt+1et+1. (3.13)

From Equation (3.13), we note that the Kalman gain serves to regulate the influence of the

innovation, et+1, on the a posteriori estimate.
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The a posteriori estimate of the covariance structure of X̂t+1|t+1, is given by,

P̂t+1|t+1 = P̃t+1|t −Kt+1St+1K
′

t+1. (3.14)

At each time step in the Kalman filter, the entire history of the state is summarised by a set

of sufficient statistics, namely the a posteriori state and covariance, X̂t+1|t+1 and P̂t+1|t+1,

respectively.

The Kalman filter is the Minimum Mean Square Estimator (MMSE) of the state at each time t.

When the matrix Kt+1 in the a posteriori update equation, Equation (3.13), is chosen to be the

Kalman gain, Equation (3.12), the trace of the a posteriori estimate covariance matrix, P̂t+1|t+1,

is minimised. This is equivalent to minimising the mean square error of the estimates.

The use of the Kalman filter is limited by the ubiquitous non-linearity and non-Gaussian nature

of the physical world. Hence, since the publication of the Kalman filter, numerous efforts have

been devoted to the generic filtering problem, most often in the Kalman filtering framework.

3.2.3 The Algorithm

With Pt|t and x̂t|t known, the Kalman filter algorithm proceeds from iteration t → t + 1 as

shown in Table (3.1). A novel implementation of the Kalman filter algorithm in Object-oriented

MATLAB is given in Appendix (C).

Table 3.1: Kalman Filter Algorithm

1. x̃t+1|t = Ftx̂t|t State prediction

2. P̃t+1|t = FtPt|tF
′

t +Qt Covariance prediction

3. St+1 = Ht+1P̃t+1|tH
′

t+1 +Rt+1 Innovation prediction

4. Kt+1 = P̃t+1|tH
′

t+1S
−1
t+1 Kalman Gain

5. P̂t+1|t+1 = P̃t+1|t −Kt+1St+1K
′

t+1 Covariance Update
6. ŷt+1|t = Ht+1x̃t+1|t Measurement Prediction

7. Receive new measurement yt+1

8. et+1 = Ht+1x̃t+1 +Vt+1 Calculate the innovation
9. x̂t+1|t+1 = x̃t+1|t +Kt+1et+1 Update the State Estimate

Alternate Forms of Covariance Update

The a priori error covariance matrix, P̃t+1|t, Equation (3.8), is, by definition a positive semi-

definite matrix. However, computed values of Equation (3.8) can lose this property due to

numerical errors [36]. When this occurs the Kalman gain, Equation (3.12), may have the wrong

sign and the estimates of the Kalman filter may diverge. An approach that is used to alleviate

these effects, is to use an alternate form of covariance update. Two forms of covariance update

are shown in Table (3.2).
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Table 3.2: Alternate Forms for Covariance Update in the Kalman Filter

Form Equation

Standard P̂t+1|t+1 = P̃t+1|t −Kt+1St+1K
′

t+1

Joseph P̂t+1|t+1 = [Inx
−Kt+1Ht+1]P̃t|t+1[Inx

−Kt+1Ht+1]
′ + P̃t+1|t +Kt+1Rt+1K

′

t+1

The standard version for the update of the covariance preserves the symmetric structure of

P̂t+1|t+1, but risks losing positive definiteness due to the subtracted term. In contrast, the

Joseph form [37] is guaranteed to preserve positive definiteness, provided that P̃t|t+1 ≥ 0, at

the expense of computational efficiency [38]. The Joseph form can be shown to have an ≈ n3
x

computational complexity [39], where nx refers to the dimension of the state vector Xt. This is

because the Joseph requires 1.5n3
x + 2n2

x + nx floating point operations in its evaluation [40].

3.2.4 Consistency and Performance

The consistency of the state estimates calculated by the Kalman filter can be evaluated via the

following statistic,

εt = x̃
′

tP
−1
t|t x̃t.

If the filter is consistent, then the E [εt] = nx [38]. The innovation sequence, Equation (3.9), of

a consistent Kalman filter will be a white noise process.

An inconsistent Kalman filter gives rise to a sequence of divergent state estimates [41]. Two

symptoms of divergence are: the error covariance matrix Pt increases without bound while the

theoretical Pt converges to a steady state, and the Kalman gain approaches 0 [42]. Several

solutions have been offered to this problem, see [42]:

1. Increase Qt, the system noise covariance;

2. Increase Qt adaptively based on the innovations sequence et;

3. Use a subset of the measurement history to form all estimates;

4. Use an alternative form of covariance update, refer to Section (3.2.3);

5. Apply exponential weighting to the measurements; and/or

6. Apply an ad-hoc lower bound to the Kalman gain.
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3.3 The Extended Kalman Filter

The Extended Kalman Filter (EKF) was created by S.F. Schmidt [43] as an extension to the

Kalman Filter. The earliest application of the EKF was within satellite navigation [43], with

more recent applications appearing in the fields of time series, where the EKF has been used to

estimate missing observations of economic time series [44] and biochemical networks [45]. The key

innovation of the Extended Kalman filter was to approximate or linearise the non-linear process

and measurement models prior to applying the recursion equations of the standard Kalman filter.

3.3.1 State Space Representation

Consider the following representations of the process and measurement equations

Xt = ft (Xt−1) +Wt−1, Wt−1 ∼ N(0, Qt) (3.15)

Yt = ht (Xt) +Vt, Vt ∼ N(0, Rt) (3.16)

where,

Xt ∈ R
nx is the state vector,

Yt ∈ R
ny is the measurement vector,

ft(·) : Rnx × R
nv → R

nx is a non-linear, time variant, deterministic function,

Wt ∈ R
nx is the white, Gaussian, zero mean noise vector with covariance Qt,

ht(·) : Rnx × R
nv → R

nx is a non-linear, time variant, deterministic function,

Vt ∈ R
nx is the white, Gaussian, zero mean measurement noise vector with

covariance Rt.

Equation (3.15) is known as the system equation and Equation (3.16) is known as the mea-

surement equation. The notation and assumptions are identical to those that were used for the

Kalman filter in Section (3.2.1).

If both of the functions ft(·) and ht(·) are linear, the problem reduces to that covered by the

Kalman filter. If however, the functions are non-linear and sufficiently smooth they can be

approximated by linear functions. The linear functions are constructed as locally linearised

Jacobian functions about a nominal trajectory as follows,

F̂ =
∂ft(x)

∂x

∣

∣

∣

∣

x=ft(X̂t|t)
,

Ĥ =
∂ht(x)

∂x

∣

∣

∣

∣

x=ft(X̂t|t−1)
.
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The EKF utilises the first term in a Taylor series expansion of the non-linear function about the

nominal trajectory. If the actual trajectory, Xt, is not sufficiently close to X̂t then higher order

terms of the Taylor series expansion must be included.

3.3.2 Derivation of the Extended Kalman Filter Predict-Update Re-

cursions

Consider the non-linear terms in the system and measurement equations given by Equations

(3.15) and (3.16), respectively. Linearising the terms ft(Xt−1) and ht(Xt) about X̂t|t and X̂t|t−1,

respectively, yields the following,

ft(Xt−1) = ft(X̂t|t) + Jft(Xt − X̂t|t), (3.17)

ht(Xt) = ht(X̂t|t−1) + Jht
(Xt − X̂t|t), (3.18)

where,

Jft is the Jacobian of ft evaluated at X̂t|t,

Jht
is the Jacobian of ht evaluated at X̂t|t−1.

Substituting the linearised equations, Equations (3.17) and (3.18), respectively, into Equations

(3.15) and (3.16) yields an approximate state space model, which can then be used within the

Kalman filter. The approximate state space model is given by,

Xt+1 = JftXt +Mt +Wt,

Yt+1 = Jht
Xt +Nt +Vt,

where,

Mt = ft(X̂t|t)− JftX̂t|t,

Nt = X̃t|t−1 − Jht
X̃t|t−1.

3.3.3 The Algorithm

With Pt|t and x̂t|t known, the Extended Kalman filter algorithm proceeds from iteration t → t+1

as shown in Table (3.3). A novel implementation of the Extended Kalman filter algorithm in

Object-oriented MATLAB is given in Appendix (C).
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Table 3.3: Extended Kalman Filter Algorithm

1. Using x̂t|t, calculate Jft Jacobian Calculation
2. x̃t+1|t = ft(x̂t|t) State prediction
3. Using x̃t+1|t, calculate Jht+1 Jacobian Calculation

4. P̃t+1|t = JftPt|tJ
′

ft
+Qt Covariance prediction

5. St+1 = Jht+1 P̃t+1|tJ
′

ht+1
+Rt+1 Innovation prediction

6. Kt+1 = P̃t+1|tJ
′

ht+1
S−1
t+1 Kalman Gain

7. P̂t+1|t+1 = P̃t+1|t −Kt+1St+1K
′

t+1 Covariance Update
8. Receive new measurement yt+1

9. et+1 = yt+1 − ht+1(x̂t|t) Calculate the innovation
10. x̂t+1|t+1 = x̃t+1|t +Kt+1et+1 Update the State Estimate

3.3.4 Consistency and Performance

The performance of the Extended Kalman Filter (EKF) depends on the linear or non-linear

nature of the system and measurement equations. In the case where both are linear, the perfor-

mance of the EKF is the same as the Kalman filter, which is discussed in Section (3.2.4).

In non-linear situations, the performance of the Extended Kalman Filter can be unstable, due

to two well known reasons:

1. Violations of the local linearity assumption; and

2. The derivation of the Jacobian matrices.

The linearisation will fail ifRt orQt are too large, since this results in large perturbations from the

nominal trajectory. The derivation of the Jacobian matrices are non-trivial in most applications

and often lead to significant implementation difficulties. Furthermore, in some situations, the

Jacobian matrices may not exist at all.

An alternative to the Extended Kalman Filter which provides performance equivalent to that of

the Kalman filter for linear systems, is known as the Unscented Kalman Filter (UKF) [46]. The

UKF, which approximates a Guassian distribution rather than an arbitrary non-linear function

or transformation, [46], addresses the shortfalls of the EKF, without increasing computational

burden [42]. For further information, refer to [46], [42].

3.4 Monte Carlo Methods

Monte Carlo methods use statistical sampling and estimation techniques to evaluate the solutions

to mathematical problems.

Consider a probability distribution, p, from which we want to determine a point-estimate, such

as the maximum likelihood or the method of moments. Such an estimate can be determined, for

any suitable function f, through the following expression,
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p(f) = E[f(X)]

=

∫

f(X)p(dX). (3.19)

Analytic calculations of p(f), Equation (3.19), are rarely possible and in order to determine such

estimates an empirical approximation must be used. Such an approximation is given by,

p̂(f) =
1

Ns

Ns
∑

i=1

f(X(i)),

where,

Ns is the number of independent samples from f(X),

f(X(i)) is the ith sample from f(X).

In most practical situations it is infeasible to draw samples directly from the target distribution

p. An oft used solution is to introduce a proposal distribution from which it is easy to sample

and whose density can be evaluated point wise. A weighing and/or selection mechanism is

used to correct for bias from the proposal distribution. A good proposal distribution should

take into account key features of the target, such as multi-modality, and ideally should be as

close as possible to the target distribution. As the dimension increases, finding a good proposal

distribution becomes more difficult.

Two classes of Monte Carlo algorithms that are often used for sampling from high-dimensional

distributions and Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC).

MCMC relies on sampling a realization of a Markov chain with invariant distribution p(f).

SMC, on the other hand is a sequential implementation of importance sampling, employing

a population of samples and a sequence of probability distributions, with the final distribution

being p(f). In the proceeding sections we introduce two fundamental techniques that can be used

to generate random samples from a proposal distribution: rejection sampling and importance

sampling.

3.4.1 Rejection Sampling

Rejection sampling is a technique introduced by von Neumann [47] which samples from a target

distribution, p(X), known up to a proportionality constant, by sampling from another easy to

sample proposal distribution q(X). The method assumes that there exists a known constant C

< ∞ such that p(X) ≤ Cq(X) for every x. The Rejection sampling procedure is presented in

Table (3.4).
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Table 3.4: Rejection Sampling Algorithm

1. Draw X ∼ q

2. Accept X as a sample from p with probability p(X)
Cq(X)

The samples from rejection sampling are exact and the acceptance probability for a random

variable is inversely proportional to the constant C [48]. Rejection sampling works best if the

proposal distribution is a good approximation of the target distribution. The choice of constant

C is also critical; if C is too small, the samples are not reliable because of low rejection rate; if

C is too large, the algorithm will be inefficient since the acceptance rate will be low.

From a Bayesian perspective, if the prior, p(X), is used as the proposal distribution, q(X1:t|Y1:t)

and the likelihood p(Y1:t|X1:t) ≤ C where C is assumed to be known, then the bound on the

posterior is given by,

p(X1:t|Y1:t) =
p(Y1:t|X1:t)p(Xt)

p(Y1:t)

<
Cq(X1:t|Y1:t)

p(Y1:t)

≡ C∗q(X1:t|Y1:t),

where,

C∗ = C
p(Y1:t)

.

The acceptance rate for a sample is given by,

p(X1:t|Y1:t)

C∗q(X)
.

3.4.2 Importance Sampling

Importance sampling (IS) was first introduced by Marshall in 1954 [49] and aims to sample a

probability distribution in a region of “importance”. The idea of importance sampling is to

choose a proposal distribution q(X) in place of the true probability distribution p(X), which is

difficult to sample. The support of q(X) is assumed to cover that of p(X).

Under these assumptions, the Monte Carlo integration problem, shown in Equation (3.19), can

be rewritten as,

∫

f(X)p(X)dX =

∫

f(X)
p(X)

q(X)
q(X)dX. (3.20)
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Importance sampling can be used to draw a number of independent samples from q(X) to obtain

an estimate of Equation (3.20). Each sample, f(X(i)), is assigned an importance weight,W (X(i)),

as follows,

f̂ =
1

Ns

Ns
∑

i=1

W (X(i))f(X(i)), (3.21)

where,

Ns is the number of independent samples,

W (X(i)) ∝ p(X(i))
q(X(i))

are the un-normalised importance weights.

The un-normalised importance weights can be normalised using,

W̃ (X(i)) =
W (X(i))

∑Ns

j=1 W (X(j))
.

The IS approximation of Equation (3.20) utilising normalised importance weights is given then

by,

f̂ =
1

Ns

Ns
∑

i=1

W̃ (X(i))f(X(i)). (3.22)

The IS estimate given by Equation (3.22) is biased but consistent with the bias vanishing at a

rate O(Ns) [50], that is, the bias vanishes at a rate that is bounded from above by Ns.

For importance sampling to perform well in practice, it is important that the variance of the

importance weights are finite. If this condition is not satisfied then the variance of the corre-

sponding estimate given by Equation (3.22) will be infinite. A finite importance weight can be

achieved through the careful selection of the proposal distribution q(X).

Choice of Importance Distribution

An intuitive choice for an proposal distribution would be to choose q(X) to be as close to possible

to p(X) such that the variance of the estimate, Equation (3.21), is minimised. The variance of

Equation (3.22) can be written as [50],
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Var
[

f̂
]

=
1

Ns
Var [f(X)W (X)]

=
1

Ns
Var

[

f(X)
p(X)

q(X)

]

=
1

Ns

∫
[

f(X)
p(X)

q(X)
− E [f(X)]

]2

q(X)dX

=
1

Ns

∫
[(

(f(X)p(X))2

q(X)

)

− 2p(X)f(X)E [f(X)]

]

dX+
E [f(X)]

2

Ns

=
1

Ns

∫
[(

(f(X)p(X))2

q(X)

)]

dX+
E [f(X)]

2

Ns
(3.23)

It is clear that Equation (3.23) is minimised when q(X) = |f(X)|p(X). However, this choice

cannot be made as it precludes the use of the Importance Sampling algorithm. This simple

result indicates that it is sensible to choose an proposal distribution that is as close as possible

to the target distribution p(X). Also, although it is possible to construct samplers for which

the variance is finite without satisfying this condition, it is advisable to select q(X) so that

W (X(i)) < C < ∞ [51].

In some cases one knows the function of interest f prior to selection of an proposal distribution.

If this is true then the optimal proposal distribution, qoptimal(X) [52], can be determined as

follows,

qoptimal(X) =
|f(X)|p(X)

∫

|f(Z)|f(Z)dZ . (3.24)

3.5 Sequential Monte Carlo Methods

Sequential Monte Carlo (SMC) methods are a technique for implementing recursive Bayesian

filter via Monte Carlo (MC) simulations.

Under this framework, SMC methods sample from a sequence of distributions distributions, pt,

defined on the support Et, via importance sampling. The key idea is to represent the required

posterior density function at time t by a set of random samples with associated weights [35].

Estimates are then computed on the samples and their associated weights.

In the Sequential Monte Carlo framework the posterior distribution is empirically represented

by a weighted sum of Ns samples as follows,
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pt(X1:t|Y1:t) ≈
1

Ns

Ns
∑

t=1

w
(i)
t δ(Xt −X

(i)
t )

≡ p̂t(X1:t|Y1:t), (3.25)

where,

Ns is the number of independent samples,

w
(i)
t is the weight of sample i at time t,

X
(i)
t are i.i.d. samples drawn from pt(X1:t|Y1:t) at time t,

δ(·) is the delta dirac function.

When Ns is sufficiently large, p̂t(X1:t|Y1:t), Equation (3.25), approximates the true posterior

pt(X1:t|Y1:t).

The structure of a typical Sequential Monte Carlo algorithm consists of three iterative operations:

mutation, correction and selection [53]. The mutation step consists of moving samples Xt−1 to

Xt via a mutation kernel, Mt(Xt−1,Xt) [54]. In the correction stage, the samples are assigned

importance weights via a weight function Vt(Xt) [53]. The final stage, selection, involves replacing

the current set of samples, Xt, with a new, uniformly weighted set of samples, X̃t, often chosen

by a resampling scheme. The selection stage acts to retain samples with large importance weights

to serve as the starting point for the next mutation step. A pictorial representation of the SMC

algorithm is given in Figure (3.1).

Figure 3.1: A pictorial representation of a Sequential Monte Carlo algorithm. At time 0, one
has a discrete representation of the current posterior distribution. One propagates to time 1

by first sampling those x
(m)
1 from its prior distribution and then correcting this sampling by an

importance reweighting and resampling, [55]. Note the change in notation.

This general structure encompasses the vast majority of SMC algorithms, two examples of such

algorithms include the Sequential Importance Sampling (SIS) and Sequential Importance Re-

53



sampling (SISR).

3.5.1 Sequential Importance Sampling

The Sequential Importance Sampling (SIS) algorithm is a Monte Carlo method that forms the

basis for most sequential Monte Carlo filters [35]. The SIS algorithm alternates the mutation and

correction steps of the typical Sequential Monte Carlo (SMC) algorithm, but does not perform a

selection stage. As such, the importance weights are not initialised to one at each iteration and

are updated recursively.

To motivate the discussion of the recursive importance weight updating mechanism utilised by

the Sequential Importance Sampling (SIS) algorithm, we begin by considering the sequential

construction of the proposal distribution q(X). The proposal distribution constructed by the

SIS algorithm has the form q(X1:t|Y1:t). If the proposal distribution, q(X1:t|Y1:t), is chosen to

factorise as,

q(X1:t|Y1:t) = q(X1)

n
∏

t=2

q(Xt|X1:t−1,Y1:t), (3.26)

then importance sampling can be performed recursively. The posterior density can be expressed

in a recursive form as,

p(X1:t|Y1:t) =
p(Yt|X1:t|Y1:t−1)p(X1:t|Y1:t−1)

p(Yt|Y1:t−1)

=
p(Yt|X1:t|Y1:t−1)p(Xt,X1:t−1,Y1:t−1)p(X1:t−1|Y1:t−1)

p(Yt|Y1:t−1)

= p(X1:t−1|Y1:t−1)
p(Yt|Xt)p(Xt|Xt−1)

p(Yt|Y1:t−1)

∝ p(X1:t−1|Y1:t−1)p(Yt|Xt)p(X t|Xt−1). (3.27)

The recursive factorisations of the importance and posterior densities, Equations (3.26) and

(3.27), respectively, can then be used to derive the recursive calculation of importance weights,

according to,

Wt(X1:t) =
p(X1:t|Y1:t)

q(X1:t|Y1:t)

∝ p(Yt|Xt)p(Xt|Xt−1)p(X1:t−1|Y1:t−1)

q(Xt|X1:t−1,Y1:t−1)q(X1:t−1|Y1:t−1)

= Wt−1(X1:t−1)
p(Yt|Xt)p(Xt|Xt−1)

q(X t|X1:t−1,Y1:t)
. (3.28)
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Furthermore, if q(Xt|X1:t−1,Y1:t) can be expressed as q(Xt|X1:t−1,Yt), the recursive weight

update, Equation (3.28), can be further simplified to,

Wt(X1:t) = Wt−1(X1:t−1)
p(Yt|Xt)p(Xt|Xt−1)

q(Xt|X1:t−1,Yt)
. (3.29)

The SIS algorithm consists of the recursive propagation of samples and weights as each measure-

ment is received.

