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Abstract

The high-dimensional, generally non-linear, matrix-variate setting of cointegrated Vector Autore-
gressive (CVAR) models presents a challenging context for performing inference. The development,
implementation and testing of several state-of-art Particle Markov Chain Monte Carlo (PMCMC)
methods are discussed for the purpose of joint estimation of latent states and static parameters in
Bayesian CVAR models. The effectiveness of the estimation performed by the samplers in a variety
of static and dynamic linear and non-linear systems is explored. The use of PMCMC samplers is
demonstrated for a class of cointegration model with innovation error covariance structure which
dynamically evolves according to a latent square Bessel process.
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Chapter 1

Introduction

Over the last 25 years the concept of cointegration has been widely applied in the field of financial
econometrics in the areas of multivariate time series analysis and macroeconomics. As well as find-
ing applications there, the field in which the concept originated, it has gone on to be applied in the
apparently unrelated fields of biology, political science, and, increasingly, quantitative finance and
trading. The concept is important because it provides a way to isolate and identify the influence
of common, stable, long-term stochastic trends on time-series variables. The variables are allowed
to deviate from their inherent relationships in the short term, but to retain the associations in the
long term. Examples of financial variables which display a cointegration relationship abound, with
obvious examples being spot and futures prices for a particular asset, and interest rate yields for
the same currency but varying maturities.

The finance industry has in general been slow to replace the outdated (but ingrained) use of the
limited concept of correlation with the more powerful, appropriate and stable concept of cointe-
gration. The ubiquitous use of short-term correlation measures between de-trended time-series
in investment risk/return analyses guarantees the loss of valuable information contained in the
common trends of the prices. An analysis based on cointegration is more likely to be stable in the
long-run and to provide a better understanding of risk. Similarly a trading strategy based on the
concept is likely to require reduced rebalancing in its hedging strategy and thus its transaction
costs, and have more attractive long-run performance characteristics.

This thesis focuses on the development of sophisticated stochastic simulation methodologies for
the estimation of cointegrated models in a Bayesian setting, with the aim of applying these in
future work to financial time-series. The reason that such sophisticated methods are necessary
is that interest lies not only in performing inference for the unknown matrix-variate static model
parameters, but in elucidating the hidden, latent, vector-valued states driving the cointegrated
systems. This is a very challenging problem in the context of cointegrated models both due to the
very high-dimensionality of the systems, the matrix-variate formulation which is highly sensitive
to changes in certain model components and the potential for the underlying systems to have non-
linear specifications.

By representing the cointegrated models in state-space form the deep underlying connection with
the techniques of filtering becomes clear. Filtering is concerned with estimating the likely states
of a system from noisy observations. There are many varieties of filter and the most efficient or
effective type for a particular state-space system depends on the underlying dynamics of that sys-
tem. A very general and powerful class of techniques, which can be applied to the filtering problem
in both linear and non-linear situations, is that of Sequential Monte Carlo (SMC) methods. For
situations involving non-linearity these are far superior to their traditional linear Gaussian cousins,
the Kalman Filters.

Markov Chain Monte Carlo (MCMC) methods are well established techniques for sampling from
otherwise intractable distributions. Recently, state-of-the-art methods have been developed which
embed SMC filters within MCMC samplers for the joint estimation of static parameters and latent
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states in complex non-linear dynamical systems. These Particle Markov Chain Monte Carlo (PM-
CMC) methods appeared in the literature in 2010 and many aspects of their behaviour in complex
practical applications remain open research questions.

This thesis records the development, implementation and testing of a series of PMCMC samplers
capable of performing the required joint estimation. In one sense the thesis, although a complete
description of the samplers, their construction and practical implementation, represents the first
phase of a larger project which will culminate in a paper detailing the methodology for estima-
tion of an extended class of cointegrated models! that incorporate stochastic volatility via inverse
Wishart processes. Future work will also focus on the application of these models in a quantitative
trading scenario.

LA simple example of which is included in the project as Model M.



Chapter 2

Models for Cointegration

2.1 Introduction

This chapter introduces multivariate models for time series and the key related concepts of inte-
grated series and cointegrated vector autoregressive (CVAR) models. Ordinary VAR models are
stationary and thus do not admit trends or shifts in the mean or the covariances, nor deterministic
seasonal patterns. We will consider nonstationary processes of a very specific type; these will be
allowed to have stochastic trends and are then called integrated. Under the constraint that some of
the variables move together in the long-run, although they have stochastic trends, they are driven
by a common source of stochasticity and are called cointegrated.