The Sequential Importance Sampling Algorithm proceeds from iteration t → t + 1 as shown in

Table (3.5).

Table 3.5: Sequential Importance Sampling Algorithm

1. Draw Ns i.i.d particles from the importance density X
(i)
t+1 ∼ p(Xt+1|X(i)

t )
2. Update the weights according to Equation (3.29), incrementing the time subscript by 1

Despite the convenient recursive structure of the SIS algorithm, it also suffers from significant

drawbacks. The degeneracy problem occurs when after a few iterations of the SIS algorithm,

only a few of the sample weights will be non-zero. Furthermore, the importance weights used

in the algorithm may have large variances, resulting in inaccurate estimates [56]. The practical

implication of this is the loss of computational efficiency, since samples with trivial importance

weights will be updated.

Effective Sample Size

The effective sample size is a convenient heuristic that can be used to quantify the extent of

degeneracy in a Sequential Monte Carlo algorithm [57] and can be used to design resampling

strategies. The effective sample size, Neff , is given by,

Neff =
Ns

1 + Var
(

W̃t(X1:t)
) , (3.30)

where,

Ns is the number of samples,

W̃t(X1:t) = Wt(Xt)
Ns∑

j=1

Wt(Xt)

.

The use of the effective sample size, Equation (3.30), as a measure of the efficiency of a Se-

quential Importance Sampling (SIS) algorithm seen by using the delta method [58]. We begin

by considering two estimators of f in Equation (3.19), the Importance Sampling estimate, f̂IS,

whose form is given in Equation (3.21) and a crude Monte Carlo estimate of the form,
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f̂MC =
1

Ns

Ns
∑

i=1

f(Yi).

The two estimates are related to each other in the following form,

µ̂ =
f̂IS

f̂MC

=
Z

W
. (3.31)

The variance of µ̂, Equation(3.31), can be determined using the standard delta method for ratio

statistics, which may be viewed as a combination of a suitable central limit theorem and a Taylor

series expansion. We begin by noting that,

Var(µ̂) ≈ 1

Ns

[

µ2Var(W ) + Var(Z)− 2µCov(W,Z)
]

. (3.32)

Denoting H = f(X1:t), we observe that,

Cov(W,Z) = E(HW )− µ

= Cov(W,H) + µE(W )− µ. (3.33)

Similarly,

Var(Z) = E(WH2)− µ2

≈ E(W )E2(H) + Var(H)E(W ) + 2µCov(W,H)− µ2. (3.34)

The remainder term in Equation (3.34) is given by,

E[{W − E(W )}(H − µ)2].

Substituting Equations (3.33) and (3.34), respectively, into Equation (3.32), we find that,

Var(µ̂) ≈ 1

Ns

(

Var(H)

1 + Var(W )

)

.

The relative efficiency of estimating f by f̂MC instead of f̂IS is given by,
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Var
[

f̂MC

]

Var
[

f̂IS

] ≈ 1

1 + Var
[

W̃t(X1:t)
] , (3.35)

where,

W̃t(X1:t) = Wt(Xt)
Ns∑

j=1

Wt(Xt)

.

Equation (3.35) can be interpreted as meaning that the Ns weighted samples are worth

1/
(

1 + Var
[

W̃t(X1:t)
])

i.i.d. samples drawn from the target distribution [55]. In practice,

the true Neff is not available, thus its estimate, N̂eff , is used instead. N̂eff is given by,

N̂eff =
1

∑Ns

i=1(W̃
(i)

t )2
. (3.36)

3.5.2 Sequential Importance Sampling Resampling

The Sequential Importance Sampling Resampling (SISR) algorithm was first used by Rubin in

1987 in the field of Monte Carlo inference [59]. The innovation behind the SIR algorithm is to

insert a resampling step between two importance sampling steps in the Sequential Importance

Sampling (SIS) algorithm. The resampling step works to rectify the degeneracy problem of the

SIS algorithm by eliminating samples with trivial importance weights and propagating samples

with larger weights.

The Sequential Importance Sampling Resampling algorithm proceeds from iteration t → t+1 as

shown in Table (3.6). A novel implementation of the Sequential Importance Sampling Resampling

algorithm in Object-oriented MATLAB is given in Appendix (D).

Table 3.6: Sequential Importance Sampling Resampling Algorithm

1. Draw Ns i.i.d particles from the importance density X
(i)
t+1 ∼ p(Xt+1|X(i)

t )
2. Update the weights according to Equation (3.29), incrementing the time subscript by 1

3. Normalise the weights, w
(i)
t+1 =

w
(i)
t+1

Ns∑

j=1

w
(i)
t+1

4. Perform Multinomial Sampling, Section (3.5.4), if N̂eff , Equation (3.36), ≤ Threshold

The resampling step, Step 4, of the Sequential Importance Sampling Resampling algorithm alle-

viates the degeneracy problem but can, in turn, introduce sample impoverishment. A plethora of

resampling schemes have been proposed, with each differing in their properties and the amount of

Monte Carlo variation introduced, refer to Section 3.5.4. Sample impoverishment arises through

the repeated selection of samples with high importance weights, which leads to a loss of diversity
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amongst the samples. A commonly used technique to circumvent sample impoverishment is to

use Markov Chain Monte Carlo resampling schemes.

3.5.3 Auxiliary Particle Filter

The Auxiliary Particle Filter (APF) was first introduced by Pitt and Shephard in 1999 [60] and

is a popular alternative to Sequential Importance Sampling Resampling (SISR) algorithms. The

key innovation behind the APF is to modify the original sequence of target distributions to guide

samples in promising regions [61].

In the Auxiliary Particle Filter, an auxiliary variable, corresponding to a sample index, is gener-

ated according to a distribution which weights each sample in terms of its compatibility with the

current measurement [62]. Then the new state value is sampled as the offspring of the sample

indicated by this auxiliary variable.

The Auxiliary Particle filter algorithm proceeds from iteration t → t+1 as shown in Table (3.7).

A novel implementation of the Auxiliary Particle filter algorithm in Object-oriented MATLAB

is given in Appendix (E).

Table 3.7: Auxiliary Particle Algorithm

1. Draw Ns u
(i)
t+1 ∼ p(Xt+1|X(i)

t )

2. Update the weights according to w
(i)
t+1 = p(Yt+1|u(i)

t+1)w
(i)
t

3. Normalise the weights, w
(i)
t+1 =

w
(i)
t+1

Ns∑

j=1

w
(i)
t+1

4. Perform Multinomial Sampling, Section (3.5.4), from the discrete

measure given by the inputs X
(i)
t and the normalised weights,

tracking the parent of the jth sample, ij

5. Draw Ns i.i.d particles from the importance density X
(i)
t+1

6. Update the weights according to w
(i)
t+1 =

p(Yt+1|X
(j)
t+1)

p(Yt+1|u
(ij)
t+1)

7. Normalise the weights, w
(i)
t+1 =

w
(i)
t+1

Ns∑

j=1

w
(i)
t+1

It is immediately apparent that, as SISR and the APF are essentially the same algorithm with

a different choice of importance weights [61], shown in Step 6, of Table (3.7).

3.5.4 Resampling Schemes

In the context of Sequential Monte Carlo (SMC) algorithms, resampling consists of selecting a

set of new samples and weights, such that the disparity between the weights is reduced. As such,

resampling constitutes a crucial and computationally expensive part of SMC algorithms [63]. A

plethora of resampling methods have been proposed, the most basic of which are the multinomial
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[32], residual [64], stratified [65] and systematic [35] resampling. The resampling methods are

presented in the proceeding sections. It is of interest to note that all of the methods are unbiased

and can be implemented in computational complexity of O(Ns) [63]. A novel implementation

of the Multinomial, Residual, Stratified and Systematic resampling schemes in Object-oriented

MATLAB is given in Appendix (F).

In the proceeding sections we assume that at time t we have a collection of samples and their

associated weights,
{

X
(i)
t , w

(i)
t

}Ns

i=1
, and allow

{

X̃
(i)

t

}Ns

i=1
to denote the collection of samples after

resampling.

Multinomial Resampling

Multinomial resampling is the simplest resampling scheme and is based on an idea that is at the

core of the bootstrap method [66]. In practice, the method utilises repeated applications of the

“inversion” method, which uses the inverse of the cumulative distribution associated with the

normalised weights, F−1(·). An outline of the algorithm is provided in Table (3.8).

Table 3.8: Multinomial Resampling Algorithm

1. Draw
{

U i
}

1≤i≤Ns
uniform random numbers on the interval (0, 1]

2. Select X̃
(i)

= X(i)
(

F−1(U i)
)

This is equivalent to drawing a vector of replicate counts, Mt, from a multinomial distribution

with Ns trials. The Multinomial distribution in this case is given in Equation (3.37).

Multinomial(Mt|Ns,Wt) =















Ns!
Ns∏

i=1

M
(i)
t !

Ns
∏

i=1

w
M

(i)
t

t , if
Ns
∑

i=1

M
(i)
t = Ns

0 , otherwise.

(3.37)

The variance of the multinomial resampling scheme is given by [66],

Var

[

1

Ns

Ns
∑

i=1

f(X̃
(i)

t )

]

=
1

Ns







Ns
∑

i=1

w
(i)
t f2(X

(i)
t )−

[

Ns
∑

i=1

w
(i)
t f(X

(i)
t )

]2






. (3.38)

Residual Resampling

Residual sampling is a technique that can be used to decrease the variance due to resampling

[57]. An outline of the residual resampling algorithm is shown in Table (3.9).

By deterministically replicating those particles that we expect at least one of in the replicated set

and randomly replicating the non-integer (residual) components of
⌊

Nsw
(i)
t

⌋

, we retain the unbi-
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Table 3.9: Residual Resampling Algorithm

1. Allocate n(i) =
⌊

Nsw
(i)
t

⌋

copies of sample X
(i)
t to X̃

(i)

t

2. Set R =
Ns
∑

i=1

n(i)

3. Resample Ns −R samples from Xt according to the Multinomial
distribution, Equation (3.37)

ased behaviour of the Multinomial resampling scheme whilst reducing the variance it introduces

[67].

To calculate the variance of the residual resampling we begin by decomposing the estimator into,

1

Ns

Ns
∑

i=1

f(X̃
(i)

t ) =

m
∑

i=1

⌊

Nsw
(i)
t

⌋

Ns
f(X

(i)
t ) +

1

Ns

Ns−R
∑

i=1

f(X
M

(i)
t

t ). (3.39)

From Equation (3.39), it is evident that the estimator involves both deterministic and stochastic

terms. The variance of residual resampling is thus given by [66],

1

(Ns)2
Var

[

Ns−R
∑

i=1

f(X
M

(i)
t

t )

]

=
Ns −R

(Ns)2
Var

[

f(X
M

(i)
t

t )

]

=
1

Ns

Ns
∑

i=1

w
(i)
t f2(X

(i)
t )−

Ns
∑

i=1

⌊

Nsw
(i)
t

⌋

(Ns)2
f2(X

(i)
t )

− Ns −R

Ns

{

Ns
∑

i=1

w̄(i)f(X
(i)
t )

}2

, (3.40)

where,

w̄(j) = P

(

M
(i)
t = j

)

, i = 1, . . . , Ns −R, j = 1, . . . , Ns.

To compare the variance of the residual resampling scheme to the multinomial resampling scheme,

we first write,

Ns
∑

i=1

w
(i)
t f(X

(i)
t ) =

Ns
∑

i=1

⌊

Nsw
(i)
t

⌋

Ns
f(X

(i)
t )− Ns −R

Ns

Ns
∑

i=1

w̄(i)f(X
(i)
t ). (3.41)

Applying Jensen’s inequality to the square of the right hand side of Equation (3.41), yields,

{

Ns
∑

i=1

w
(i)
t f(X

(i)
t )

}2

≤
Ns
∑

i=1

⌊

Nsw
(i)
t

⌋

Ns
f2(X

(i)
t )− Ns −R

Ns

{

Ns
∑

i=1

w̄(i)f(X
(i)
t )

}2

. (3.42)
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Upon combining Equation (3.42) with Equation (3.40), we can see that the variance of residual

resampling is always smaller than that of multinomial resampling, Equation (3.38).

Stratified Resampling

Stratification is a method that originated from survey sampling [63]. In the stratified resampling

scheme, the domain of the random variable is partitioned into Ns disjoint sets, such that (0, 1] =

(0, 1/Ns]∪ , . . . , ∪ (Ns − 1/Ns, 1]. Sampling is then conducted from the restricted density in

each strata using multinomial resampling [63]. An outline of the residual resampling algorithm

is shown in Table (3.10).

Table 3.10: Stratified Resampling Algorithm

1. Draw
{

Ii
}

1≤i≤Ns
random numbers according to Ii = (i−1)+Ui

Ns
,

where U i ∼ Uniform((0, 1])

2. Select X̃
(i)

= X(i)
(

F−1(Ii)
)

To calculate the variance of the stratified resampling is given by [66],

Var

[

1

Ns

Ns
∑

i=1

f(X̃
(i)

t )

]

=
1

(Ns)2

Ns
∑

i=1

Var
[

f ◦ X̃t ◦ F−1(U i)
]

=
1

Ns

Ns
∑

i=1

w
(i)
t f2(X

(i)
t )− 1

Ns

Ns
∑

i=1






Ns

i/Ns
∫

(i−1)/Ns

f ◦ X̃t ◦ F−1(u)du







2

.

Using Jensen’s inequality,

1

Ns

Ns
∑

i=1






Ns

i/Ns
∫

(i−1)/Ns

f ◦ X̃t ◦ F−1(u)du







2

≥
Ns
∑

i=1







i/Ns
∫

(i−1)/Ns

f ◦ X̃t ◦ F−1(u)du







=

[

Ns
∑

i=1

w
(i)
t f(X

(i)
t )

]2

. (3.43)

From Equation (3.43) we can see that the variance of stratified resampling is always smaller than

that of multinomial resampling, Equation (3.38).
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Systematic Resampling

The systematic resampling procedure extends the stratified resampling procedure. In the system-

atic resampling scheme, the random variables drawn in each strata are deterministically linked

[66]. This is achieved by setting,

Ii =
(i − 1)

Ns
+ U, (3.44)

where,

U is a single Uniform ((0, 1/Ns]).

An outline of the Systematic resampling algorithm is shown in Table (3.11).

Table 3.11: Systematic Resampling Algorithm

1. Draw
{

Ii
}

1≤i≤Ns
random numbers according to Ii = (i−1)+U

Ns
,

where U ∼ Uniform((0, 1])

3. Select X̃
(i)

= X(i)
(

F−1(Ii)
)

The new set of samples produced by the systematic resampling scheme are not independent [68].

This makes studying the theoretical variance of the scheme difficult. Empirical studies of the

systematic resampling scheme have shown that systematic resampling has the lowest variance of

all previously mentioned resampling schemes [66].

3.6 Case Study: Kalman Filter

In this case study we investigate the efficacy of the Kalman filter at estimating the state of

two Data Generating Systems (DGS)’s. Both DGSs consist of a latent linear system model

and a cointegrated Vector Error Correction Model (VECM) with a deterministic term as the

measurement model. The case study utilises the novel implementation of the Kalman filter

algorithm in Object-oriented MATLAB is given in Appendix (C).

3.6.1 Model

The Data Generating Systems (DGS)’s used in the investigation are shown in Table (3.12).

where,
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Table 3.12: Case Study Data Generating System (DGS) Equations

Data Generating System System Equation Measurement Equation
1 Mt = A+ ηt Yt = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt
2 Mt = AMt−1 + C + ηt Yt = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt

nx is the dimension of the state vector,

Mt ∈ R
nx is the state vector,

Yt ∈ R
nx is the measurement vector,

A : Rnx → R
nx is the system matrix,

C : Rnx → R
nx is the system matrix,

ηt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Σ,

α : Rnx → R
nx is the parameter matrix,

β : Rnx → R
nx is the cointegration vector matrix,

Γ : Rnx → R
nx is the lag matrix,

εt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Ω.

From Table (3.12), it is evident that the system equation of DGS 1, is a matrix variate Gaussian

process with mean A and covariance Σ, whereas the system equation of DGS 2 is a Vector

Autoregressive (VAR) process of order 1. The measurement equations of both DGS 1 and 2 is

given by Vector Error Correction Model (VECM) of order 2 with a deterministic term whose

latent process is given by the system equations.

The Kalman filter can be used to recursively estimate the state of the system model given a set

of noisy measurements. However, before the filter can be used, the DGS must have Gaussian

noise characteristics and be expressed in the state space form covered in Section (3.2.1). It is

clear from Table (3.12), that whilst both DGSs have Gaussian noise characteristics, the system

equation of DGS 2 and the measurement equations of both DGSs are not in state space form.

The system equation of DGS 1 can be transformed as follows,

Mt = AMt−1 + C + ηt

Maug
t = AMt−1 + ηt,

where,

Maug
t = Mt − C.

The measurement equations of both Data Generating Systems can be augmented into the re-

quired state space form by noting that Yt = ∆Xt = Xt −Xt−1 and proceeding as follows,
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Xt −Xt−1 = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt

Y aug
t = Mt + εt,

where,

Y aug
t = Xt − (αβ′ + I + Γ)Xt−1 + ΓXt−2.

We can now write the equations of the DGS in the state space form shown in Table (3.13), noting

that Inx
is an identity matrix of dimension nx.

Table 3.13: Case Study Augmented Data Generating System (DGS) Equations

Augmented DGS System Equation Measurement Equation
1 Mt = A+ ηt Y aug

t = Inx
Mt + εt

2 Maug
t = AMt−1 + ηt Y aug

t = Inx
Mt + εt

For each augmented Data Generating System, a total of 300 data sets were generated. 50 data

sets containing 50, 100, 200, 400, 800 and 1000 observations respectively. The parameters that

were used with each augmented DGS are presented in Table (3.14).

Table 3.14: Case Study Augmented Data Generating System (DGS) Parameter Values

Parameter Value
nx 2

A

(

0.1 0.1
0.1 0.1

)

C

(

0.1 0.1
0.1 0.1

)

Σ

(

0.1 0
0 0.1

)

α

(

0.2 0.2
0.2 0.2

)

β

(

1 0
−1 −1

)

Γ

(

0.1 0.1
0.1 0.1

)

Ω

(

0.1 0
0 0.1

)

We note that the α and β matrices of the augmented Data Generating System, given in Table

(3.14), introduce a cointegrating relationship into the measurement equations of both DGSs,

since, rank(αβ′) = 1 which is less than nx.
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3.6.2 Method

The efficacy of the Kalman filter at estimating the state of the augmented Data Generating

System (DGS) is evaluated using a spectrum of Signal to Noise Ratios (SNR)’s, provided in

Table (3.16).

The Kalman filter for the system equation of each DGS had the following form,

Xt = FXt−1 +Wt−1, Wt−1 ∼ MVN(0, Qt) (3.45)

Yt = HXt +Vt, Vt ∼ MVN(0, Rt) (3.46)

where,

Xt ∈ R
nx is the state vector,

Yt ∈ R
nx is the measurement vector,

Ft: R
nx → R

nx is the system matrix,

Wt−1 ∈ R
nx is the white, Gaussian, zero mean process noise vector with co-

variance Qt,

Ht: R
nx → R

nx is the measurement matrix,

Vt ∈ R
nx is the white, Gaussian, zero mean measurement noise vector with

covariance Rt.

The parameter values used in the aforementioned Kalman filter are shown in Table (3.24).

Table 3.15: Kalman Filter Parameter Values

Parameter Value

F

(

0.1 0
0 0.1

)

Qt

(

0.1 0
0 0.1

)

H

(

1 0
0 1

)

Rt

(

0.1 0
0 0.1

)

The spectrum of Signal to Noise Ratio (SNR) settings used for each simulation is shown in Table

(3.16). The SNR was varied by increasing or decreasing the covariance of the measurement noise

vector, Rt, relative to the covariance of the process noise vector, Qt.

3.6.3 Results

A summary of the results of each simulation for both Data Generating Systems are shown in the

proceeding sections.
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Table 3.16: Signal to Noise Ratio (SNR) settings

Simulation Number Signal to Noise Ratio (dB)
1 10
2 0
3 -10

Data Generating System 1

The results of the case study for augmented Data Generating System (DGS) 1 are shown in the

proceeding Figures and Tables. Figure (3.2) presents a typical set of results from the execution

of the Kalman filter on DGS 1 with varying Signal to noise Ratios (SNR)’s. Table (3.17) presents

a summary of the Mean Square Error (MSE) of the Kalman filter state estimates with varying

SNRs. Figure (3.3) shows a typical set of innovation process, Equation (3.9), observations from

the Kalman filter with varying SNRs. Table (3.17) presents a summary of the average innovation

processes of the Kalman filter over all SNRs.

From Figure (3.2), it is clear that the a posteriori state estimate, X̂1,t+1|t+1, approximates the

true state vector, X1,t, more accurately at higher Signal to Noise Ratio (SNR) values. In the

lowest SNR setting the a posteriori state estimate is shown to approximate the mean of the

latent process. An explanation for this phenomenon is the effect that the SNR setting has on

the Kalman gain, Equation (3.12), in the Kalman filter algorithm. In high SNR settings, the

covariance of the measurement noise vector Rt is low relative to the covariance of the system noise

vector Qt, this results in a high Kalman gain value, which in turn means that the a posteriori

state estimate will incorporate new information. Hence, in high SNR settings, the a posteriori

state estimate is able to track the true state of the latent process through its peaks and troughs.

This is in stark contrast to low SNR settings, where the covariance of the measurement noise

vector Rt is high relative to the covariance of the system noise vector Qt. In this situation,

the Kalman gain value is low and the a posteriori state estimate will be less influenced by new

information and will give more importance to the a posteriori state estimate at the previous

time step.

From Table (3.17) it is clear that the MSE of the estimate of Xt decreases with increasing SNR.

As a result, the covariance of the error of the estimate also decreases with increasing SNR. We

also see an almost halving in the average MSE over all number of observations as the SNR is

increased from -10dB to 0dB and an order of magnitude decrease as the SNR is increased to

10dB. A similar pattern in the Standard Error of the MSE is also observed.

From Figure (3.3), it is clear innovation process of the Kalman filter algorithm becomes more

normal with higher SNR values.
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(a) Simulation 1 (SNR 10 dB)
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(b) Simulation 2 (SNR 0 dB)
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(c) Simuilation 3 (SNR -10 dB)

Figure 3.2: A set of typical Kalman filter results for X1,t from Data Generating System 1. In

Figures (a), (b) and (c), the blue line refers to the a posteriori state estimate, X̂1,t+1|t+1 and
green line refers to the true state vector, X1,t, at time t.
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(a) Simulation 1 (SNR 10 dB)

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5

(b) Simulation 1 (SNR 10 dB)

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

Standard Normal Quantiles

Q
u

a
n

til
e

s 
o

f 
In

p
u

t 
S

a
m

p
le

QQ Plot of Sample Data versus Standard Normal

(c) Simulation 2 (SNR 0 dB)
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(e) Simulation 3 (SNR -10 dB)
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Figure 3.3: A set of typical Kalman filter innovations, e1,t, from Data Generating System 1. The
first column contains quantile-quantile plots for the e1,t, whereas the second contains the e1,t.

Data Generating System 2

The results of the case study for Data Generating System (DGS) 2 are shown in the proceeding

Figures and Tables. Figure (3.4) presents a typical set of results from the execution of the
68



Kalman filter on DGS 2 with varying Signal to noise Ratios (SNR)’s. Table (3.19) presents a

summary of the Mean Square Error (MSE) of the Kalman filter state estimates with varying

SNRs. Figure (3.5) shows a typical set of innovation process observations from the Kalman filter

with varying SNRs. Table (3.19) presents a summary of the average innovation processes of the

Kalman filter over all SNRs.

From Figure (3.4), it is clear that the a posteriori state estimate, X̂1,t+1|t+1, approximates the

true state vector, X1,t, more accurately at higher Signal to Noise Ratio (SNR) values. In the

lowest SNR setting the a posteriori state estimate is shown to approximate the mean of the

latent process. As with DGS 1, an explanation for this phenomenon is the affect that the SNR

setting has on the Kalman gain, Equation (3.12), in the Kalman filter algorithm.

From Table (3.19) it is clear that the MSE of the estimate of Xt decreases with increasing SNR.

As a result, the covariance of the error of the estimate also decreases with increasing SNR. We

also see an almost halving in the average MSE over all number of observations as the SNR is

increased from -10dB to 0dB and an order of magnitude decrease as the SNR is increased to

10dB. A similar pattern in the Standard Error of the MSE is also observed. We also note that

the MSE for DGS 2 slightly higher than that of DGS 1, shown in Table (3.17). This corresponds

to a decrease in the efficiency of estimation with increasing complexity of the latent linear system

model.

From Figure (3.5), it is clear innovation process of the Kalman filter algorithm becomes more

normal with higher SNR values.

From Table (3.20), we can see that the mean innovation for all simulation from DGS 2 is slightly

larger than those from DGS 1. This corresponds to a decrease in the efficiency of estimation

with increasing complexity of the latent linear system model.

69



0 20 40 60 80 100
−1.5

−1

−0.5

0

0.5

1

Time

Va
lue

 

 
estimates
truth

(a) Simulation 1 (SNR 10 dB)

0 20 40 60 80 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time

Va
lue

 

 
estimates
truth

(b) Simulation 2 (SNR 0 dB)

0 20 40 60 80 100
−1

−0.5

0

0.5

1

1.5

2

Time

Va
lue

 

 
estimates
truth

(c) Simulation 3 (SNR -10 dB)

Figure 3.4: A set of typical Kalman filter results for X1,t from Data Generating System 2. In

Figures (a), (b) and (c), the blue line refers to the a posteriori state estimate, X̂1,t+1|t+1 and
the green line refers to the true state vector, X1,t, at time t.
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(e) Simulation 3 (SNR -10 dB)
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Figure 3.5: A set of typical Kalman filter innovations, e1,t, from Data Generating System 1. The
first column contains quantile-quantile plots for the e1,t, whereas the second contains the e1,t.
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Table 3.17: Mean Squared Error (MSE) of the Kalman filter estimates from Data Generating System 1

Simulation Number (SNR) Number of Observations MSE X1,t (Standard Error) MSE X2,t (Standard Error)

1 (10 dB)

50 0.0087 (0.0089) 0.0083 (0.0089)
100 0.0088 (0.0090) 0.0088 (0.0090)
200 0.0090 (0.0091) 0.0091 (0.0091)
400 0.0091 (0.0091) 0.0091 (0.0091)
800 0.0091 (0.0091) 0.0091 (0.0091)
1000 0.0091 (0.0091) 0.0092 (0.0091)

2 (0 dB)

50 0.0523 (0.0491) 0.0492 (0.0491)
100 0.0495 (0.0496) 0.0535 (0.0496)
200 0.0526 (0.0499) 0.0519 (0.0499)
400 0.0526 (0.0500) 0.0519 (0.0500)
800 0.0521 (0.0501) 0.0520 (0.0501)
1000 0.0520 (0.0501) 0.0529 (0.0501)

3 (-10 dB)

50 0.1017 (0.0898) 0.0932 (0.0898)
100 0.0934 (0.0908) 0.0966 (0.0908)
200 0.0980 (0.0912) 0.0958 (0.0912)
400 0.0996 (0.0914) 0.0985 (0.0914)
800 0.0985 (0.0916) 0.0989 (0.0916)
1000 0.0993 (0.0916) 0.0987 (0.0916)

7
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Table 3.18: Mean of the innovation process from Data Generating System 1

Simulation Number (SNR) Number of Observations e1,t e2,t

1 (10 dB)

50 0.0995 0.0876
100 0.0843 0.0844
200 0.0926 0.0898
400 0.0914 0.0914
800 0.0899 0.0912
1000 0.0884 0.0909

2 (0 dB)

50 0.0976 0.0892
100 0.0940 0.1003
200 0.0957 0.0993
400 0.0944 0.0935
800 0.0916 0.0971
1000 0.0946 0.0961

3 (-10 dB)

50 0.0790 0.1419
100 0.0890 0.0817
200 0.0950 0.1009
400 0.0801 0.1114
800 0.1083 0.0982
1000 0.0988 0.0928
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Table 3.19: Mean Squared Error (MSE) of the Kalman filter estimates from Data Generating System 2

Simulation Number (SNR) Number of Observations MSE X1,t (Standard Error) MSE X2,t (Standard Error)

1 (10 dB)

50 0.0090 (0.0089) 0.0089 (0.0089)
100 0.0090 (0.0090) 0.0091 (0.0090)
200 0.0091 (0.0091) 0.0089 (0.0091)
400 0.0091 (0.0091) 0.0090 (0.0091)
800 0.0092 (0.0091) 0.0092 (0.0091)
1000 0.0092 (0.0091) 0.0092 (0.0091)

2 (0 dB)

50 0.0507 (0.0491) 0.0513 (0.0491)
100 0.0526 (0.0496) 0.0509 (0.0496)
200 0.0526 (0.0499) 0.0529 (0.0499)
400 0.0531 (0.0500) 0.0525 (0.0500)
800 0.0526 (0.0501) 0.0528 (0.0501)
1000 0.0530 (0.0501) 0.0526 (0.0501)

3 (-10 dB)

50 0.0963 (0.0898) 0.0932 (0.0898)
100 0.0993 (0.0908) 0.1030 (0.0908)
200 0.1010 (0.0912) 0.1017 (0.0912)
400 0.1003 (0.0914) 0.1025 (0.0914)
800 0.1019 (0.0916) 0.1026 (0.0916)
1000 0.1012 (0.0916) 0.1019 (0.0916)
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Table 3.20: Mean of the innovation process from Data Generating System 2

Simulation Number (SNR) Number of Observations X1,t X2,t

1 (10 dB)

50 0.0973 0.0997
100 0.1006 0.1060
200 0.0981 0.0995
400 0.1012 0.0993
800 0.1027 0.1013
1000 0.1011 0.1027

2 (0 dB)

50 0.1157 0.0984
100 0.0979 0.1012
200 0.1104 0.0951
400 0.1081 0.1070
800 0.1034 0.1052
1000 0.1036 0.1027

3 (-10 dB)

50 0.1302 0.0757
100 0.1187 0.1021
200 0.0892 0.1147
400 0.1041 0.1158
800 0.1183 0.1072
1000 0.1175 0.1061
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3.7 Case Study: Extended Kalman Filter

In this case study we investigate the efficacy of the Extended Kalman filter at estimating the state

of two Data Generating Systems (DGS)’s. Each DGS consists of a latent linear and non-linear

system model and a cointegrated Vector Error Correction Model (VECM) with a deterministic

term as the measurement model.

3.7.1 Model

The equations of the Data Generating Systems (DGSs) used in this case study are presented in

Table (3.21).

Table 3.21: Case Study Data Generating System (DGS) Equations

Data Generating System System Equation Measurement Equation
1 Mt = AMt−1 + C + ηt Yt = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt
2 Mt = AM2

t−1 +BMt−1 + C + ηt Yt = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt

where

nx is the dimension

Mt ∈ R
nx is the state vector

Yt ∈ R
nx is the measurement vector

A : Rnx → R
nx is the system matrix

B : Rnx → R
nx is the system matrix

C : Rnx → R
nx is the system matrix

ηt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Σ

α : Rnx → R
nx is the parameter matrix

β : Rnx → R
nx is the cointegration vector matrix

Γ : Rnx → R
nx is the lag matrix

εt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Ω

From Table (3.21), it is evident that the system equation of DGS 1, is a Vector Autoregressive

(VAR) process of order 1, whereas the system equation of DGS 2 is a non-linear VAR process

of order 1, with the non-linearity introduced via a quadratic term. The measurement equations

of both DGS 1 and 2 is given by Vector Error Correction Model (VECM) of order 2 with a

deterministic term whose latent process is given by the system equations.

The Extended Kalman filter can be used to recursively estimate the states of the system given

a set of noisy measurements. However, before the filter can be applied, the DGS must have

Gaussian noise characteristics and be expressed in the state space form covered in Section (3.2.1).
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It is clear from Table (3.21), that whilst both DGSs have Gaussian noise characteristics, they

the system and measurement equations of both DGSs are not in state space form. The system

equation of DGS 1 can be transformed as follows,

Mt = AMt−1 + C + ηt

Maug
t = AMt−1 + ηt,

where,

Maug
t = Mt − C.

The system equation of DGS 2 can be transformed as follows,

Mt = AM2
t−1 +BMt−1 + C + ηt

Maug
t = BMt−1 + ηt,

where,

Maug
t = Mt − AM2

t−1 − C.

The measurement equations of both Data Generating Systems can be augmented into the re-

quired state space form by noting that Yt = ∆Xt = Xt −Xt−1 and proceeding as follows,

Xt −Xt−1 = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt

Y aug
t = Mt + εt,

where,

Y aug
t = Xt − (αβ′ + I + Γ)Xt−1 + ΓXt−2 .

We can now write the equations of the DGS in the following state space form, noting that Inx
is

an identity matrix of dimension nx.

Table 3.22: Case Study Augmented Data Generating System (DGS) Equations

Augmented DGS System Equation Measurement Equation
1 Maug

t = AMt−1 + ηt Y aug
t = Inx

Mt + εt
2 Maug

t = BMt−1 + ηt Y aug
t = Inx

Mt + εt
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For each augmented Data Generating System, a total of 300 data sets were generated. 50 data

sets containing 50, 100, 200, 400, 800 and 1000 observations respectively. The parameters that

were used with each DGS are presented in Table (3.23).

Table 3.23: Case Study Augmented Data Generating System (DGS) Parameter Values

Parameter Value
nx 2

A

(

0.1 0.1
0.1 0.1

)

B

(

0.1 0.1
0.1 0.1

)

C

(

0.1 0.1
0.1 0.1

)

Σ

(

0.1 0
0 0.1

)

α

(

0.2 0.2
0.2 0.2

)

β

(

1 0
−1 −1

)

Γ

(

0.1 0.1
0.1 0.1

)

Ω

(

0.1 0
0 0.1

)

We note that the α and β matrices of the augmented Data Generating System, given in Table

(3.23), introduce a cointegrating relationship into the measurement equations of both DGSs,

since, rank(αβ′) = 1 which is less than nx.

3.7.2 Method

The efficacy of the Extended Kalman filter at estimating the state of the Data Generating System

(DGS) using a spectrum of Signal to Noise Ratios (SNR)’s, provided in Table (3.25).

The Extended Kalman filter for the system equation of each DGS had the following form,

Xt = ft (Xt−1) +Wt−1, Wt−1 ∼ MVN(0, Qt) (3.47)

Yt = ht (Xt) + Vt, Vt ∼ MVN(0, Rt) (3.48)

where,
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Xt ∈ R
nx is the state vector,

Yt ∈ R
nx is the measurement vector,

ft: R
nx → R

nx is a non-linear function,

Wt ∈ R
nx is the white, Gaussian, zero mean process noise vector with co-

variance Qt,

ht: R
nx → R

nx is a non-linear function,

Vt ∈ R
nx is the white, Gaussian, zero mean measurement noise vector with

covariance Rt.

At this point we note the similarity between the augmented DGS equations and the Extended

Kalman filter equations, namely Maug
t ≡ Xt, A andB ≈ ft, Y

aug
t ≡ Yt and Inx

≈ ht. The

non-linear functions of the EKF were approximated using the following Jacobian matrices,

ft =

[

µ1,t

µ2,t

]

=

([

b1,1 b1,2

b2,1 b2,2

][

µ1,t−1

µ2,t−1

]

+

[

w1,t−1

w2,t−1

])

F̂ =
∂ft(µ)

∂X
|µ=ft(µ̂t|t)

Jft(µ1, µ2) =

[

∂µ1,t

∂µ1

∂µ2,t

∂µ2
∂µ1,t

∂µ1

∂µ2,t

∂µ2

]

F̂ =

[

b1,1 b1,2

b2,1 b2,2

]

h =

[

y1,t

y2,t

]

=

([

1 0

0 1

][

µ1,t

µ2,t

]

+

[

v1,t−1

v2,t−1

])

Ĥ =
∂ht(µ)

∂X
|µ=ft(µ̂t|t−1)

Jht
(µ1, µ2) =

[

∂y1,t

∂µ1

∂y2,t

∂µ2
∂y1,t

∂µ1

∂y2,t

∂µ2

]

Ĥ =

[

1 0

0 1

]

The parameter values used in the aforementioned Kalman filter are shown in Table (3.24).

The spectrum of Signal to Noise Ratio (SNR) settings used for each simulation is shown in table

3.25. The SNR was varied by increasing or decreasing the covariance of the measurement noise

vector, Rt, relative to the covariance of the process noise vector, Qt.
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Table 3.24: Extended Kalman Filter Parameter Values

Parameter Value

F̂

(

0.1 0.1
0.1 0.1

)

Qt

(

0.1 0
0 0.1

)

Ĥ

(

1 0
0 1

)

Rt

(

0.1 0
0 0.1

)

Table 3.25: Signal to Noise Ratio (SNR) settings

Simulation Number Signal to Noise Ratio (dB)
1 10
2 0
3 -10

3.7.3 Results

A summary of the results of each simulation for both Data Generating Systems are shown in the

proceeding sections.

Data Generating System 1

The results of the case study for Data Generating System (DGS) 1 are shown in the proceeding

Figures and Tables. Figure (3.6) presents a typical set of results from the execution of the

Extended Kalman filter on DGS 1 with varying Signal to noise Ratios (SNR)’s. Table (3.26)

presents a summary of the Mean Square Error (MSE) of the Extended Kalman filter state

estimates with varying SNRs. Figure (3.7) shows a typical set of innovation process observations

from the Extended Kalman filter with varying SNRs. Table (3.26) presents a summary of the

average innovation processes of the Extended Kalman filter over all SNRs.

From Figure (3.6), it is clear that the a posteriori state estimate, X̂1,t+1|t+1, approximates the

true state vector, X1,t, more accurately at higher Signal to Noise Ratio (SNR) values. In the

lowest SNR setting the a posteriori state estimate is shown to approximate the mean of the

latent process. An explanation for this phenomenon is the effect that the SNR setting has on

the Kalman gain, Equation (3.12), in the Kalman filter algorithm. In high SNR settings, the

covariance of the measurement noise vector Rt is low relative to the covariance of the system noise

vector Qt, this results in a high Kalman gain value, which in turn means that the a posteriori

state estimate will incorporate new information. Hence, in high SNR settings, the a posteriori

state estimate is able to track the true state of the latent process through its peaks and troughs.
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Figure 3.6: A set of typical Extended Kalman filter results for X1,t from Data Generating System

1. In Figures (a), (b) and (c), the blue line refers to the a posteriori state estimate, X̂1,t+1|t+1

and the green line refers to the true state vector, X1,t, at time t.
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This is in stark contrast to low SNR settings, where the covariance of the measurement noise

vector Rt is high relative to the covariance of the system noise vector Qt. In this situation,

the Kalman gain value is low and the a posteriori state estimate will be less influenced by new

information and will give more importance to the a posteriori state estimate at the previous

time step.
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Table 3.26: Mean Squared Error (MSE) of the Extended Kalman filter estimates from Data Generating System 1

Simulation Number (SNR) Number of Observations MSE X1,t (Standard Error) MSE X2,t (Standard Error)

1 (10 dB)

50 0.0094 (0.0089) 0.0090 (0.0089)
100 0.0093 (0.0090) 0.0091 (0.0090)
200 0.0093 (0.0091) 0.0091 (0.0091)
400 0.0092 (0.0091) 0.0090 (0.0091)
800 0.0091 (0.0091) 0.0092 (0.0091)
1000 0.0091 (0.0091) 0.0091 (0.0091)

2 (0 dB)

50 0.0512 (0.0491) 0.0521 (0.0491)
100 0.0508 (0.0496) 0.0519 (0.0496)
200 0.0525 (0.0499) 0.0517 (0.0499)
400 0.0533 (0.0500) 0.0534 (0.0500)
800 0.0529 (0.0501) 0.0531 (0.0501)
1000 0.0532 (0.0501) 0.0531 (0.0501)

3 (-10 dB)

50 0.0951 (0.0898) 0.0978 (0.0898)
100 0.1025 (0.0908) 0.0983 (0.0908)
200 0.0988 (0.0912) 0.1007 (0.0912)
400 0.1030 (0.0914) 0.1029 (0.0914)
800 0.1028 (0.0916) 0.1014 (0.0916)
1000 0.1007 (0.0916) 0.1010 (0.0916)

8
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From Table (3.26) it is clear that the MSE of the estimate of Xt decreases with increasing SNR.