Section 2.2 describes the concept of cointegration and the conditions necessary for its existence in
the context of VAR models. Section 2.3 briefly describes the reasons for the origin of cointegration
and the applications the concept has found in the finance industry. Section 2.4 gives details of two
popular formats for representing cointegrated models: Phillips’ triangular representation and the
Vector Error Correction Model (VECM) representation of Engle and Granger. In section 2.5 the
Johansen maximum likelihood method is briefly described for the purpose of parameter estimation
in CVAR models. Finally, the chapter concludes with a short case study (Section 2.6) that uses
the Johansen method to determine the cointegration rank for each of five synthetic VECMs.

2.2 Cointegrated VAR models

A wvector autoregressive (VAR) process is the multivariate analogue of a univariate autoregressive
(AR) process. The VAR model of order p, or VAR(p), can be written:

Xt = p+ Aixe_1 + -+ Apxt,p + €, (21)
where x; = (21, ..., 2Znt)" is @ (n x 1) random vector, the A; are fixed (n x n) coefficient matrices,
p = (u1,..., ) is a fixed (n x 1) vector of intercept terms and € = (€, ...,€nt)" is an n-

dimensional white noise or innovation process'.

A stationary process® is one that has time invariant first and second moments, and thus does not

have trends or changing variances. A VAR process is stationary if the determinantal polynomial
of the VAR operator has all its roots outside the complex unit circle. Features such as trending
means (and heteroskedasticity) are common in real financial time series, therefore models built from
stationary processes are insufficient to capture some of the main features of interest. Typically the
technique of taking successive differences may be used to remove trends and create a stationary
differenced series; however, if we are required to analyse the original variables rather than these
differences, models will be needed that can accommodate the nonstationarity.

LA white noise process has: E(e;) = 0, E(es, €}) = Xe, and E(es, €5) = 0 for s # ¢.
2Here we are discussing covariance stationary processes, there are stronger forms of this concept, see
[Liitkepohl, 2007] for details.
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Random walk-like behaviour is observed for univariate AR processes such as
Tt =p+aryi—1+ -+ apTi—p + €,

if 1 —ajz —---—apz?P has a root for z = 1; that is, an integrated process of order 1. The presence
of d unit roots in the AR operator of a univariate process x; will create an integrated process of
order d, denoted z; ~ I(d). Generally, such a process can be made stationary by differencing d
times: A% = (1 — L)%, is stationary (the differencing operator, A, is expressed in terms of the
lag operator, L, as A = (1 — L), and Ly = x4_1).

The VAR in (2.1) can be re-written as
A(L)Xt = €,

where A(L) = I, — AL—---—A,LP, and L is the lag operator. A VAR process can generate deter-
ministic and stochastic trends if the determinantal polynomial of the VAR operator has roots on
the complex unit circle. It is sufficient to allow for unit roots (z = 1) to obtain trending behaviour
of the variables. In the case of a vector process having unit roots some of the processes can have
common trends so that they move together to some extent. These are then called cointegrated.

Cointegration represents the presence of equilibrium relationships between sets of time series vari-
ables. Writing the set of variables as a vector xy = (214, ..., xy) the long-run equilibrium can be
expressed as

B'x: = Brx1t + ... Bpant = 0, (2.2)

where 3 = (34,...8,)". For a particular time period the relationship may not be satisfied exactly,
but we may have 3'x; = e;, where e; is a stochastic variable representing deviations from the
equilibrium. It is possible in this arrangement that the variables wander as a group, i.e. they
are driven by a common stochastic trend. In other words that each of them individually may be
integrated and therefore nonstationary, but that there exists a linear combination of the variables
which is stationary; such a group is termed cointegrated. A synthetically simulated cointegrated
bivariate time series is shown below in Figure 2.1.

Simulated bivariate cointegrated system

Time
1 cointegrating vector, 1 common trend

Cointegrating residual

12 3 4
|

u.arl

-1

0 50 100 150 200 250

Time

Figure 2.1: Simulated bivariate cointegrated time system: the lower plot shows the cointegrating
residual (e;).
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The concept of cointegration was introduced by Engle and Granger [Engle and Granger, 1987].
The linear combination written in (2.2) is termed the cointegrating relationship, and the vector 3
is called the cointegrating vector. Usually, the variables in an n-dimensional process x; are called
cointegrated of order (d,b), or x; ~ C1I(d,b), if all elements of x; are I(d) and a linear combination
2zt := (3'%¢ with B # 0 such that z; is I(d — b). For example, if all components of x; are I(1) and
B’x; is stationary I(0), then x; ~ CI(1,1).