As a result, the covariance of the error of the estimate also decreases with increasing SNR. We

also see an almost halving in the average MSE over all number of observations as the SNR is

increased from -10dB to 0dB and an order of magnitude decrease as the SNR is increased to

10dB. A similar pattern in the Standard Error of the MSE is also observed.

From Figure (3.7), it is clear innovation process of the Extended Kalman filter algorithm becomes

more normal with higher SNR values.

Table 3.27: Mean of the innovation process from Data Generating System 1

Simulation Number Number of Observations X1,t X2,t

1 (10 dB)

50 0.1004 0.1092
100 0.1059 0.1121
200 0.1106 0.1121
400 0.1106 0.1078
800 0.1101 0.1088
1000 0.1101 0.1125

2 (0 dB)

50 0.1094 0.1024
100 0.1118 0.1079
300 0.1100 0.1076
400 0.1106 0.1107
800 0.1096 0.1090
1000 0.1088 0.1098

3 (-10 dB)

50 0.1100 0.1015
100 0.1066 0.1062
200 0.1145 0.1102
400 0.1072 0.1048
800 0.1049 0.1100
1000 0.1081 0.1045

Data Generating System 2

The results of the case study for Data Generating System (DGS) 2 are shown in the proceeding

Figures and Tables. Figure (3.8) presents a typical set of results from the execution of the

Extended Kalman filter on DGS 1 with varying Signal to noise Ratios (SNR)’s. Table (3.28)

presents a summary of the Mean Square Error (MSE) of the Extended Kalman filter state

estimates with varying SNRs. Figure (3.9) shows a typical set of innovation process observations

from the Extended Kalman filter with varying SNRs. Table (3.28) presents a summary of the

average innovation processes of the Extended Kalman filter over all SNRs.

From Figure (3.8), it is clear that the a posteriori state estimate, X̂1,t+1|t+1, approximates the

true state vector, X1,t, more accurately at higher Signal to Noise Ratio (SNR) values. In the

lowest SNR setting the a posteriori state estimate is shown to approximate the mean of the
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(e) Simulation 3 (SNR -10 dB)
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Figure 3.7: A set of typical Extended Kalman filter innovations, e1,t, from Data Generating
System 1. The first column contains quantile-quantile plots for the e1,t, whereas the second
contains the e1,t.
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Figure 3.8: A set of typical Extended Kalman filter results for X1,t from Data Generating System

2. In Figures (a), (b) and (c), the blue line refers to the a posteriori state estimate, X̂1,t+1|t+1

and the green line refers to the true state vector, X1,t, at time t.
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latent process. As with DGS 1, an explanation for this phenomenon is the affect that the SNR

setting has on the Kalman gain, Equation (3.12), in the Kalman filter algorithm.
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Table 3.28: Mean Squared Error (MSE) of the Extended Kalman filter estimates from Data Generating System 2

Simulation Number (SNR) Number of Observations MSE X1,t (Standard Error) MSE X2,t (Standard Error)

1 (10 dB)

50 0.0090 (0.0491) 0.0089 (0.0491)
100 0.0090 (0.0496) 0.0091 (0.0496)
200 0.0091 (0.0499) 0.0089 (0.0499)
400 0.0091 (0.0500) 0.0090 (0.0500)
800 0.0092 (0.0501) 0.0092 (0.0501)
1000 0.0092 (0.0501) 0.0092 (0.0501)

2 (0 dB)

50 0.0507 (0.0491) 0.0513 (0.0491)
100 0.0526 (0.0496) 0.0509 (0.0496)
200 0.0526 (0.0499) 0.0529 (0.0499)
400 0.0531 (0.0500) 0.0525 (0.0500)
800 0.0526 (0.0501) 0.0528 (0.0501)
1000 0.0530 (0.0501) 0.0526 (0.0501)

3 (-10 dB)

50 0.0963 (0.0898) 0.0932 (0.0898)
100 0.0993 (0.0908) 0.1030 (0.0908)
200 0.1010 (0.0912) 0.1017 (0.0912)
400 0.1003 (0.0914) 0.1025 (0.0914)
800 0.1019 (0.0916) 0.1026 (0.0916)
1000 0.1012 (0.0916) 0.1019 (0.0916)

8
8



From Table (3.28) it is clear that the MSE of the estimate of Xt decreases with increasing SNR.

As a result, the covariance of the error of the estimate also decreases with increasing SNR. We

also see an almost halving in the average MSE over all number of observations as the SNR is

increased from -10dB to 0dB and an order of magnitude decrease as the SNR is increased to

10dB. A similar pattern in the Standard Error of the MSE is also observed. We also note that the

MSE for DGS 2 slightly higher than that of DGS 1, shown in Table (3.26). This corresponds to a

decrease in the efficiency of estimation with increasing complexity of the latent system equation.

Table 3.29: Mean of the innovation process from Data Generating System 2

Simulation Number (SNR) Number of Observations X1,t X2,t

1 (10 dB)

50 0.0973 0.0997
100 0.1006 0.1060
200 0.0981 0.0995
400 0.1012 0.0993
800 0.1027 0.1013
1000 0.1011 0.1027

2 (0 dB)

50 0.1157 0.0984
100 0.0979 0.1012
200 0.1104 0.0951
400 0.1081 0.1070
800 0.1034 0.1052
1000 0.1036 0.1027

3 (-10 dB)

50 0.1302 0.0757
100 0.1187 0.1021
200 0.0892 0.1147
400 0.1041 0.1158
800 0.1183 0.1072
1000 0.1175 0.1061

From Table (3.29), we can see that the mean innovation for all simulation from DGS 2 is slightly

larger than those from DGS 1. This corresponds to a decrease in the efficiency of estimation

with increasing complexity of the latent linear system model.
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Figure 3.9: A set of typical Extended Kalman filter innovations, e1,t, from Data Generating
System 2. The first column contains quantile-quantile plots for the e1,t, whereas the second
contains the
e1,t.
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3.8 Case Study: Sequential Importance Resampling Filter

In this case study we investigate the efficacy of the Sequential Importance Resampling (SISR)

filter at estimating the state of two Data Generating Systems (DGS)’s. Both DGSs consist of a

latent non-linear system model and a cointegrated Vector Error Correction Model (VECM) with

a deterministic term as the measurement model. The case study utilises the novel implementation

of the SISR filter algorithm in Object-oriented MATLAB is given in Appendix (D).

3.8.1 Model

The Data Generating Systems (DGS)’s used in the investigation are shown in Table (3.30).

Table 3.30: Case Study Data Generating System (DGS) Equations

Data Generating System System Equation Measurement Equation
1 Mt = AMt−1 +D + ηt Yt = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt
2 Mt = AM3

t−1 +BM2
t−1 + CMt−1 +D + ηt Yt = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt

where,

nx is the dimension,

Mt ∈ R
nx is the state vector,

Yt ∈ R
nx is the measurement vector,

A : Rnx → R
nx is the system matrix,

B : Rnx → R
nx is the system matrix,

C : Rnx → R
nx is the system matrix,

D : Rnx → R
nx is the system matrix,

ηt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Σ,

α : Rnx → R
nx is the parameter matrix,

β : Rnx → R
nx is the cointegration vector matrix,

Γ : Rnx → R
nx is the lag matrix,

εt ∈ R
nx is the white, matrix variate Gaussian, zero mean process noise

vector with covariance Ω.

From Table (3.30), it is evident that the system equation of DGS 1 is a Vector Autoregressive

(VAR) process of order 1, whereas the system equation of DGS 2 is a non-linear VAR process

of order1, with the non-linearity introduced via cubic and quadratic terms. The measurement

equations of both DGS 1 and 2 is given by Vector Error Correction Model (VECM) of order 2

with a deterministic term whose latent process is given by the system equations.

The SISR filter can be used to recursively estimate the state of the system equation given a set

of noisy measurements. However, before the filter can be applied, the system and measurement
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equations of both DGSs must be expressed in state space form. The system equation of DGS 1

can be transformed as follows,

Mt = AMt−1 + C + ηt

Maug
t = AMt−1 + ηt,

where,

Maug
t = Mt − C.

The system equation of DGS 2 can be transformed as follows,

Mt = AM3
t−1 +BM2

t−1 + CMt−1 +D + ηt

Maug
t = CMt−1 + ηt,

where,

Maug
t = Mt − AM3

t−1 −BM2
t−1 −D.

The measurement equations of both Data Generating Systems can be augmented into the re-

quired state space form by noting that Yt = ∆Xt = Xt −Xt−1 and proceeding as follows,

Xt −Xt−1 = Mt + αβ′Xt−1 + Γ(Xt−1 −Xt−2) + εt

Y aug
t = Mt + εt,

where,

Y aug
t = Xt − (αβ′ + I + Γ)Xt−1 + ΓXt−2 .

We can now write the equations of the DGS in the following state space form, noting that Inx
is

an identity matrix of dimension nx.

Table 3.31: Case Study Augmented Data Generating System (DGS) Equations

Augmented DGS System Equation Measurement Equation
1 Maug

t = AMt−1 + ηt Y aug
t = Inx

Mt + εt
2 Maug

t = CMt−1 + ηt Y aug
t = Inx

Mt + εt

For each augmented data generating system, a total of 300 data sets were generated. 50 data

sets containing 50, 100, 200, 400, 800 and 1000 observations respectively. The parameters that

were used with each DGS is presented in Table (3.32).
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Table 3.32: Case Study Augmented Data Generating System (DGS) Parameter Values

Parameter Value
nx 2

A

(

0.1 0.1
0.1 0.1

)

B

(

0.1 0.1
0.1 0.1

)

C

(

0.1 0.1
0.1 0.1

)

D

(

0.1 0.1
0.1 0.1

)

Σ

(

0.1 0
0 0.1

)

α

(

0.2 0.2
0.2 0.2

)

β

(

1 0
−1 −1

)

Γ

(

0.1 0.1
0.1 0.1

)

Ω

(

0.1 0
0 0.1

)

We note that the α and β matrices of the augmented Data Generating System, given in Table

(3.32), introduce a cointegrating relationship into the measurement equations of both DGSs,

since, rank(αβ′) = 1 which is less than nx.

3.8.2 Method

The efficacy of the Sequential Importance Resampling (SISR) filter consisting of 100 samples

(particles) at estimating the state of the Data Generating System (DGS) using a spectrum of

Signal to Noise Ratios (SNR)’s, provided in Table (3.35), and resampling schemes, provided in

Table (3.34).

The Sequential Importance Resampling filter for the system equation of each DGS had the

following form,

Xt = ft (Xt−1) +Wt−1, Wt−1 ∼ MVN(0, Qt) (3.49)

Yt = ht (Xt) + Vt, Vt ∼ MVN(0, Rt) (3.50)

where,
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Xt ∈ R
nx is the state vector,

Yt ∈ R
nx is the measurement vector,

ft: R
nx → R

nx is a non-linear function,

Wt ∈ R
nx is the white, Gaussian, zero mean process noise vector with co-

variance Qt,

ht: R
nx → R

nx is a non-linear function,

Vt ∈ R
nx is the white, Gaussian, zero mean measurement noise vector with

covariance Rt.

The prior distribution, proposal distribution and likelihood used in the SISR filter are shown

below in Table (3.33).

Table 3.33: Components of the Sequential Importance Resampling Particle Filter

Component Form
p(X0) (Prior) δX0(X) = X0

p(Xt+1|X(i)
t ) (Proposal) MVN(Xt+1|ft (Xt−1) ,Σ)

p(Yt|X(i))t (Likelihood) MVN(Yt|ht (Xt) ,Ω)

The resampling schemes used within each simulation are shown below in Table (3.34). A thorough

exposition of the resampling schemes is provided in Section (3.5.4).

Table 3.34: Case Study Resampling Schemes

Resampling Scheme Number Resampling Scheme
1 Multinomial
2 Residual
3 Stratified
4 Systematic

The spectrum of Signal to Noise Ratio (SNR) settings used for each simulation is shown in table

3.35. The SNR was varied by increasing or decreasing the covariance of the measurement noise

vector, Rt, relative to the covariance of the process noise vector, Qt.

Table 3.35: Simulation Signal to Noise Ratio (SNR) settings

Simulation Number Signal to Noise Ratio (dB)
1 10
2 0
3 -10

3.8.3 Results

A summary of the results of each simulation for both Data Generating Systems are shown in the

proceeding sections.
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Data Generating System 1

From Figure (3.10), it is clear that the a posteriori state estimate, X̂1,t+1|t+1, approximates the

true state vector, X1,t, more accurately at intermediate Signal to Noise Ratio (SNR) values. In

the lowest SNR setting the a posteriori state estimate is shown to approximate the mean of the

latent process, whereas in the highest SNR setting, the a posteriori state estimate is subject to

wild fluctuations. An explanation for this phenomenon is the effect of sample impoverishment,

that is, the loss of diversity in the sample (particle) population. This in turn leads to divergence

of the estimates. Filter divergence may be caused by the use of a sub-optimal proposal density.

If the prior density has a broader distribution compared to the likelihood, then only a few

samples (particles) will have a high importance weight. Another explanation is a lack of samples

(particles) used.

Table 3.36: Mean Squared Error (MSE) and Effective Sample Size of the Sequential Importance
Resampling filter estimates from Data Generating System 1 with Signal to Noise Ratio of 10dB

Resampling Scheme Number of Observations MSE X1,t MSE X2,t Effective Sample Size

1

50 0.1160 0.1088 1.0277
100 0.1361 0.1345 1.0289
500 0.1663 0.1699 1.0004
1000 0.1789 0.1777 1.0003

2

50 0.1139 0.1141 1.0264
100 0.1330 0.1325 1.0278
500 0.1671 0.1669 1.0007
1000 0.1767 0.1787 1.0003

3

50 0.1140 0.1126 1.0274
100 0.1341 0.1337 1.0285
500 0.1668 0.1709 1.0005
1000 0.1756 0.1780 1.0004

4

50 0.1203 0.1134 1.0262
100 0.1371 0.1351 1.0293
500 0.1654 0.1691 1.0006
1000 0.1791 0.1784 1.0004

From Table (3.36) it is evident that the use of the residual resampling scheme produces the state

estimates with the lowest Mean Square Error (MSE). It is of interest to note that the residual

resampling scheme also has the lowest average Effective Sample Size (ESS). An increase in the

number of observations resulted in an increased MSE and lower average ESS. This suggests that

the filter diverged.

From Table (3.37) it is evident that the use of the residual resampling scheme produces the state

estimates with the lowest Mean Square Error (MSE).

From Table (3.38) it is evident that the use of the residual resampling scheme produces the state

estimates with the lowest Mean Square Error (MSE). It is of interest to note that the residual
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Table 3.37: Mean Squared Error (MSE) and Effective Sample Size of the Sequential Importance
Resampling filter estimates from Data Generating System 1 with Signal to Noise Ratio of 0dB

Resampling Scheme Number of Observations MSE X1,t MSE X2,t Effective Sample Size

1

50 0.1289 0.1237 1.6036
100 0.1468 0.1456 1.4907
500 0.1715 0.1741 1.0428
1000 0.1826 0.1823 1.0239

2

50 0.1258 0.1354 1.5918
100 0.1460 0.1456 1.4936
500 0.1738 0.1726 1.0396
1000 0.1814 0.1825 1.0263

3

50 0.1317 0.1245 1.6035
100 0.1518 0.1441 1.4962
500 0.1712 0.1752 1.0409
1000 0.1806 0.1824 1.0265

4

50 0.1332 0.1286 1.6054
100 0.1496 0.1499 1.5012
500 0.1706 0.1782 1.0372
1000 0.1825 0.1815 1.0235

Table 3.38: Mean Squared Error (MSE) and Effective Sample Size of the Sequential Importance
Resampling filter estimates from Data Generating System 1 with Signal to Noise Ratio of -10dB

Resampling Scheme Number of Observations MSE X1,t MSE X2,t Effective Sample Size

1

50 0.0998 0.0987 0.0998
100 0.1016 0.1016 0.1016
500 0.1267 0.1287 0.1267
1000 0.1466 0.1470 0.1466

2

50 0.0983 0.0991 0.0983
100 0.1005 0.1022 0.1005
500 0.1282 0.1300 0.1282
1000 0.1452 0.1456 0.1452

3

50 0.0989 0.0979 0.0989
100 0.1018 0.1013 0.1018
500 0.1275 0.1289 0.1275
1000 0.1459 0.1467 0.1459

4

50 0.0995 0.0997 0.0995
100 0.1016 0.1041 0.1016
500 0.1271 0.1305 0.1271
1000 0.1453 0.1459 0.1453

resampling scheme also has the lowest Effective Sample Size (ESS).

The use of the Residual resampling scheme achieved the lowest Mean Square Error (MSE) over

all Signal to Noise Ratio (SNR) settings. This despite having the lowest average Effective Sample

Size (ESS) over all SNR settings. On the other hand, the resampling scheme that achieved the

highest MSE was the Systematic resampling scheme, which also has the highest average ESS.
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Data Generating System 2

From Figure (3.11), it is clear that the a posteriori state estimate, X̂1,t+1|t+1, approximates the

true state vector, X1,t, more accurately at higher Signal to Noise Ratio (SNR) values. In the

lowest SNR setting the a posteriori state estimate is shown to approximate the mean of the

latent process. The Figure shows that the state estimates fluctuate wildly near the end of the

observations. An explanation for this phenomenon is the effect of sample impoverishment, that

is, the loss of diversity in the sample (particle) population. This in turn leads to divergence of the

estimates. As before, an possible explanation is the use of a sub-optimal proposal distribution

for the new set of samples (particles).

Table 3.39: Mean Squared Error (MSE) and Effective Sample Size of the Sequential Importance
Resampling filter estimates from Data Generating System 2 with Signal to Noise Ratio of 10dB

Resampling Scheme Number of Observations MSE X1,t MSE X2,t Effective Sample Size

1

50 0.1191 0.1100 1.0637
100 0.1387 0.1344 1.0247
500 0.1680 0.1732 1.0004
1000 0.1828 0.1825 1.0004

2

50 0.1198 0.1150 1.0636
100 0.1343 0.1342 1.0249
500 0.1698 0.1696 1.0005
1000 0.1804 0.1842 1.0003

3

50 0.1208 0.1138 1.0632
100 0.1361 0.1357 1.0251
500 0.1710 0.1720 1.0005
1000 0.1799 0.1828 1.0004

4

50 0.1229 0.1143 1.0637
100 0.1380 0.1386 1.0247
500 0.1695 0.1729 1.0006
1000 0.1830 0.1832 1.0004

From Table (3.39) it is evident that the use of the residual resampling scheme produces the state

estimates with the lowest Mean Square Error (MSE). It is of interest to note that the multinomial

resampling scheme also has the lowest Effective Sample Size (ESS). An increase in the number of

observations resulted in an increased MSE and lower average ESS. This suggests that the filter

diverged.

From Table (3.40) it is evident that the use of the stratified resampling scheme produces the

state estimates with the lowest Mean Square Error (MSE). It is of interest to note that the

multinomial resampling scheme also has the lowest Effective Sample Size (ESS). An increase in

the number of observations resulted in an increased MSE and lower average ESS. This suggests

that the filter diverged.

From Table (3.41) it is evident that the use of the stratified resampling scheme produces the
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Table 3.40: Mean Squared Error (MSE) and Effective Sample Size of the Sequential Importance
Resampling filter estimates from Data Generating System 2 with Signal to Noise Ratio of 0dB

Resampling Scheme Number of Observations MSE X1,t MSE X2,t Effective Sample Size

1

50 0.1333 0.1272 1.8965
100 0.1501 0.1485 1.4751
500 0.1753 0.1778 1.0402
1000 0.1866 0.1869 1.0340

2

50 0.1294 0.1359 1.8764
100 0.1451 0.1479 1.4893
500 0.1773 0.1751 1.0404
1000 0.1843 0.1869 1.0377

3

50 0.1357 0.1262 1.8781
100 0.1522 0.1452 1.4823
500 0.1742 0.1780 1.0397
1000 0.1846 0.1864 1.0362

4

50 0.1342 0.1317 1.8877
100 0.1499 0.1529 1.4860
500 0.1732 0.1805 1.0388
1000 0.1862 0.1849 1.0358

Table 3.41: Mean Squared Error (MSE) and Effective Sample Size of the Sequential Importance
Resampling filter estimates from Data Generating System 2 with Signal to Noise Ratio of -10dB

Resampling Scheme Number of Observations MSE X1,t MSE X2,t Effective Sample Size

1

50 0.1028 0.0998 43.2630
100 0.1042 0.1043 27.3130
500 0.1292 0.1325 7.8044
1000 0.1495 0.1501 4.9767

2

50 0.1008 0.1009 43.5530
100 0.1025 0.1040 27.1720
500 0.1315 0.1331 7.6089
1000 0.1494 0.1498 4.9049

3

50 0.1011 0.0999 43.2460
100 0.1035 0.1030 26.6220
500 0.1310 0.1322 7.7754
1000 0.1491 0.1498 4.8871

4

50 0.1008 0.1011 42.3860
100 0.1038 0.1064 25.7300
500 0.1308 0.1347 8.0253
1000 0.1477 0.1485 5.1462

state estimates with the lowest Mean Square Error (MSE). It is of interest to note that the

stratified resampling scheme also has the lowest Effective Sample Size (ESS). The average ESS

of the SISR filter with a low SNR setting over all resampling schemes is notably larger than the

other settings. A low SNR setting entails the system noise being larger than the measurement

noise, which in turn allows corrections to be made by the random component of the SISR filter
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update. That is, sub-optimal information is corrected.

The use of the Stratified resampling scheme achieved the lowest Mean Square Error (MSE) over

all Signal to Noise Ratio (SNR) settings. This despite having amongst the lowest Effective Sample

Size (ESS) over all SNR settings. On the other hand, the resampling scheme that achieved the

highest MSE was the Systematic resampling scheme, which also has the highest ESS.
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Figure 3.10: A set of typical Sequential Importance Sampling Resampling filter results for X1,t

from Data Generating System 1 using the Multinomial Resampling Scheme. In Figures (a), (b)

and (c), the blue line refers to the a posteriori state estimate, X̂1,t+1|t+1 and the green line refers
to the true state vector, X1,t, at time t.
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Figure 3.11: A set of typical Sequential Importance Sampling Resampling filter results for X1,t

from Data Generating System 2 using the Multinomial Resampling Scheme. In Figures (a), (b)

and (c), the blue line refers to the a posteriori state estimate, X̂1,t+1|t+1 and the green line refers
to the true state vector, X1,t, at time t.
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3.9 Summary

Within this chapter we have presented the definition of the general filtering problem in conjunc-

tion with optimal and approximate solutions. The Kalman filter was presented as the optimal

Baysian estimator under a high restricted state space model. The Extended Kalman filter was

presented as an approximation of the optimal Bayesian solution that can be used in non-linear

state space models. Three Sequential Monte Carlo approximations to the Bayesian interpreta-

tion of the general filtering problem, Sequential Importance Sampling, Sequential Importance

Sampling Resampling and the Auxiliary Particle Filter were also discussed. It was noted that

Sequential Monte Carlo approximations operate under much less rigorous bounds on the state

space model. The Kalman and Extended Kalman filters were shown to be effective at estimating

the state of a latent linear process, with the Kalman filter producing estimates with a lower

Mean Square Error for linear latent processes. The Sequential Importance Sampling Resam-

pling (SISR) filter was shown to depend heavily on the specification of its proposal distribution,

number of particles and resampling scheme. We now move proceed to combine the ideas of the

previous two chapters to elucidate the dynamics of a set of empirical data.
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Chapter 4

Empirical Data Analysis

Pairs trading is a popular trading strategy used by statistical arbitrage hedge funds and private

investors alike. The mechanisms and implementations of a pairs trading scheme are simple to

implement. The aim of pairs trading is to finds two stocks whose prices move together over

an indicated historical time period. If the pair prices deviate wide enough, the strategy calls

for shorting the increasing-price asset, while simultaneously buying the declining-price asset.

The idea behind the pair trade is to profit from convergence forces that eliminate short-term

price deviations in favour of long-term historical pricing relationships. In a pricing world that

is relatively efficient, simple strategies based on mean-reversion concepts should not generate

consistent profits [69]. However, in 2006, Gatev et al. interpreted pairs as cointegrated prices

and found that pairs trading generates consistent arbitrage profits in the U.S. equity markets

[70]. The investigation by Gatev et al. is in stark contrast to more traditional methods of pairs

trading, which have sought to identify trading pairs based on correlation, which seeks to identify

short-term pricing relationships.

This chapter provides an investigation on the application of filtering techniques for multivariate

cointegration models on empirical data. The empirical data used in the investigation, futures

contracts on indices, interest rates and bonds, are presented in Section (4.1). In the subsequent

Section, Section (4.2), we provide an exposition on commodities, an area of significant interest

for speculative investors and arbitrageurs, significant market places for commodities trading

and also introduce a variety of financial instruments that are linked to commodities. In the final

section, Section (4.6), we conduct a case study which attempts to elucidate possible cointegrating

relationships within the empirical data using the Johansen Maximum Likelihood method.
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4.1 The Data

The data used in the empirical study consists of the following futures contract pairs: Five year

(FV) and Ten year (TU) notes on US Treasury Bills, Australian Dollar (AUD) and Canadian

Dollar (CAD) interest rates and Australian Dollar interest rate and E-mini NASDAQ-100 index

(NQ). Prices from each pair were extracted in segments, with each segment containing price data

taken at ten minute intervals over a varying number of trading days. The first and last trading

day over all segments is shown in Table (4.1).

Table 4.1: Pair Futures Contract Price History Start and End Date

Pair Start Date End Date
AUD - CAD 2000-02-14 2006-03-09
FV - TU 1999-12-13 2003-11-25
NQ - AD 1999-12-13 2004-03-10

The number of trading days within each segment varies based on the roll date of the futures

contract, which is not strictly equal to the maturity date. The roll date of each contract was set

by the broker based on observed volume. The number of prices within each trading day for all

segments is shown in Table ().
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Figure 4.1: Futures Contract prices between Australian Dollar and Canadian Dollar Interest
Rates between 2000-02-14 and 2000-03-07. Two examples of level shifts, also known as structural
breaks, are shown by red arrows.

Upon inspection of the price data, it is evident that it contains level shifts, also known as

structural breaks, this is illustrated in Figure (4.1). With the current data the level shifts occur

at the boundary between the close of a financial market and its subsequent open and also within

a trading day. It is hypothesised that the day boundary level shifts are due to the flow of

information relating to the pairs on other financial markets whilst the market that the pairs

are actively traded on are closed. For the purpose of the following investigation, the level shifts

occurring at day boundaries were removed by discarding prices ten minutes before and after the
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day boundary, which in affect removes the last price and first price of consecutive days. The

intra-day level shifts were not removed.

4.2 Commodities

A commodity is defined as being a good for which there is demand and has either full or partial

fungibility. Commodities are classified as being either hard commodities which are generally

mined and soft commodities which are generally grown. Financial instruments that are linked

to commodities are used by commodity producers, traders and consumers to hedge, speculate

or arbitrage against uncertain price movements in either the underlying commodity or financial

instrument.

Financial instruments are available as either standardised or tailor-made contracts. Standardized

contracts are usually traded on commodity exchanges, whereas tailor-made contracts are traded

Over the Counter (OTC) directly between two market participants. The types of commodity

linked financial instruments are numerous and varied, they include forward contracts, futures

contracts, options and swaps.

4.3 Commodity Market Places

Commodities contracts are traded on commodity exchanges and over the counter.

4.3.1 Commodity Exchanges

Commodity exchanges are market places for the trading of standardised commodity contracts

that have been defined by the exchange [9]. The first organised commodity exchange market with

a standardised futures clearing system was established in 1730 in the Dojima section of Osaka,

Japan [71]. A recent survey lists over seventy commodity exchanges in operation world-wide,

with the majority of them located in Asia [72]. The primary commodity exchanges are CME

Group (CME), New York Mercantile Exchange (NYMEX), Eurex, Korean Exchange (KRX) and

Shanghai Futures Exchange (SHFE).

Commodity exchanges are involved in the trading of standardised commodity contracts. A com-

modity contract specifies the type of underlying asset, its quality, volume and specific delivery

times and procedures. All exchanges have a clearinghouse, which automatically acts as a coun-

terpart to all transactions on the exchange; and guarantees the performance of the parties to the

transaction. Regulation of commodity exchanges are commonplace and are designed to maintain

the solvency of the market and approve the contracts specified by the exchange [9].
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Korea Futures Exchange

The Korea Exchange (KRX) was founded in 2005 from the merger of four domestic Korean

exchanges, the Korea Stock Exchange (KSE), the Korea Futures Exchange (KOFEX), the Kosdaq

Market and the Kosdaq Committee. In 2010 the KRX was the largest derivatives exchange in the

world with over 3.7 billion futures and options traded and/or cleared [73]. The KRX clears its

exchange traded business through its own clearing house. The KRX offers contracts in futures,

options, warrants, interest rates, index products, equity products as well as commodity products.

CME Group Inc.

The CME Group, Inc. (CME) was formed in 2007 by the merger of the Chicago Mercantile Ex-

change and the Chicago Board of Trade (CBOT). In 2010 the CME Group had the second highest

number of futures and options traded and/or cleared of all derivatives exchanges worldwide [73].

CME Group offers contracts in all major asset classes including: commodity, interest rate, foreign

currency, stock index, metals and alternative investment instruments such as weather and real

estate derivatives [74]. CME Clearing is the CME’s central futures clearing mechanism, which

settles all trades and acts as the counterparty between buyers and sellers. The actions of the

Group are regulated by the Commodity Futures Trading Commission (CFTC).

New York Mercantile Exchange

The New York Mercantile Exchange (NYMEX) was established in 1972 and is the world’s largest

energy and metals commodity exchange. In 2008 the NYMEX became a unit of the CME Group

Inc. The NYMEX offers trading in crude oil, petroleum products, natural gas, coal, electricity,

gold, silver, copper, aluminium, platinum group metals, emissions and soft commodities contracts

[75]. The NYMEX WTI Crude Oil Futures was the most traded energy futures contract world-

wide in 2010 [73]. Nine other futures and options contracts traded on the NYMEX were ranked

in the top twenty most traded energy futures and options worldwide in 2010. The NYMEX has

its own clearing operation where all contracts are cleared.

Eurex

The Eurex was formed in 1998 and is jointly operated by Deutsche Borse, and the SIX Swiss

Exchange [76]. In 2010 the Eurex exchange was the third largest derivatives exchange in the

world with over 2.6 billions futures and options traded and/or cleared [73]. The actions of the

Eurex are regulated by Bundesanstalt für Finanzdienstleistungsaufsichtthe (BaFin) in Germany

and its U.S. operations are subject to the regulation of both the Commodity Futures Trading

Commission (CFTC) and the Securities and Exchange Commission (SEC). The Eurex exchange
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clears its exchange traded derivatives business through its own clearing house, Eurex Clearing

AG.

The Eurex is one of the world’s most diverse derivatives exchanges, offering product ranges

in interest rates, equity, equity index, exchange traded funds, credit, inflation, commodities,

weather and property derivatives. The Eurex also matches, clears and settles over the counter

transactions via its Eurex Bonds and Eurex Repo subsidiaries [76].

Shanghai Futures Exchange

The Shanghai Futures Exchange (SHFE) was formed in 1998 from the merger of the Shanghai

Metal Exchange, the Shanghai Cereals and Oil Exchange and the Shanghai Commodity Exchange

[77]. In 2010 the SHFE was the eleventh largest derivatives exchange in the world with over 621

million futures and options traded and/or cleared [73]. The SHFE is a self-regulated, non-profit

organization, overseen by the China Securities Regulatory Commission.

The Shanghai Futures Exchange offers futures contracts in copper cathodes, aluminium, natural

rubber, fuel oil, zinc, gold, steel wire and steel rebar. In 2010, the SHFE steel rebar, zinc, copper

cathodes, aluminium futures contracts were the first, second, fourth and thirteenth, respectively,

most traded metals futures and options worldwide. The SHFE natural rubber futures contract

was the second most traded agricultural futures contract worldwide in 2010 [73].

4.3.2 Over the Counter Markets

The Over the Counter (OTC) market is an important alternative to exchanges and when mea-

sured in terms of total volume traded, has become the larger of the two [9]. At the end of June

2010, the gross market value of the global OTC derivatives market was estimated to be 24.673

billion USD [78].

Over the Counter markets are involved in the trading of non-standardised contracts. A non-

standardised contract is the outcome of direct negotiation between two market participants and

are tailored to suit the specific requirements of these participants. Since OTC contracts are

traded directly between two parties, they cannot be easily traded or resold.

In contrast to commodity exchanges, price information in OTC markets are not transparent.

Moreover, the absence of clearing houses for OTC markets means that all participants run

counterpart risks. In an effort to reduce counterpart risk, collateralization agreements are often

used between participants.
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4.4 Market Participants

The liquidity found in commodity markets, both exchange and over the counter, make it at-

tractive for traders. Three broad categories of traders can be identified, each with differing

investment goals, they are hedgers, traders and arbitrageurs.

Hedgers use derivatives to reduce the risks faced from potential adverse future movements in

a market variable. On the commodity exchanges, hedgers can easily find a counterpart for the

proposed sale or purchase of a contract. This is due to the presence of both other hedgers who

wish to take an opposite position and speculators.

Speculators use them to bet on the future directions of a market variable.

Arbitrageurs take offsetting positions in two or more instruments to lock in a profit [9].

4.5 Financial Instruments

Financial instruments are any contracts that give rise to a financial asset of one party and

a financial liability or equity instrument of another party. Examples of financial instruments

linked to commodities include futures contracts, forward contracts, options and swaps.

4.5.1 Futures Contracts

A commodity futures contract is a contract between two parties to buy or sell a specified quantity

of a commodity at a future date at a price agreed upon when entering into the contract. The

price paid at future settlement of the contract is known as the futures price. The spot price

of a commodity future contract represents the cost of immediate settlement of the contract. A

commodity futures contract is exchange traded and defined on standardised assets [9]. Upon

entering a futures contract, no cash changes hands between buyers and sellers. Hence, the value

of the contract is zero at its inception [79].

Because the future spot price is unknown today, a futures contract is a way to lock in the

terms of trade for future transactions. In determining the fair futures price, market participants

will compare the current futures price to the spot price that can be expected to prevail at the

maturity of the futures contract. In other words, futures markets are forward looking and the

futures price will embed expectations about the future spot price. If spot prices are expected to

be much higher at the maturity of the futures contract than they are today, the current futures

price will be set at a high level relative to the current spot price. In the converse situation, where

spot prices are expected to be much lower at the maturity of the futures contract than they are

today, the current futures price will be set at a low level relative to the current spot price [79].

Foreseeable trends in spot markets are taken into account when the futures prices are set. As a

result expected movements in the spot price are not a source of return to an investor in futures.
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Futures investors will benefit when the spot price at maturity turns out to be higher than expected

when they entered into the contract, this situation is known as contango. The converse situation,

in which the spot price is lower than anticipated, is known as normal backwardation. A futures

contract is therefore a bet on the future spot price, and by entering into a futures contract an

investor assumes the risk of unexpected movements in the future spot price. Furthermore, as

the delivery period for a futures contract is approached, the futures price converges to the spot

price of the underlying asset [9]. Unexpected deviations from the expected future spot price are

by definition unpredictable, and should average out to zero over time.

Commodity futures have become widespread investment vehicles among traditional and alterna-

tive asset managers. They are now commonly used for strategic and tactical asset allocations.

The strategic appeal of commodity indices comes from their equity-like return, their inflation-

hedging properties and their role for risk diversification [80]. Recent research has also established

that commodity futures can be used to generate abnormal returns [81].

4.5.2 Forward Contracts

Forward contracts are non-standardised agreements to purchase or sell a specified amount of a

commodity on a fixed future date at a predetermined price. A forward contract is traded in the

over the counter market between two parties, one of which assumes the long position and the

other the short position. The party with the long position agrees to buy the underlying asset on

a certain specified future date for a certain specified price. The other party agrees to sell the

asset on the same date for the same price.

The use of a predetermined price in the forward contract eliminates risk associated with adverse

price movements affecting both parties. If the spot price of the contract at maturity is higher

than at inception, then the party assuming the long position benefits. If, on the other hand, the

spot price is lower, then the short position profits. There is an inherent credit or default risk

associated with forward contracts, which can be overcome by using collateralized agreements.

Forward contracts are mostly used to hedge the risk of holding a certain commodity or of having

the obligation to deliver or acquire it at a future date. This is called forward cover and involves

the execution of a set of offsetting transactions simultaneously in the spot and the forward

markets.

4.5.3 Options

An option contract is the right, but not the obligation, to purchase or sell a certain commodity

at a predetermined price on or before a specified date. There are two types of options: a call

option and a put option. A call option gives the holder a right to buy the underlying asset for

a certain price, known as the strike price, by a certain date, known as the maturity date. A
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put option gives the holder the right to sell the underlying asset by a certain date for the strike

price. American options can be exercised at any time up to the maturity date whereas European

options can only be exercised on the maturity date itself [9]. Options contracts are traded on

both exchange and over the counter markets.

There are two sides to every options contract, a participant that has taken the long position and

a participant that has taken the short position. The participant with the short position receives

cash up front but has potential liabilities later [9].

Options markets have four types of participants: buyers and sellers of call options and buyers

and sellers of put options. This right to buy at a pre-set price is attractive for those who think

that the market price will increase; it will enable them to buy at the lower price. It gives price

protection to consumers and to processors and traders for the cost of the commodities they

purchase. The profit or loss of the party assuming the short position is the inverse of the party

assuming the long position.

Options can perform almost the same hedging functions as futures or forward contracts. Options

contracts differ from the aforementioned contracts in two important aspects; namely the setting

of floor and ceiling prices and the counterparty risk faced by a buyer of an option contract.

4.5.4 Swaps

A swap is a contract between two parties to exchange cash flows in the future. The agreement

defines the dates when the cash flows are to be paid and the way in which they are to be calculated.

Usually the calculation of the cash flows involves the future value of a market variable such as

an interest rate [9].

Swaps were developed in the over the counter market as a long term price risk management

instrument, some swaps are also traded on exchanges. As a commodity swap is a purely financial

transaction, it has the advantage of allowing the producer and consumer to hedge their price

exposure without directly affecting their commodity production, distribution or procurement

activities.

4.6 Case Study: Johansen Maximum Likelihood Estima-

tion

The Johansen Maximum Likelihood (ML) estimation method provides estimates of the param-

eters Vector Autoregressive Model (VECM) of order p. In this study we evaluate the efficacy

of the Johansen ML method at estimating the parameters of three empirical data sets, each

containing a pair of futures contracts. The case study utilises the novel implementation of the

Johansen ML method in Object-oriented MATLAB is given in Appendix (B).
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4.6.1 Model

The empirical data used within the case study consists of ten minute prices of the following pairs

of futures contracts: Five year (FV) and Ten year (TU) notes on US Treasury Bills, Australian

Dollar (AUD) and Canadian Dollar (CAD) interest rates and Australian Dollar interest rate and

E-mini NASDAQ-100 index (NQ). A thorough explanation of the empirical data is presented in

Section (4.6).