A cointegrating vector B is not unique; multiplying by a non-zero constant produces a further
cointegrating vector. There may be various linearly independent cointegrating vectors: for example,
given 6 variables under study there may be cointegrating relationships between the first and last
sub-groups containing 3 variables. Alternatively there may be cointegrating relationships involving
the whole group of 6 variables.

2.3 Cointegration in Finance

By far the most common application domains for the cointegration concept are econometrics and
finance. Any system of financial asset prices with a mean-reverting spread will have some degree
of cointegration, despite the fact that the causalities revealed by these relationships contradict the
efficient financial markets hypothesis. Mean reverting is the term finance practitioners use to refer
to stationary processes. If spreads are mean-reverting, assets will be tied together in the long-term
by a common stochastic trend.

Equilibrium relationships are expected to exist between financial variables of various categories and
for various reasons, for example: between spot and futures prices for commodities or assets, between
exchange rates and relative prices in various countries, between equity prices and dividends, and
between the equities within an index. The origin of these relationships is often clear: spot and
futures prices represent prices for the same underlying asset at different points in time, relative
prices and exchange rates are tied to future expectations of interest rates in various countries,
and dividends and equity prices refer to different measures of value of the the same underlying
company. The result of these underlying connections is that new information will affect the prices
in similar ways.

2.3.1 Cointegration and correlation

Despite the fact that the concept of cointegration has been written about extensively since its
introduction in 1987, and can be considered a key concept of the field of modern time series
econometrics, its application to ‘real-world’ applications in finance and investment management
has been relatively slow to gain ground. The reason for this is that, traditionally, the starting point
for portfolio risk/return management has been the analysis of correlation amongst the historical
security returns, whereas cointegration considers raw prices, yields or rates. The familiar concept
of correlation, although related, is not the same thing as cointegration. Highly correlated returns
do not imply securities with high cointegration and vice versa.

Correlation is a typically unstable, short-term measure of the co-movements of returns; hedging
or quantitative investment strategies which depend upon measures of correlation typically require
frequent rebalancing. Conversely, since cointegration measures long-term co-movements between
prices (which may occur even when short term correlations are low), portfolio hedging strategies
which depend on cointegration will require less rebalancing and be more effective in the long term.
In a sense cointegration generalises the concept of correlation to the case of non-stationary time
series [Alexander, 1999
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2.3.2 Applications of Cointegration in Investment

A number of opportunities exist to apply knowledge of the existence of cointegration to the tasks
of reducing investment risk and increasing investment performance in specific situations in finance.
Simple examples are provided by the classic index tracking strategies, or the long-short equity
market neutral strategies, see for example [Alexander and Dimitriu, 2002]. We will describe both
of these to give a flavour of the possible applications of cointegration to investment management.

Index Tracking Strategy: This strategy aims to replicate a benchmark index in terms of return
and volatility. A cointegration analysis can be the starting point for constructing an index replicat-
ing portfolio; such portfolios are expected to have similar returns, volatilities, and high correlation
with the index. [Alexander and Dimitriu, 2002] give three reasons for using cointegration (rather
than correlation) to construct an equity index tracking portfolio:

e The tracking error (between replicating portfolio and the benchmark) is, by construction,
mean reverting.

e The stock weights in the portfolio are more stable, and thus require less frequent re-balancing.
e Better use of information, in particular the information contained in the stock prices.

Implementing the index tracking strategy is a two stage process; the first stage consists of
selecting the stocks to include in the tracking portfolio, and the second stage involves determining
the holding in each stock based - typically on a correlation analysis or - here on a cointegration
analysis. The selection stage is carried out by a portfolio manager using proprietary methods or
technical analysis; this stage does not have special features in a cointegration based approach.
However, the second stage is different in a cointegration based approach compared to the standard
correlation based approaches. The stock weights in the portfolio are estimated based on ordinary
least squares (OLS) coefficients of the cointegration equation that regresses the index log price on
the selected stock log prices over a given period [Alexander and Dimitriu, 2002]:

N
log Iy = ¢1 + E C+1log Py ¢ +e,
k=1
Tracking Portfolio

where I; and Py ; are the index price and the price of stock £ at time ¢ respectively. The residuals
et, above, are stationary if and only if the tracking portfolio and the index are cointegrated. The
procedure provides a unique portfolio of stocks for each selected holding and calibration period.