The number of trading days within for each pair and the average number of prices available

within each trading day is shown in Table (4.2). From Table (4.2) it is clear that the AUD-CAD

pair contains the longest price history, with the largest number of prices per trading day.

Table 4.2: Empirical Data Statistics

Pair Number of Trading Days Average Number of Prices per Day
AUD-CAD 789 520
FV-TU 502 372
NQ-AUD 538 291

4.6.2 Method

The observations from the prices of each pair were presented to the Johansen Maximum Likeli-

hood (ML) method in batch. The order of the Vector Error Correction Model (VECM) estimated

by the Johansen ML method was varied from 1 to 4.

In the batch procedure, the data sets were partitioned into subsets, each with an incrementally

increasing number of observations, where the size of the increments was a predefined constant,

Batch size. At each time step, t, a subset of data Y1:t = {y1, . . . , yt+Batch size} was used within

the Johansen ML method. By presenting the data in batch subsets, it is possible to evaluate the

effect of increasing the number of observations on the performance of the Johansen ML method.

4.6.3 Results

A complete set of results for estimation of the parameters of a Vector Error Correction Model

based on the futures contract pairs are presented in Appendices (H), (I) and (G), respectively.

E-mini NASDAQ-100 - Australian Dollar Interest Rate

From Appendix (I), it is evident that the most Vector Error Correction Model (VECM) specifi-

cation that permits greatest amount of cointegrating relationships, over all batch data sets, is of

order 4. However, the most frequently estimated cointegrating within this VECM specification
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was 0. That is, within the VECM(4) model, the vast majority of batch data sets were found not

to contain any cointegrating relationships.

The lack of cointegrating relationships found within the futures contracts may be attributable to

model misspecification, or a true lack of cointegrating relationships. Model misspecification may

arise through either under- or over-specification of the order of the VECM model or through the

use of a static representation for the VECM model as opposed to a more dynamic representation,

in which the components that make up the VECM are allowed to vary over time. It has been

found that both the under- or over-specification of the lag length, which is related to the VECM

order, has a negative impact on the hypothesis tests for cointegration rank [82]. While the effect

on size is small for hypothesis tests for rank equal to zero, the effect on power is more substantial

for certain parameter combinations. This effect becomes even more pronounced for tests of the

null hypotheses of a cointegration rank of one [83]. A dynamic VECM representation can be

achieved by allowing all parameters to varying over time. Popular choices for incorporating

dynamic behaviour into a VECM include: stochastic volatility, deterministic trends, and markov

switching regimes. Dynamic representations may be more effective at modelling the structural

breaks that are present within the futures contracts price series. Structural breaks may invalidate

cointegrating relationships that exist within the prices series.

Australian Dollar Interest Rate - Canadian Dollar Interest Rate

From Appendix (H), it is evident that the most Vector Error Correction Model (VECM) specifi-

cations that permit the greatest amount of cointegrating relationships, over all batch data sets,

are of orders 1 and 2. However, the most frequently estimated cointegrating within these VECM

specifications was 0. That is, within the VECM(1) and VECM(2) model, the vast majority of

batch data sets were found not to contain any cointegrating relationships.

As mentioned previously in Section (4.6.3), lack of cointegrating relationships found within the

futures contracts may be attributable to model misspecification, or a true lack of cointegrating

relationships.

Five Year U.S. Treasury Bill - Ten Year U.S. Treasury Bill

From Appendix (H), it is evident that the most Vector Error Correction Model (VECM) specifi-

cations that permit the greatest amount of cointegrating relationships, over all batch data sets,

are of orders 1 and 2. The most frequently estimated cointegrating within these VECM specifica-

tions was 1. That is, within the VECM(1) and VECM(2) model specifications, all of batch data

sets were found to contain a cointegrating relationship. The Akaike [84], Hannan-Quinn [85],

and Schwarz [86] information criterion can be used to select the most parsimonious specification.

When considered from an economic viewpoint, the discovery of a stable cointegrating relationship

within the two futures contracts is expected. This is because the futures contracts relate to
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different maturity dates, five and ten years, of the same underlying asset, a U.S. Treasury bill.

As such, both prices will be affected by events, financial and otherwise, in similar ways.

The estimates of the parameters of the two Vector Error Correction Model specifications utilising

the cointegration rank estimates are shown in Figures (4.2) and (4.3) respectively.
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Figure 4.2: Five Year U.S. Treasury Bill - Ten Year U.S. Treasury Bill Futures Contract Pair.
The figures, from top to bottom, represent the estimates of a Vector Error Correction Model of
over 1, α̂, β̂, D̂t and r̂ and for each batch subset over all data sets. In the first three Figures,
the blue and green plots relate to the first and second components of the α̂, β̂ and D̂t vectors.

From Figure (4.2) it is evident that the estimates produced by the Johansen ML method stabilise

as the number of observations is increased. In the first panel of Figure (4.2), the estimate of the
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α vector, we can see that it is largely close to zero until the 17th batch data set, whereupon the

estimates of the first component explodes by two orders of magnitude. It is also worth noting

that the estimate of the cointegrating rank increases with a larger number of observations.
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Figure 4.3: Five Year U.S. Treasury Bill - Ten Year U.S. Treasury Bill Futures Contract Pair.
The figures, from top to bottom, represent the estimates of a Vector Error Correction Model of
over 2, α̂, β̂, D̂t, r̂ and trace(Γ̂), or each batch subset over all data sets, In the first three Figures,

the blue and green plots relate to the first and second components of the α̂, β̂ and D̂t vectors.

From Figure (4.3) it is evident that the estimates produced by the Johansen ML method stabilise

as the number of observations is increased. In the first panel of Figure (4.3), the estimate of the

α vector, we can see that it is largely close to zero until the 17th batch data set, whereupon the
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estimates of the first component explodes by two orders of magnitude. It is also worth noting

that the estimate of the trace of the lag matrix Γ decreases with a larger number of observations.
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4.7 Summary

Within this chapter we have presented a set of empirical data which may be used within a pairs

trading strategy. The dynamics of the three pairs which constitute the empirical data were

presented and mention was made of the existence of structural breaks within their price series.

In the case study we found that one of the pairs, futures contracts on Five year and Ten year U.S.

Treasury Bills, exhibited a cointegrating relationship throughout its price history. The presence

of this relationship meant that the pairs could be exploited within a pairs trading strategy to

generate consistent profits. No such cointegrating relationship was found amongst the entire

history of the other pairs that were considered.
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Chapter 5

Conclusion and Extensions

Within this report we have explored the field of multivariate cointegrated time series, examining

alternate representations and techniques for estimation of their parameters. The most popular

estimation method, Johansen’s Maximum Likelihood (ML) method, was found to be an effective

estimator of the parameters of a multivariate cointegration model specified as a Vector Error

Correction Model (VECM). A novel implementation of the Johansen ML method in Object-

oriented MATLAB was also developed. A final application of the Johansen ML method to

empirical futures contract data revealed its sensitivity to model misspecification, particularly in

regards to the lag term in the VECM specification.

By representing multivariate cointegrated time series in state space form, we explored filtering

techniques, with the aim of estimating a deterministic term in a VECM. Five types of filters

were introduced; Kalman filter, Extended Kalman filter, Sequential Importance Sampling fil-

ter, Sequential Importance Sampling Resampling filter and the Auxiliary particle filter. The

advantages and disadvantages of each filter were explained, with particular attention given to

the Kalman, Extended Kalman and Sequential Importance Sampling Resampling filters; novel

Object-oriented MATLAB implementations of the filters were also developed. The efficacy of

each of the filters at discerning the deterministic intercept term of a VECM was shown to depend

heavily upon the specification of the filtering model, particularly on the Signal to Noise ratio,

and in the case of the Sequential Monte Carlo (SMC) methods, the resampling scheme.

Future extensions to the topics covered in the report can be categorised into three fields: multi-

variate cointegration models, filtering and parameter estimation. Theoretical extensions to the

multivariate cointegration models include increasing the dimension of the system from 2 dimen-

sions and including a greater number of dynamic terms within the VECM representation of the

model. Examples of such terms include: stochastic volatility, stochastic trend, time varying

lag structure and cointegration projection space. This would in effect lead to a time varying

specification of a VECM [87]. A time varying VECM may result in a more robust represen-
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tation of empirical time series, which often include such degeneracies as structural breaks and

non-stationarity.

Extensions to the filtering component of this report include considering Sequential Monte Carlo

methods, particularly those that utilise a different proposal mechanism, such as Markov Chain

Monte Carlo [50], [88]. Another avenue for exploration is the implementation of SMC meth-

ods using parallel computing. The parallel computing paradigm can be used to alleviate the

computation burden associated with iterating the SMC algorithm by performing calculations si-

multaneously over many computational nodes; often thousands of samples have to be evaluated

at each filter iteration in order to achieve a satisfactory approximation of the posterior density.

The effective speed gain of any parallelised algorithm is limited by the parts that must be per-

formed sequentially. An exampling of a parallel implementation of an SMC algorithm is given in

[89]. Parallel implementations of the resampling methods used within SMC algorithms are given

in [90].
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Appendix A

MATLAB Phillips’ Triangular

Representation Estimation

Implementation

classdef Triangular < handle

%TRIANGULAR Phillip’s Triangular Representation Estimation

% METHODS (Static)

methods(Static = true)

% Function: Estimate

% Input: Data (DataGeneratingSystem)

% Output: None

% NOTES:

% 1. This code only works with Data of dimension 2

% 2. The restriction in 1. can be easily removed

function results = Estimate(Data)

% Initialise the results data structure

results = NaN(Data.numberDataSets, 1);

% Iterate through the datasets in the Data

for dataSetNum = 1:Data.numberDataSets

% The current dataset

d1 = Data.getDataSet(dataSetNum);

% Split the dataset into two vectors, one for each series

y1 = d1(:, 1);

y2 = d1(:, 2);

% Construct the design matrix

X = horzcat(y1);

% Calculate the OLS estimate of Beta

beta = (X’ * X)\(X’ * y2);
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results(dataSetNum) = beta;

end

end

end

end
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Appendix B

MATLAB Johansen Maximum

Likelihood Method

Implementation

classdef Johansen < handle

%JOHANSEN Johansen Class

% The Johansen Class contains the code to run the Johansen ML method

% PROPERTIES (Constant)

properties(Constant)

% Critical Values for the Johansen Trace and Maximum EigenValue Statistics

% References: MacKinnon, Haug, Michelis (1996) ’Numerical distribution

% functions of likelihood ratio tests for cointegration’,

% Queen’s University Institute for Economic Research Discussion paper.

% NOTES:

% 1. Only lags <= 12 are supported

% 2. The criticalValues for the appropriate NumberLags will be a (3x1)

% vector of percentiles for the trace statistic: [90 95 99]

% Trace test

CriticalValuesTable = [

2.7055 3.8415 6.6349

13.4294 15.4943 19.9349

27.0669 29.7961 35.4628

44.4929 47.8545 54.6815

65.8202 69.8189 77.8202

91.1090 95.7542 104.9637

120.3673 125.6185 135.9825

153.6341 159.5290 171.0905

190.8714 197.3772 210.0366

232.1030 239.2468 253.2526

277.3740 285.1402 300.2821

326.5354 334.9795 351.2150

];
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% Max eigenvalue test

CriticalValuesTable2 = [

2.7055 3.8415 6.6349

12.2971 14.2639 18.5200

18.8928 21.1314 25.8650

25.1236 27.5858 32.7172

31.2379 33.8777 39.3693

37.2786 40.0763 45.8662

43.2947 46.2299 52.3069

49.2855 52.3622 58.6634

55.2412 58.4332 64.9960

61.2041 64.5040 71.2525

67.1307 70.5392 77.4877

73.0563 76.5734 83.7105];

% The default significance level for the trace statistic hypothesis test

% NOTE: The value should correspond to a column of the CriticalValuesTable

DefaultSignificanceLevel = 2;

end

% METHODS (Static)

methods(Static = true)

% Function: Estimate

% Input: Data (Matrix), Number Lags (Integer)

% Output: Results (Cell Array)

% NOTES:

function results = Estimate(Data, NumberLags)

% Construct \Delta X_t (This is Z_0t)

% NOTE: X_0t will have one less row because of the differencing operation

z_0t = diff(Data);

tz_0t = z_0t;

% Construct X_{t-1} (Ths is Z_1t)

z_1t = Data;

z_1t(end, :) = [];

% Construct (\Delta X_t, ..., \Delta X_{t-p+1}, D_t).(This is z_2t)

z_2t = ones(size(z_0t, 1), 1);

% Iterate through the NumberLags and build up the z_2t matrix iteratively

% NOTE: This can be vectorised

for lagNum = 1:NumberLags - 1

tz_0t = tz_0t(1:end - 1, :);

z_2t = [z_2t(2:end, :) tz_0t];

end

if(NumberLags > 0)

% The lagged versions of z_0t and z_1t

z_0t = z_0t((NumberLags):end, :);

z_1t = z_1t((NumberLags):end, :);

end

% The number of observations remaining

[numObservations, numSeries] = size(z_0t);

% The moment matrices

m_00 = (z_0t’ * z_0t)/numObservations;

m_01 = (z_0t’ * z_1t)/numObservations;
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m_02 = (z_0t’ * z_2t)/numObservations;

m_11 = (z_1t’ * z_1t)/numObservations;

m_12 = (z_1t’ * z_2t)/numObservations;

m_22 = (z_2t’ * z_2t)/numObservations;

m_22Invm_12 = m_22\m_12’;

% Squared residual matrices

s_00 = m_00 - (m_02 * (m_22\m_02’));

s_01 = m_01 - (m_02 * m_22Invm_12);

s_11 = m_11 - (m_12 * m_22Invm_12);

% At this point we have all of the information required to estimate the

% parameters

[alpha, beta, omega, eigenValues] = ...

Johansen.SolveEigenValueProblem(s_01, s_00, s_11);

% The Psi matrix

% NOTE: This matrix contains estimates of the lag parameters

psi = (m_02 - alpha * beta’ * m_12)/(m_22);

% Calculate the test statistics

[traceStatistics, maxEigenStatistics] = ...

Johansen.CalculateTestStatistics(eigenValues, numObservations);

% Determine the rank

[rank, testVector] =

Johansen.DetermineCointegrationRank(maxEigenStatistics);

% [rank, testVector] =

%Johansen.DetermineCointegrationRank(traceStatistics);

% Calculate the maximum of the lof likelihood

if(rank > 0)

test = (1 - eigenValues);

maxLikelihood = det(s_00) * prod(test(rank, :), 1);

else

maxLikelihood = 0;

end

% Construct the results Cell Array

C = cell(7,1);

C(1,1) = {alpha};

C(2,1) = {beta};

C(3,1) = {omega};

C(4,1) = {psi};

C(5,1) = {rank};

C(6,1) = {testVector};

C(7,1) = {maxLikelihood};

results = C;

end

% Function: Determine Cointegration Rank

% Input: Test Statistics (Vector), Significance Level (Integer)

% Output: Rank (Integer), Test Vector (Vector)

% NOTES:

function [rank, testVector] = DetermineCointegrationRank(TestStatistics, .

SignificanceLevel)

% DetermineCointegrationRank.
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if(nargin == 2)

significanceLevel = SignificanceLevel;

else

% The default SignificanceLevel

significanceLevel = Johansen.DefaultSignificanceLevel;

end

numTestStatistics = length(TestStatistics);

% The appropriate critical values

% NOTE:

% 1. This is a column vector

% 2. Bonferroni adjustment needed to maintain a p-value of 0.05 for all

% tests together and not individually

criticalValues =

flipud(Johansen.CriticalValuesTable2(1:numTestStatistics, ...

significanceLevel));

% The Bonferroni correction

% criticalValues = criticalValues / numTestStatistics;

% The null and alternative hypotheses

nullHypotheses = 0:(numTestStatistics - 1);

altHypotheses = nullHypotheses + 1;

% The indices where the null hypothesis would be rejected in a sequential

% testing framework

nullRejectedIndices = (TestStatistics > criticalValues)’;

% Find the where the null hypothesis was rejected

% NOTE: nullRejectedMask = ~nullNotRejectedMask

nullRejectedMask = find(nullRejectedIndices);

% nullNotRejectedMask = ~nullRejectedMask;

% Determine the cointegration rank

% NOTE:

if(isempty(nullRejectedMask))

% The null hypotheses has not been rejected in any of the tests.

% Therefore, return the last alternate hypothesis

rank = nullHypotheses(1);

else

% The smallest value of r for which the null hypothesis was not

%rejected

maxNullReject = max(nullRejectedMask);

% Return the alternate hypothesis

rank = altHypotheses(maxNullReject);

end

% if(isempty(nullRejectedMask))

% % The null hypotheses has not been rejected in any of the tests.

% % Therefore, return the first null hypothesis

% rank = nullHypotheses(1);

% else

% % The smallest value of r for which the null hypothesis was not

%rejected

% minNullNotReject = min(nullNotRejectedMask);

%

% if(minNullNotReject == 0)

% rank = altHypotheses(end);

% else
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% % Return the null hypothesis at the minNullNotReject index

% rank = nullHypotheses(minNullNotReject);

% end

% end

testVector = nullRejectedIndices;

end

% Function: Calculate Test Statistics

% Input: EigenValues (Vector), Number of Observations (Integer)

% Output: Trace Statistics (Vector), Maximum EigenValue Statistics

% (Vector)

% NOTES:

function [trace, maxEigen] = CalculateTestStatistics(EigenValues, ...

NumberObservations)

numEigenValues = length(EigenValues);

% Common expression for both the maximum eigenvalues and trace statistic

% calculations

inner = log(1 - EigenValues);

% The LR test statistic for the maximum eigenvalue test

maxEigen = -NumberObservations * inner;

% The LR test statistic for the trace test

% Iterate through the possible ranks (1..full rank) for the Pi matrix

trace = zeros(numEigenValues, 1);

for r = 1:numEigenValues

% Calculate the LR test statistic for the trace test

trace(r,1) = -NumberObservations * sum(inner(r:end, 1));

end

end

% Function: Solve Eigen Value Problem

% Input: S_01 (Matrix), S_00 (Matrix), S_11 (Matrix)

% Output: Alpha (Matrix), Beta (Matrix), Omega (Matrix), Normalised

% EigenValues (Vector)

% NOTES:

function [alpha, beta, omega, eigenValues] = ...

SolveEigenValueProblem(S_01, S_00, S_11)

S_10 = S_01’;

% Solve the eigenvalue problem

% NOTE: The calculation of may lead to Exceptions/Warnings

try

eigMatrix = S_11\(S_10/S_00) * S_01;

% The eigenvecors and eigenvalues

% NOTE:

% 1. [V,D] = EIG(X,’nobalance’) performs the computation with balancing

% disabled, which sometimes gives more accurate results for certain

% problems with unusual scaling.

% 2. Should test for symmetric eigMatrix ?

[vectorMatrix, valueMatrix] = eig(eigMatrix);

catch Exception

% The exception is most probably (empirical observations) caused by

% ill-conditioned or singular s_00 or s_11 matrices

131



% fprintf(’\tJohansen:Estimate:Cond(S_00) = %s\tCond(s_11) =

%%s\n’,

%

%...

% cond(S_00),

%cond(s_11));

% Check the Exception.identifier

if(strcmp(Exception.identifier, ’MATLAB:eig:matrixWithNaNInf’))

% Attempt to solve the eigenvalue problem using the pseudo inverse

% method

eigMatrix = pinv(S_11) * (S_10 * pinv(S_00)) * S_01;

[vectorMatrix, valueMatrix] = eig(eigMatrix);

else

rethrow(Exception)

end

end

% Normalise the eigenvectors

try

innerMatrix = vectorMatrix’ * S_11 * vectorMatrix;

% The cholesky decomposition of the innerMatrix

% NOTE: The cholesky decomposition function requires that a matrix be

% positive definite i.e. symmetric and all of its eigenvalues are

% positive

cholDecomposition = chol(innerMatrix);

% Normalise the eigen vectors

% NOTE: This can lead to the following warning:

% ’Warning: Matrix is close to singular or badly scaled.’

normVectorMatrix = vectorMatrix/(cholDecomposition);

[~, msgID] = lastwarn;

% Check the lastwarn message ID

if(strcmp(msgID, ’MATLAB:nearlySingularMatrix’))

% Use the pseudo-inverse method

normVectorMatrix = vectorMatrix * pinv(cholDecomposition);

lastwarn(’’);

end

% Transpose the normalised eigenvector matrix

normVectorMatrix = transpose(normVectorMatrix);

catch Exception

% The Exception is most probably caused by the requirements of the

% cholesky decomposition function being violated i.e. the innerMatrix

%is

% not positive definite

% Report which requirement was violated

% if(~(min(eig(innerMatrix)) > 0))

% disp(’Johansen:Estimate:Negative/Zero eigenvalues’)

% end

%

% if(~(all(all(innerMatrix == innerMatrix’))))

% disp(’Johansen:Estimate:Non-symmetric’)

% end

rethrow(Exception)
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end

% The eigenvalues and their indices in the normalised eigenvector matrix

[sortedValues sortIndices] = sort(diag(valueMatrix));

eigenValues = flipud(sortedValues);

eigenValueIndices = flipud(sortIndices);

% The estimates of alpha, beta and omega

beta = transpose(normVectorMatrix(eigenValueIndices, :));

alpha = S_01 * beta;

% alpha = S_01 * beta/(beta’ * S_11 * beta)

omega = S_00 - alpha * (beta’ * S_11 * beta) * alpha’;

end

end

end
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Appendix C

MATLAB Kalman Filter and

Extended Kalman Filter

Implementation

classdef Filter < handle

%FILTER Filter Class

% The Filter Class contains the implementations of the Kalman and Extended

% Kalman filters

% METHODS (Static)

methods(Static = true)

% Function: Kalman

% Input: State Vector (), System Matrix (), Process Noise

% Vector (), State Cov Matirx (), Measurement Vector (),

% Measurement Matrix (), Measurement Noise Vector ()

% Output: State Estimate (), Covariance Estimate (), Kalman Gain (),

% Innovations ()

% NOTES:

% 1. State Equation:

% x_{t} = A_{t-1}*x_{t-1} + B_{t-1}*u_{t-1} + w_{t-1}, w_{t} ~ N(0,

%Q_{t})

% 2. Observation Equation:

% z_{t} = H_{t}*x_{t} + v_{t}, v_{t} ~ N(0, R_{t})

function [X_Post, P_Post, K, e] = Kalman(X, P, Obs, StateParams, ObsParams)

% Kalman. Kalman Filter.

A = StateParams.TransitionMatrix;

Q = StateParams.NoiseMatrix;

H = ObsParams.TransitionMatrix;

R = ObsParams.NoiseMatrix;

% Prediction for state vector and covariance

X_priori = A * X;

P_priori = (A * P * A’) + Q;
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% Compute Kalman gain factor

S = (H * P_priori * H’) + R;

K = (P_priori * H’) / S;

% Correction based on observation

e = Obs - (H * X_priori);

X_Post = X_priori + (K * (e));

% Joseph form of covariance update

M = eye(size(X, 1)) - (K * H);

P_Post = (M * P_priori * M’) + (K * R * K’);

end

% Function: Extended Kalman Filter

% Input: A Priori State Estimate (Matrix), A Priori Covariance

% Estimate (Matrix), Observation (Vector),

% System Equation Parameters (Struct), Observation Equation

% Parameters (Struct)

% Output: A Posteriori State Estimate (Matrix), A Posteriori

% Covariance Estimate (Matrix)

% NOTES:

% 1. The SystemFunc, SystemDerivFunc, MeasureDerivFunc are function handles

function [X_Post, P_Post, K, e] = ExtendedKalman(X_Priori, P_Priori, Obs,

...

SystemParams, ObsParams)

% ExtendedKalmanFilter.

% System Equation Function Handle, System Equation Taylor Series

% Handle and Measurement Equation Taylor Series Function Handle

SystemFunc = SystemParams.SystemEquationFunctionHandle;

SystemDerivFunc = SystemParams.SystemEquationDerivativeFunctionHandle;

MeasureDerivFunc = ObsParams.MeasurementEquationDerivativeFunctionHandle;

% State Prediction

% \hat{x_{k|k-1}} = f(\hat{x_{k-1|k-1}})

xPredicted = SystemFunc(X_Priori);

% Jacobian calculation

jacobianSystemMatrix = SystemDerivFunc(X_Priori);

% Jacobian calculation

jacobianMeasurementMatrix = MeasureDerivFunc(xPredicted);

% Replace the Transition matrices for the System and Observation

% Struct parameters by their jacobian counterparts

SystemParams.TransitionMatrix = jacobianSystemMatrix;

ObsParams.TransitionMatrix = jacobianMeasurementMatrix;

% Run the Kalman Filter with the modified transition marices

[X_Post, P_Post, K, e] = Filter.Kalman(xPredicted, P_Priori, Obs, ...

SystemParams, ObsParams);

end

end

end
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Appendix D

MATLAB Sequential Importance

Resampling Filter

Implementation

classdef GenericParticleFilter < handle

%GenericParticleFilter Particle Filter Class

% This file contains code for the SIS-R Filter

% PROPERTIES (Public)

properties(GetAccess = public, SetAccess = protected)

% The name of the filter

name

% The number of particles

numberParticles

% The threshold at which resampling will be executed

resampleThreshold

% The resampling scheme

resampler

% The final set of particles and their associated importance weights

finalParticles

finalImportanceWeights

finalEffectiveSampleSize

mmse

end

% METHODS (Static)

methods(Static = true)

% Function: Effective Sample Size

% Input: Weights (Vector)
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% Output: Effective Sample Size (Float)

% NOTES:

function results = EffectiveSampleSize(Weights)

% EffectiveSampleSize.

% The effective sample size

% NOTE: This calculation is from Marcus Piggott’s paper

results = 1/(sum(Weights.^2));

end

end

% METHODS (Public)

methods(Access = public)

% Function: Particle Filter

% Input:

% Output: None

% NOTES:

function this = GenericParticleFilter(NumberParticles, ResamplingScheme,

...ResamplingThreshold)

% GenericParticleFilter. The default Constructor.

this.name = ’SIS-R Filter’;

this.numberParticles = NumberParticles;

this.resampleThreshold = ResamplingThreshold;

this.resampler = ResamplingScheme;

end

% NOTES:

% 1. This uses logged weights

function [particles, weights, ess] = run(this, NumberTimeSteps, Data, ...

SystemModelFunctionHandle, MeasurementModelFunctionHandle, ...

InitialParticles, InitialWeights, Covariance)

% Run.

[dataLength, dataDimension] = size(Data);

% Ensure that there is sufficient data for the specified

% NumberTimeSteps

if(NumberTimeSteps > dataLength)

NumberTimeSteps = dataLength;

end

% The initial particles and their importance weights

weights = InitialWeights;

particles = InitialParticles;

ess = NaN(NumberTimeSteps, 1);

% Iterate through the each time step

for t = 1:NumberTimeSteps

% The current data point

currentObservation = Data(t, :);

% Generate the new states from the SystemModelFunctionHandle

% NOTE: The SystemModelFunctionHandle is the proposal distribution
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particlesNew = SystemModelFunctionHandle(particles);

particles = particlesNew;

if(t == 1)

% Log the initial set of weights

logWeightsNew = log(weights);

else

% Generate a new set of importance weights

logWeightsNew = logWeightsNew - ( ...

(-(dataDimension/2) * log(2 * pi) -0.5 * log(det(Covariance))).*

ones(1,

this.numberParticles) ...

-0.5 * (((currentObservation(1) * ones(this.numberParticles, 1) -

particlesNew(:, 1)).^2)./(2 * Covariance(1)^2))’ ...

-0.5 * (((currentObservation(2) * ones(this.numberParticles, 1) -

particlesNew(:, 2)).^2)./(2 * Covariance(end)^2))’ ...

);

end

% The largest weight

lMax = max(logWeightsNew);

% Correct the weights up to a multiplicative factor

correctedWeights = exp(logWeightsNew - lMax);

% Normalise the weights

weights = correctedWeights./sum(correctedWeights);

stem(weights);

% Calculate the effective sample size

effectiveSampleSize =

GenericParticleFilter.EffectiveSampleSize(weights);

ess(t) = effectiveSampleSize;

% Resample if the effectiveSampleSize is less than the

% this.resampleThreshold

if (round(effectiveSampleSize) < this.resampleThreshold)

% fprintf(’\tResampling (ESS: %d, Threshold: %d)\n’,

%round(effectiveSampleSize), ...

%

%this.resampleThreshold);

% The indices of the particles that are to be resampled

resampledIndices = this.resampler(weights);

% The particles after resampling

particles = particles(resampledIndices,:);

% Assign the importance weights to be uniform for the resampled

% particles

weights = ones(size(weights, 1), 1)/this.numberParticles;

end

end

end

end

end
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Appendix E

MATLAB Auxiliary Filter

Implementation

classdef AuxiliaryParticleFilter < GenericParticleFilter

%AUXILIARYPARTICLEFILTER Auxiliary Particle Filter

% Auxiliary Particle Filter

% METHODS (Public)

methods(Access = public)

% Function: Auxiliary Particle Filter

% Input: Number of Particles (Integer),

% Resampling Scheme Function Handle (Function Handle), Resampling

% Threshold (Integer)

% Output: None

% NOTES:

function this = AuxiliaryParticleFilter(NumberParticles, ResamplingScheme,

ResamplingThreshold)

% AuxiliaryParticleFilter. The default Constructor.

this = this@GenericParticleFilter(NumberParticles, ResamplingScheme, ...

ResamplingThreshold);

this.name = ’Auxiliary Particle Filter’;

end

% Function: Run

% Input: NumberTimeSteps (Integer)

% Output: Particles (Vector), Weights (Vector)

% NOTES:

function [mmse, effectiveSampleSizes] = runAlteredWeightUpdate(this, ...

NumberTimeSteps, Data, ProposalFunctionHandle, ...

MeasurementModelFunctionHandle, InitialParticles, InitialWeights,

Covariance)

% Run.

% Ensure that there is sufficient data for the specified

% NumberTimeSteps
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if(NumberTimeSteps > length(Data))

NumberTimeSteps = length(Data);

end

% The initial particles and their importance weights

weights = InitialWeights;

particles = InitialParticles;

logWeights = zeros(NumberTimeSteps, this.numberParticles);

w2 = zeros(NumberTimeSteps, this.numberParticles);

normalisedWeights = zeros(NumberTimeSteps, this.numberParticles);

mmse = NaN(NumberTimeSteps, 2);

effectiveSampleSize = NaN(1, NumberTimeSteps);

% The constant term used in the weight update equation

constantTerm = (-1 * log(2 * pi) -0.5 * ...

log(det(Covariance))).*ones(1, this.numberParticles);

% Iterate through the each time step

for t = 1:NumberTimeSteps

% The current data point

currentDataPoint = Data(t, :);

currentObs = repmat(currentDataPoint, this.numberParticles, 1);

% Generate the new states from the systemModelFunctionHandle

particlesPrior = ProposalFunctionHandle(particles);

% particles = particlesNew;

% Generate a new set of importance weights

if(t == 1)

logWeights(t, :) = log(weights);

else

% currentObs = repmat(currentDataPoint,

%this.numberParticles, 1);

% NOTE: Dimension/2

% This only for diagonal covariance

logWeights(t,:) = logWeights(t-1,:) - constantTerm ...

- 0.5 * (((currentObs(:, 1) - particlesPrior(:, 1)).^2)./(2 *

(Covariance(1)^2)))’ ...

- 0.5 * (((currentObs(:, 2) - particlesPrior(:, 2)).^2)./(2 *

(Covariance(end)^2)))’;

end

maxLogWeight = max(logWeights(t, :));

% NOTE:

% 1. correct only up to a multiplicative factor for unnormalized

% weights

w2(t, :) = exp(logWeights(t, :) - maxLogWeight);

normalisedWeights(t, :) = w2(t, :)./sum(w2(t, :));

% The effective sample size

effectiveSampleSize(t) = 1/sum(normalisedWeights(t, :).^2);

% Resample if the effectiveSampleSize is less than the

% this.resampleThreshold

if (round(effectiveSampleSize(1,t)) < this.resampleThreshold)
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% The indices of the particles that are to be resampled

resampledIndices = this.resampler(normalisedWeights(t,:));

else

resampledIndices = 1:length(particles);

end

% New particles based on the resampledIndices

particles = ProposalFunctionHandle(particles(resampledIndices, :));

% Assign the importance weights

numerator = constantTerm ...

- 0.5 * (((currentObs(:, 1) - particles(:, 1)).^2)./(2 *

(Covariance(1)^2)))’ ...

- 0.5 * (((currentObs(:, 2) - particles(:, 2)).^2)./(2 *

(Covariance(end)^2)))’;

denominator = constantTerm ...

- 0.5 * (((currentObs(:, 1) - particlesPrior(resampledIndices,

1)).^2)./(2

* (Covariance(1)^2)))’ ...

- 0.5 * (((currentObs(:, 2) - particlesPrior(resampledIndices,

2)).^2)./(2

* (Covariance(end)^2)))’;

w2(t, :) = numerator./denominator;

% Normalise the importance weights

normalisedWeights(t, :) = w2(t, :)./sum(w2(t, :));

% Store the MMSE

mmse(t,:) = particles’ * normalisedWeights(t, :)’;

end

effectiveSampleSizes = effectiveSampleSize;

end

% Function: Run

% Input: NumberTimeSteps (Integer)

% Output: Particles (Vector), Weights (Vector)

% NOTES:

function [particles, weights] = run(this, NumberTimeSteps)

% Run.

% Ensure that there is sufficient data for the specified

% NumberTimeSteps

if(NumberTimeSteps > length(this.data))

NumberTimeSteps = this.data;

end

% The initial particles and their importance weights

weights = this.initialImportanceWeights;

particles = this.initialParticles;

% Iterate through the each time step

for i = 1:NumberTimeSteps

fprintf(’Time = %i\n’, i);

% The current data point

currentDataPoint = this.data(i);
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% Generate the new states from the systemModelFunctionHandle

particlesPrior = this.systemModelFunctionHandle(particles);

% Generate a new set of importance weights from the

% measurementModelFunctionHandle (the likelihood)

weightsNew = this.measurementModelFunctionHandle(particlesPrior,

currentDataPoint);

% Update the current importance weights by multiplying it by the

% likelihood (weightsNew)

weights = weights .* weightsNew;

% Normalise the importance weights

weights = weights / sum(weights);

% Calculate the effective sample size

effectiveSampleSize =

GenericParticleFilter.EffectiveSampleSize(weights);

% Resample if the effectiveSampleSize is less than the

% this.resampleThreshold

if (effectiveSampleSize < this.resampleThreshold)

fprintf(’Resampling (ESS: %d, Threshold: %d)\n’, effectiveSampleSize,

%

%...

this.resampleThreshold);

% The indices of the particles that are to be resampled

resampledIndices = this.resampler(weights);

end

% New particles based on the resampledIndices

particles =

this.systemModelFunctionHandle(particles(resampledIndices));

% Assign the importance weights

numerator = this.measurementModelFunctionHandle(...

particles, currentDataPoint);

denominator = this.measurementModelFunctionHandle(...

particlesPrior(resampledIndices, :), currentDataPoint);

weights = numerator./denominator;

% Normalise the importance weights

weights = weights / sum(weights);

end

% Store the final set of particles and their associated importance

%weights

this.finalParticles = particles;

this.finalImportanceWeights = weights;

end

end

end
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Appendix F

MATLAB Resampling Schemes

Implementation

classdef ResamplingScheme < handle

% RESAMPLINGSCHEME

% Resampling Schemes

% METHODS (Static)

% TODO:

% 1. All of the Resampling Schemes should check the input Weights to

% ensure that they are already normalised!

% 2. Utilise the overload the Multinomial function, since the CDF component

% is used by all other schemes

methods(Static)

% Function: Multinomial

% Input: Weights (Vector)

% Output: Selected Indices (Vector)

% NOTES:

function results = Multinomial(Weights, StartIndex)

% Multinomial.

% fprintf(’ResamplingScheme.Multinomial\n’);

if(nargin == 2 && StartIndex > 1)

startIndex = StartIndex;

else

startIndex = 1;

end

numberWeights = length(Weights);

% The CDF of the Weights

empiricalCDF = cumsum(Weights);

% Initialise the results data structure

results = NaN(numberWeights, 1);

% Iterate through the Weights

143



for i = startIndex:numberWeights

% Find the first weight that is greater than the randomly generated

% number

randNum = rand;

index = find(empiricalCDF > randNum, 1);

results(i) = index;

end

end

% Function: Residual

% Input: Weights (Vector)

% Output: Selected Indices (Vector)

% NOTES:

function results = Residual(Weights)

% Residual.

% fprintf(’ResamplingScheme.Residual\n’);

numberWeights = length(Weights);

% Initialise the results data structure

results = NaN(numberWeights, 1);

% The counts of each index that will be in the results

tmp = numberWeights .* Weights;

indexReplicationCount = floor(tmp);

% The number of indices that will be replicated in the results

residualCount = sum(indexReplicationCount);

% The number of indices that will be drawn using the

% ResamplingScheme.Multinomial method

numberMultinomialResampledWeights = numberWeights - residualCount;

% Modify the Weights

Weights = (tmp -

indexReplicationCount)/numberMultinomialResampledWeights;

% Replicate the Weights according to the replcationCount

indicesToReplicate = find(indexReplicationCount > 0);

% The number of times each index should be replicated

indexReplicationCount = indexReplicationCount(indicesToReplicate);

% Replicate the indicesToReplicate indexReplicationCount times in the

% results

C = arrayfun(@(x, y) repmat(x, [1 y]), indicesToReplicate, ...

indexReplicationCount, ’UniformOutput’, false);

results(1:residualCount, :) = cell2mat(C);

% Draw the remaining Weights using the ResamplingScheme.Multinomial

%method

multinomialResults = ResamplingScheme.Multinomial(Weights, residualCount

+ 1);

multinomialSelectedIndices = find(multinomialResults > 0);

% Add the results from the

results((residualCount + 1):end) = ...

multinomialResults(multinomialSelectedIndices);
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end

% Function: Stratified

% Input: Weights (Vector)

% Output: Selected Indices (Vector)

% NOTES:

function results = Stratified(Weights)

% Stratified.

% fprintf(’ResamplingScheme.Stratified\n’);

numberWeights = length(Weights);

% Initialise the results data structure

results = NaN(numberWeights, 1);

% The CDF of the Weights

empiricalCDF = cumsum(Weights);

% Generate thresholds

thresholds = NaN(numberWeights, 1);

for i = 1:numberWeights,

randNum = rand;

thresholds(i) = (randNum + (i-1))/numberWeights;

end

%

for i = 1:numberWeights

% The first index of the empiricalCDF that exceeds the current

%threshold

results(i) = find(empiricalCDF > thresholds(i), 1);

end

end

% Function: Systematic

% Input: Weights (Vector)

% Output: Selected Indices (Vector)

% NOTES:

function results = Systematic(Weights)

% Systematic.

% fprintf(’ResamplingScheme.Systematic\n’);

numberWeights = length(Weights);

% Initialise the results data structure

results = NaN(numberWeights, 1);

% The CDF of the Weights

empiricalCDF = cumsum(Weights);

% Generate thresholds

randNum = rand;

thresholds = linspace(0, 1 - 1/numberWeights, numberWeights) + ...

randNum/numberWeights;

for i = 1:numberWeights

% The first index of the empiricalCDF that exceeds the current

%threshold

results(i) = find(empiricalCDF > thresholds(i), 1);

end
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end

% Function: Get Handle

% Input: Option (Integer)

% Output: Function Handle (Function Handle)

% NOTES:

function value = GetHandle(Option)

% GetHandle.