Long-short Market Neutral Strategy: This strategy builds on the cointegration-constructed in-
dex tracking portfolio, and aims to generate returns under all market conditions. The combination
of index tracking and long-short market neutral strategies is designed to improve upon the prop-
erties of the basic component strategies. The strategy also depends on the tracking ability of
cointegrated portfolios, but uses two replicating portfolios: a plus and a minus portfolio which
track ‘enhanced’ benchmarks. Simply put, one of these, the plus portfolio, is expected to increase
in value overall, where the minus is expected to decrease in value. By holding the plus portfolio
long, and selling the minus portfolio short the strategy is expected to generate returns on the
spread between the two portfolios.

2.4 Representation

The literature on estimation and inference of cointegrated systems contains three extensively used
representations for cointegrating models: Phillips’ triangular representation, Stock and Watson’s
common trends representation and Engle and Granger’s vector error correction model (VECM)
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(see for example [Phillips, 1991], [Stock and Watson, 1988] and [Engle and Granger, 1987] ). In
the following section the first and last of these are explained in more detail.

2.4.1 Triangular Representation

The triangular representation was first introduced in [Phillips, 1991]. Consider a cointegrating
vector with true rank r, i.e. rank(8) = r, whereby there are r linearly independent rows in 3.
By rearranging the order of the variables we can always ensure that the first » rows of 3 are
linearly independent. Therefore, the upper (r x r) sub-matrix consisting of the first r rows of 3 is
non-singular:

I
* o 2.3
o [ Bn—r) } 23)

where B,y has dimension ((n —r) x ). This normalisation ensures a unique cointegration ma-
trix and will be discussed in more detail in later sections.

If the normalization in (2.3) is made we can re-write the cointegrating system as
1 2 1
xt" =g, x? +ef (2.4)
Ax?) = o,

(1) (2)

where xgl) and e,”’ have dimension (r x 1), x?) and e;,”’ have dimension ((n —r) x 1), and e; =
(e,gl) ,e?) ) is a stationary process. There cannot be any cointegrating relationships between the

(2)

components of the x;”’ subsystem, since otherwise there would be more than r linearly independent

cointegrating relationships (and this would make the rank larger than r). The variables in the XEQ)

part represent stochastic trends in the system, see [Liitkepohl, 2007] chapter 6.

2.4.2 Vector Error Correcting Model

Before the introduction of the concept of cointegration, the closely related error correction models
were reported in the econometrics literature: see [Phillips, 1954] which introduced the error cor-
rection concept to the field of econometrics, [Sargan, 1964], and also [Hendry and Richard, 1983].
In error correction models the changes in a particular variable are dependent upon deviations from
an equilibrium relation. A simple example concerns the price of an asset in two different markets,
x1¢ and z9¢, where the equilibrium relationship between these prices is x1; = Bx9;. Changes to x1;
depend on deviations from this equilibrium in the preceding time period, t — 1:

Az = o (z10—1 — Pr1x2e—1) + €14,

and similarly changes in xo; may also be dependent on deviations from the same equilibrium:
Aoy = ap(w10—1 — P1x2,4—1) + €21

For a mode general ECM the values of Ax;; may also depend upon lagged changes in both variables:

Az = o (z1 -1 — Brzai—1) + Y1111 41 + V12,1021 1Az 41 + €1 (2.5)

Az = ap(z11—1 — Pr1x2at—1) + Y21,18%1 11 + ¥22,1 021 11 A2 41 + €24

If both x1; and 2y are I(1) variables the above represents a cointegrating relationship for z1; —
Biwas.

We can re-write (2.5) using vector-matrix notation to give:

Ax; = af’'xi—1 + T1Ax_1 + €.
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It is straightforward to see that this can also be re-written in a VAR(2) form (by writing out
Ax; = x¢ — X¢—1 ete).

The Granger representation theorem [Engle and Granger, 1987] states that a multivariate inte-
grated process is cointegrated if and only if it can be represented in the ECM form with certain
restrictions. The general form for the vector error correction model (VECM) representation of an
n-dimensional VAR process of order p is

p—1
Axt = th—l + Z FiAXt_l + ¢)dt + €, (26)
i=1
where:
Ax; € R™ =Xt — X¢_1,

II is the (n x n) long-run multiplier matrix,

r; is the i"(n x n) lag matrix,

d; is an (n x 1) vector of deterministic terms, defined as a polynomial in time ¢,

¢ is an (n x n) matrix,

€ is an (n x 1) i.i.d. multivariate, correlated vector of errors.