% Return the ResamplingScheme. method corresponding to the Option

switch Option

case 1

fprintf(’ResamplingScheme.Multinomial\n’);

value = @(x) ResamplingScheme.Multinomial(x);

case 2

fprintf(’ResamplingScheme.Residual\n’);

value = @(x) ResamplingScheme.Residual(x);

case 3

fprintf(’ResamplingScheme.Systematic\n’);

value = @(x) ResamplingScheme.Systematic(x);

case 4

fprintf(’ResamplingScheme.Stratified\n’);

value = @(x) ResamplingScheme.Stratified(x);

otherwise

usageString = ’1 = Multinomial, 2 = Residual, 3 = Systematic, 4 =

Stratifed’;

error(’ResamplingScheme:GetHandle:InvalidOption’, usageString);

end

end

end

end
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Appendix G

Cointegration Rank Estimates for

FV - TU Pair

Batch Number Estimated Rank Frequency of Estimation Lag

1 0 0.2593 1

1 1 0.5185 1

1 2 0.2222 1

2 0 0.1852 1

2 1 0.5926 1

2 2 0.2222 1

3 0 0.1481 1

3 1 0.6296 1

3 2 0.2222 1

4 0 0.1852 1

4 1 0.6296 1

4 2 0.1852 1

5 0 0.1111 1

5 1 0.7407 1

5 2 0.1481 1

6 0 0.1852 1

6 1 0.5926 1

6 2 0.2222 1

7 0 0.1481 1

7 1 0.5926 1

7 2 0.2593 1

8 0 0.1852 1

8 1 0.5926 1

8 2 0.2222 1

9 0 0.1852 1

9 1 0.5556 1

9 2 0.2593 1

10 0 0.2222 1

10 1 0.5926 1

10 2 0.1852 1

11 0 0.2222 1

11 1 0.5185 1

11 2 0.2593 1

12 0 0.1852 1
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12 1 0.5556 1

12 2 0.2593 1

13 0 0.2222 1

13 1 0.4444 1

13 2 0.3333 1

14 0 0.2222 1

14 1 0.5185 1

14 2 0.2593 1

15 0 0.1481 1

15 1 0.5926 1

15 2 0.2593 1

16 0 0.1481 1

16 1 0.5556 1

16 2 0.2963 1

17 0 0.1481 1

17 1 0.5185 1

17 2 0.3333 1

18 0 0.1111 1

18 1 0.6667 1

18 2 0.2222 1

19 0 0.0741 1

19 1 0.7037 1

19 2 0.2222 1

20 0 0.0741 1

20 1 0.7037 1

20 2 0.2222 1

1 0 0.2593 2

1 1 0.4444 2

1 2 0.2963 2

2 0 0.2222 2

2 1 0.5185 2

2 2 0.2593 2

3 0 0.2963 2

3 1 0.4815 2

3 2 0.2222 2

4 0 0.3704 2

4 1 0.4444 2

4 2 0.1852 2

5 0 0.2222 2

5 1 0.5926 2

5 2 0.1852 2

6 0 0.2593 2

6 1 0.4815 2

6 2 0.2593 2

7 0 0.3333 2

7 1 0.4074 2

7 2 0.2593 2

8 0 0.2593 2

8 1 0.5185 2

8 2 0.2222 2

9 0 0.1852 2

9 1 0.5556 2

9 2 0.2593 2

10 0 0.2593 2

10 1 0.5185 2

10 2 0.2222 2

11 0 0.2963 2

11 1 0.4444 2

11 2 0.2593 2
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12 0 0.2593 2

12 1 0.4815 2

12 2 0.2593 2

13 0 0.1852 2

13 1 0.4815 2

13 2 0.3333 2

14 0 0.2222 2

14 1 0.5185 2

14 2 0.2593 2

15 0 0.2593 2

15 1 0.5556 2

15 2 0.1852 2

16 0 0.2222 2

16 1 0.5185 2

16 2 0.2593 2

17 0 0.2222 2

17 1 0.5185 2

17 2 0.2593 2

18 0 0.1852 2

18 1 0.6296 2

18 2 0.1852 2

19 0 0.1481 2

19 1 0.7037 2

19 2 0.1481 2

20 0 0.1481 2

20 1 0.6667 2

20 2 0.1852 2

1 0 0.4444 3

1 1 0.2593 3

1 2 0.2963 3

2 0 0.4074 3

2 1 0.3333 3

2 2 0.2593 3

3 0 0.3704 3

3 1 0.4444 3

3 2 0.1852 3

4 0 0.3704 3

4 1 0.4444 3

4 2 0.1852 3

5 0 0.2963 3

5 1 0.5185 3

5 2 0.1852 3

6 0 0.3333 3

6 1 0.4444 3

6 2 0.2222 3

7 0 0.4444 3

7 1 0.2963 3

7 2 0.2593 3

8 0 0.3704 3

8 1 0.4074 3

8 2 0.2222 3

9 0 0.2593 3

9 1 0.4815 3

9 2 0.2593 3

10 0 0.3333 3

10 1 0.5185 3

10 2 0.1481 3

11 0 0.2963 3

11 1 0.4444 3
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11 2 0.2593 3

12 0 0.2593 3

12 1 0.4815 3

12 2 0.2593 3

13 0 0.2222 3

13 1 0.4815 3

13 2 0.2963 3

14 0 0.2593 3

14 1 0.5185 3

14 2 0.2222 3

15 0 0.2593 3

15 1 0.5185 3

15 2 0.2222 3

16 0 0.2963 3

16 1 0.5185 3

16 2 0.1852 3

17 0 0.2593 3

17 1 0.5185 3

17 2 0.2222 3

18 0 0.2963 3

18 1 0.5185 3

18 2 0.1852 3

19 0 0.2593 3

19 1 0.5926 3

19 2 0.1481 3

20 0 0.2593 3

20 1 0.5556 3

20 2 0.1852 3

1 0 0.4815 4

1 1 0.2222 4

1 2 0.2963 4

2 0 0.4444 4

2 1 0.2963 4

2 2 0.2593 4

3 0 0.3704 4

3 1 0.4074 4

3 2 0.2222 4

4 0 0.3704 4

4 1 0.4444 4

4 2 0.1852 4

5 0 0.3333 4

5 1 0.5185 4

5 2 0.1481 4

6 0 0.3704 4

6 1 0.3704 4

6 2 0.2593 4

7 0 0.4444 4

7 1 0.2963 4

7 2 0.2593 4

8 0 0.4074 4

8 1 0.3704 4

8 2 0.2222 4

9 0 0.3704 4

9 1 0.4074 4

9 2 0.2222 4

10 0 0.3704 4

10 1 0.4815 4

10 2 0.1481 4

11 0 0.3704 4
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11 1 0.4074 4

11 2 0.2222 4

12 0 0.2963 4

12 1 0.4444 4

12 2 0.2593 4

13 0 0.2593 4

13 1 0.4444 4

13 2 0.2963 4

14 0 0.2963 4

14 1 0.4815 4

14 2 0.2222 4

15 0 0.3333 4

15 1 0.4444 4

15 2 0.2222 4

16 0 0.4074 4

16 1 0.4074 4

16 2 0.1852 4

17 0 0.3704 4

17 1 0.4444 4

17 2 0.1852 4

18 0 0.3333 4

18 1 0.4815 4

18 2 0.1852 4

19 0 0.3333 4

19 1 0.5556 4

19 2 0.1111 4

20 0 0.3333 4

20 1 0.5185 4

20 2 0.1481 4
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Appendix H

Cointegration Rank Estimates for

AUD - CAD Pair

Batch Number Estimated Rank Frequency of Estimation Lag

1 0 0.7333 1

1 1 0.1333 1

1 2 0.1333 1

2 0 0.8000 1

2 1 0.1333 1

2 2 0.0667 1

3 0 0.9000 1

3 1 0.0333 1

3 2 0.0667 1

4 0 0.8333 1

4 1 0.0667 1

4 2 0.1000 1

5 0 0.8667 1

5 1 0.0667 1

5 2 0.0667 1

6 0 0.7667 1

6 1 0.1000 1

6 2 0.1333 1

7 0 0.7667 1

7 1 0.1333 1

7 2 0.1000 1

8 0 0.8667 1

8 1 0.1000 1

8 2 0.0333 1

9 0 0.8333 1

9 1 0.1333 1

9 2 0.0333 1

10 0 0.8333 1

10 1 0.1333 1

10 2 0.0333 1

11 0 0.7667 1

11 1 0.1667 1

11 2 0.0667 1

12 0 0.7333 1
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12 1 0.1667 1

12 2 0.1000 1

13 0 0.7667 1

13 1 0.1333 1

13 2 0.1000 1

14 0 0.8333 1

14 1 0.1000 1

14 2 0.0667 1

15 0 0.9000 1

15 1 0.0333 1

15 2 0.0667 1

16 0 0.8000 1

16 1 0.0667 1

16 2 0.1333 1

17 0 0.6667 1

17 1 0.1333 1

17 2 0.2000 1

18 0 0.7333 1

18 1 0.1000 1

18 2 0.1667 1

19 0 0.7667 1

19 1 0.1000 1

19 2 0.1333 1

20 0 0.8000 1

20 1 0.0667 1

20 2 0.1333 1

1 0 0.8333 2

1 1 0.1000 2

1 2 0.0667 2

2 0 0.8333 2

2 1 0.1000 2

2 2 0.0667 2

3 0 0.9000 2

3 1 0.0333 2

3 2 0.0667 2

4 0 0.8667 2

4 1 0.0333 2

4 2 0.1000 2

5 0 0.8667 2

5 1 0.0667 2

5 2 0.0667 2

6 0 0.8333 2

6 1 0.0667 2

6 2 0.1000 2

7 0 0.9000 2

7 1 0.0333 2

7 2 0.0667 2

8 0 0.9333 2

8 1 0.0333 2

8 2 0.0333 2

9 0 0.8667 2

9 1 0.1000 2

9 2 0.0333 2

10 0 0.9333 2

10 1 0.0667 2

10 2 0.0000 2

11 0 0.8333 2

11 1 0.0667 2

11 2 0.1000 2
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12 0 0.7667 2

12 1 0.1000 2

12 2 0.1333 2

13 0 0.7667 2

13 1 0.1000 2

13 2 0.1333 2

14 0 0.8667 2

14 1 0.0667 2

14 2 0.0667 2

15 0 0.9000 2

15 1 0.0333 2

15 2 0.0667 2

16 0 0.8667 2

16 1 0.0333 2

16 2 0.1000 2

17 0 0.8000 2

17 1 0.0333 2

17 2 0.1667 2

18 0 0.8000 2

18 1 0.0667 2

18 2 0.1333 2

19 0 0.9000 2

19 1 0.0333 2

19 2 0.0667 2

20 0 0.8000 2

20 1 0.0667 2

20 2 0.1333 2

1 0 0.8000 3

1 1 0.1333 3

1 2 0.0667 3

2 0 0.8333 3

2 1 0.1000 3

2 2 0.0667 3

3 0 0.9667 3

3 1 0.0000 3

3 2 0.0333 3

4 0 0.9000 3

4 1 0.0333 3

4 2 0.0667 3

5 0 0.9000 3

5 1 0.0333 3

5 2 0.0667 3

6 0 0.8667 3

6 1 0.0667 3

6 2 0.0667 3

7 0 0.9000 3

7 1 0.0333 3

7 2 0.0667 3

8 0 0.9333 3

8 1 0.0333 3

8 2 0.0333 3

9 0 0.9333 3

9 1 0.0333 3

9 2 0.0333 3

10 0 0.9333 3

10 1 0.0667 3

10 2 0.0000 3

11 0 0.8333 3

11 1 0.0333 3
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11 2 0.1333 3

12 0 0.8000 3

12 1 0.1000 3

12 2 0.1000 3

13 0 0.8000 3

13 1 0.0667 3

13 2 0.1333 3

14 0 0.8667 3

14 1 0.0667 3

14 2 0.0667 3

15 0 0.9000 3

15 1 0.0333 3

15 2 0.0667 3

16 0 0.8667 3

16 1 0.0333 3

16 2 0.1000 3

17 0 0.8333 3

17 1 0.0000 3

17 2 0.1667 3

18 0 0.8333 3

18 1 0.0667 3

18 2 0.1000 3

19 0 0.9000 3

19 1 0.0333 3

19 2 0.0667 3

20 0 0.8000 3

20 1 0.0667 3

20 2 0.1333 3

1 0 0.7667 4

1 1 0.1333 4

1 2 0.1000 4

2 0 0.8333 4

2 1 0.1000 4

2 2 0.0667 4

3 0 0.9667 4

3 1 0.0000 4

3 2 0.0333 4

4 0 0.9333 4

4 1 0.0333 4

4 2 0.0333 4

5 0 0.9333 4

5 1 0.0000 4

5 2 0.0667 4

6 0 0.9000 4

6 1 0.0333 4

6 2 0.0667 4

7 0 0.9000 4

7 1 0.0333 4

7 2 0.0667 4

8 0 0.9333 4

8 1 0.0333 4

8 2 0.0333 4

9 0 0.9333 4

9 1 0.0333 4

9 2 0.0333 4

10 0 0.9333 4

10 1 0.0667 4

10 2 0.0000 4

11 0 0.8333 4
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11 1 0.0667 4

11 2 0.1000 4

12 0 0.8000 4

12 1 0.1000 4

12 2 0.1000 4

13 0 0.8333 4

13 1 0.0667 4

13 2 0.1000 4

14 0 0.8667 4

14 1 0.0667 4

14 2 0.0667 4

15 0 0.9000 4

15 1 0.0333 4

15 2 0.0667 4

16 0 0.8667 4

16 1 0.0333 4

16 2 0.1000 4

17 0 0.8333 4

17 1 0.0000 4

17 2 0.1667 4

18 0 0.8333 4

18 1 0.0667 4

18 2 0.1000 4

19 0 0.9000 4

19 1 0.0333 4

19 2 0.0667 4

20 0 0.8000 4

20 1 0.0667 4

20 2 0.1333 4
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Appendix I

Cointegration Rank Estimates for

NQ - AUD Pair

Batch Number Estimated Rank Frequency of Estimation Lag

1 0 0.8095 1

1 1 0.1905 1

1 2 0.0000 1

2 0 0.9048 1

2 1 0.0476 1

2 2 0.0476 1

3 0 0.9524 1

3 1 0.0000 1

3 2 0.0476 1

4 0 0.9048 1

4 1 0.0000 1

4 2 0.0952 1

5 0 0.9524 1

5 1 0.0000 1

5 2 0.0476 1

6 0 0.9524 1

6 1 0.0000 1

6 2 0.0476 1

7 0 1.0000 1

7 1 0.0000 1

7 2 0.0000 1

8 0 0.9048 1

8 1 0.0000 1

8 2 0.0952 1

9 0 0.9048 1

9 1 0.0000 1

9 2 0.0952 1

10 0 0.9524 1

10 1 0.0000 1

10 2 0.0476 1

11 0 0.8571 1

11 1 0.0000 1

11 2 0.1429 1
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12 0 0.8095 1

12 1 0.0000 1

12 2 0.1905 1

13 0 0.8095 1

13 1 0.0000 1

13 2 0.1905 1

14 0 0.8571 1

14 1 0.0000 1

14 2 0.1429 1

15 0 0.9000 1

15 1 0.0000 1

15 2 0.1000 1

16 0 0.8889 1

16 1 0.0556 1

16 2 0.0556 1

17 0 0.7778 1

17 1 0.1667 1

17 2 0.0556 1

18 0 0.8333 1

18 1 0.1667 1

18 2 0.0000 1

19 0 0.8333 1

19 1 0.1667 1

19 2 0.0000 1

20 0 0.9444 1

20 1 0.0556 1

20 2 0.0000 1

1 0 0.8095 2

1 1 0.1905 2

1 2 0.0000 2

2 0 0.9048 2

2 1 0.0476 2

2 2 0.0476 2

3 0 0.9524 2

3 1 0.0000 2

3 2 0.0476 2

4 0 0.8571 2

4 1 0.0476 2

4 2 0.0952 2

5 0 0.9048 2

5 1 0.0476 2

5 2 0.0476 2

6 0 0.9048 2

6 1 0.0000 2

6 2 0.0952 2

7 0 0.9524 2

7 1 0.0000 2

7 2 0.0476 2

8 0 0.9524 2

8 1 0.0000 2

8 2 0.0476 2

9 0 0.9048 2

9 1 0.0000 2

9 2 0.0952 2

10 0 0.9524 2

10 1 0.0000 2

10 2 0.0476 2

11 0 0.9048 2

11 1 0.0000 2
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11 2 0.0952 2

12 0 0.8095 2

12 1 0.0000 2

12 2 0.1905 2

13 0 0.8095 2

13 1 0.0000 2

13 2 0.1905 2

14 0 0.9048 2

14 1 0.0000 2

14 2 0.0952 2

15 0 0.9500 2

15 1 0.0000 2

15 2 0.0500 2

16 0 0.8889 2

16 1 0.0556 2

16 2 0.0556 2

17 0 0.7778 2

17 1 0.1667 2

17 2 0.0556 2

18 0 0.8333 2

18 1 0.1667 2

18 2 0.0000 2

19 0 0.8333 2

19 1 0.1667 2

19 2 0.0000 2

20 0 0.9444 2

20 1 0.0556 2

20 2 0.0000 2

1 0 0.7619 3

1 1 0.1905 3

1 2 0.0476 3

2 0 0.9048 3

2 1 0.0476 3

2 2 0.0476 3

3 0 0.9524 3

3 1 0.0000 3

3 2 0.0476 3

4 0 0.8571 3

4 1 0.0476 3

4 2 0.0952 3

5 0 0.9048 3

5 1 0.0476 3

5 2 0.0476 3

6 0 0.9048 3

6 1 0.0000 3

6 2 0.0952 3

7 0 1.0000 3

7 1 0.0000 3

7 2 0.0000 3

8 0 0.9524 3

8 1 0.0000 3

8 2 0.0476 3

9 0 0.9048 3

9 1 0.0000 3

9 2 0.0952 3

10 0 0.9048 3

10 1 0.0000 3

10 2 0.0952 3

11 0 0.9048 3
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11 1 0.0000 3

11 2 0.0952 3

12 0 0.8095 3

12 1 0.0000 3

12 2 0.1905 3

13 0 0.8095 3

13 1 0.0000 3

13 2 0.1905 3

14 0 0.9048 3

14 1 0.0000 3

14 2 0.0952 3

15 0 0.9000 3

15 1 0.0000 3

15 2 0.1000 3

16 0 0.8889 3

16 1 0.0556 3

16 2 0.0556 3

17 0 0.7778 3

17 1 0.1667 3

17 2 0.0556 3

18 0 0.8333 3

18 1 0.1667 3

18 2 0.0000 3

19 0 0.8333 3

19 1 0.1667 3

19 2 0.0000 3

20 0 0.9444 3

20 1 0.0556 3

20 2 0.0000 3

1 0 0.7143 4

1 1 0.1905 4

1 2 0.0952 4

2 0 0.9524 4

2 1 0.0476 4

2 2 0.0000 4

3 0 0.9524 4

3 1 0.0000 4

3 2 0.0476 4

4 0 0.8571 4

4 1 0.0476 4

4 2 0.0952 4

5 0 0.9524 4

5 1 0.0476 4

5 2 0.0000 4

6 0 0.9048 4

6 1 0.0000 4

6 2 0.0952 4

7 0 1.0000 4

7 1 0.0000 4

7 2 0.0000 4

8 0 0.9524 4

8 1 0.0000 4

8 2 0.0476 4

9 0 0.9048 4

9 1 0.0000 4

9 2 0.0952 4

10 0 0.9048 4

10 1 0.0000 4

10 2 0.0952 4
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11 0 0.8571 4

11 1 0.0000 4

11 2 0.1429 4

12 0 0.7619 4

12 1 0.0000 4

12 2 0.2381 4

13 0 0.7619 4

13 1 0.0000 4

13 2 0.2381 4

14 0 0.8571 4

14 1 0.0000 4

14 2 0.1429 4

15 0 0.9000 4

15 1 0.0500 4

15 2 0.0500 4

16 0 0.8889 4

16 1 0.0556 4

16 2 0.0556 4

17 0 0.7778 4

17 1 0.1667 4

17 2 0.0556 4

18 0 0.8333 4

18 1 0.1667 4

18 2 0.0000 4

19 0 0.8333 4

19 1 0.1667 4

19 2 0.0000 4

20 0 0.9444 4

20 1 0.0556 4

20 2 0.0000 4
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