The cointegration properties of the vector model depend upon the rank, r, of the long-run multiplier
matriz, II. If the rank, r is equal to zero, then x; has a stable VAR(p — 1) representation and
exhibits no cointegrating relationships. If r = n, that is the matrix II is full rank, then the VAR
operator has no unit roots and x; is a stable VAR(p) stationary process. If, however, the rank, r,
is intermediate, 0 < r < n, then the VECM process is cointegrated. In this case IT can be written
as a matrix product IT = a3’ with a and 3 both of dimension (n x r) and both of rank r. The
matrix 3 is still called the cointegrating matriz and its columns are the cointegrating vectors of the
process. The matrix « is called the loading matriz, and the 3’x; are called the common trends.

Under these conditions it is possible to re-write (2.6) as:

p—1
Ax; = aﬁ’xt_l + Z I'Axi—1 + d)dt + €. (27)

=1

It is important to note that the decomposition of the (n x n) long-run multiplier matrix IT into
the product of two (n x r) matrices, IT = a3’ is not unique. For any non-singular (r X r) matrix
Q we can define a* = a@’ and B* = BQ ! and get IT = a*B*. This demonstrates that the
cointegration relationships are not unique. However, as mentioned in the previous section, it is
possible to impose restrictions on the a and/or 3 to provide unique relations.

In situations where cointegration exists, the VECM representation will generate superior forecasts
than the corresponding first-differenced form representation, especially over medium and long time
horizons. The reason for this is that under cointegration, z; = 3’x;, will have finite forecast error
variance, whereas any other linear combination of the forecasts of the series in x; will have infinite
variance [Engle and Yoo, 1987].

2.5 Parameter Estimation

Various methods for estimating the parameters of a multivariate cointegration model have been
developed, including a number based on least squares estimators. Here we focus on the most
popular maximum likelihood based estimator: the Johansen Procedure.
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2.5.1 Johansen Maximum Likelihood Procedure

Maximum Likelihood (ML) estimation for the parameters of Vector Autoregressive (VAR) models
was first developed by Sgren Johansen in 1991 [Johansen, 1991] and as such the ML method is
often known as the Johansen method.

Consider an Vector Error Correction Model of order p,

p—1
Ax; =TIxi_1 + > TiAx_1 + ¢dy + €, e ~ MVN(0,%), (2.8)
i=1

where, the parameters of the VECM are as defined in Section (2.4.2). The aim of the Johansen
method is to determine a linear combination Z; = 'x; which is I(0). Equation (2.8) can also be
represented by,

Zoy = o' Z1y + Vg + €, (2.9)
et = Zot — aff Zuy + Y Zay, (2.10)

where:

ZOt = AXt,

Zit = X1,

R — (Flv"' 7I‘p713¢)a ,

Zor = (Axt, -+, Axp—py1,dt)’,

€ is iid multivariate Gaussian noise with covariance X.
By assuming that the ¢; are iid samples from a multivariate Gaussian distribution with zero mean
and covariance X, we can solve for the model parameters by maximizing the log likelihood function
for a data sample size T of Equation (2.9):

T
1 1
L(O&,B7\I/, E) = \/ﬁexp <_2 2622_1@)
t=1

nT T 1 &
InL(a,B,¥,%) = —71n27r — 5111]2\ -3 § X e
t=1

T T
= —%m% - 5[z
T
1 f /w—1 /
3 E (ZOt —af Zy + \I/ZQt) b)) (Z()t —af Zy + \IJZQt) . (2.11)
t=1

By working with this form we can arrive at ML estimators for the ECM parameters. The ML esti-
mators are summarised in the following table, and the derivation of these is provided in Appendix
A.

Estimator Form
& So18(8'S116) !
B [vl,...,v’“]/Sil/2
0 Soo — So18(8'S1,18) 18 So
v Moo Mp,' — af' Mya My,
Maximum Likelihood o |Soo f[ (1-X)
i=1

Table 2.1: ECM parameter estimators from the Johansen Maximum Likelihood Method



CHAPTER 2. MODELS FOR COINTEGRATION

Where we have defined:
e Product moment matrices: M;; = %Zthl Zith’-t, fori,7=0,1,2.

o Auxilliary regressions: Zo; = MogMyy' Zot + Rot, and Zy; = MiaMyy' Zoy + Ry, where Roy
and Ry; are the residuals.

e Residual sum of squares matrices: S;; = % Zthl Ry R je for 2,7 =0, 1.

e A1 > )y > ...\ are the eigenvalues of 5’1_11/25’105&)15’015’1_11/2

Asymptotic Properties

The Maximum Likelihood (ML) estimators of the parameters of the Vector Error Correction Model
in Equation (2.8) are consistent and have the following central limit theorem [Liitkepohl, 2007],

VTvee ([ﬁ SUEIE r]) 4 N0, ),

(80 a8 0
%= ([0 o0 nn))

VTvech (Qu - Qu) 4 N(0,2D) (Q, ® Q) D),

where:

and

where D,, is the duplication matrix and D} = (D;Dn)_lD;L, the Moore-Penrose generalised inverse
of D,. Also Q is asymptotically independent of IT and T'.

2.5.2 Tests for Cointegration Rank

The effectiveness of the Johansen maximum likelihood procedure depends on our ability to correctly
estimate the cointegration rank, r. A likelihood ratio test can be used to estimate the rank. To
test:

Hy : rank(IT) = r against Hi :ro < rank(IT) <y, (2.12)

we compare the maximum likelihood functions for models with cointegration rank ry or r1. The
resulting LR test statistic is given by:

ALr(ro,m1) = 2[ln L(r1) = In L(ro)]

rl 0
=T [> In(1—X)+ ) In(1-x)
=1 =1

rl
=-T > In(l-X)

i=ro+1

The literature has focussed attention on two particular instances of this test:

Hy : rank(IT) = r against Hy :rg < rank(II) < K, (2.13)
and

Hy : rank(II) = g against Hi : rank(IT) = ro + 1, (2.14)

where the first, Apg(ro, K), is called the trace statistic, and the second, Apgr(ro, 70 + 1), is called
the maximum eigenvalue statistic. The distributions of the corresponding likelihood-ratio test

10



2.6. CASE STUDY: APPLYING THE JOHANSEN PROCEDURE

statistics are non-standard and are tabulated, see [Johansen, 1995] or [MacKinnon et al., 1999]. In
particular they are not x?—distributed, and depend on the number of common trends under Hy
or the alternative hypothesis. Johansen [Johansen, 1995] shows that these are distributed as:

ALg(ro, K) % Tr(D),

and ALr(ro, 0 + 1) 4, Amax (D),

where Apax (D) denotes the maximum eigenvalue of the matrix D, where D is given by:

D = </01 WdW’)l </01 WW’ds) B (/01 WdW’> : (2.15)

and W := Wpg_, () is a standard (K — rg)-dimensional Wiener process [Liitkepohl, 2007].

2.6 Case Study: Applying the Johansen Procedure

The Johansen procedure was run on 10,000 separate synthetic datasets generated according to
each of the 5 VECM’s specified in the paper by [Sugita, 2002], and listed in Table 2.2 below. The
maximum eigenvalue test statistics was used to determine the cointegration rank for each synthetic
dataset at the 5% significance level. The frequency of the rank as determined by the procedure is
then counted and compared to the known rank.

’ Label \ Sugita Model Rank, r
So Axt:ut—i-et 0
T 0.2 ]
0.2
S Axy = po + 0.2 [1 0 0 —1}Xt—1+€t 1
02 |
02 —02]
02 —02|[1 00 -1
S2 Axi=pot | g9 03 {o 10 —1}’“‘“%7* 2
02 02
05 s oo |[L 00
S3 Axp = po + ) : ’ 01 0 -1 |x—1+e€ 3
0.2 02 —02 001 1
0.2 02 02
02 02 02 027100 —1]
02 —02 —02 —02 010 -1
Sa [ Axe=pot | o0 09 g2 02|00 1 -1 |XrTe| 4
02 02 02 02 ||l0o0o0 —1]

Table 2.2: ECM models from the paper by [Sugita, 2002]

11
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’ Model Number \ Estimated Rank | Frequency

So 0 0.9315
So 1 0.0553
So 2 0.0025
So 3 0.0003
So 4 0.0104
S, 0 0.0000
S: 1 0.7628
S, 2 0.1060
S, 3 0.0163
S, 4 0.1149
S, 0 0.0000
S, 1 0.0000
S, 2 0.9232
S, 3 0.0509
S, 4 0.0259
S, 0 0.0000
S, 1 0.0000
Ss 2 0.0394
Ss 3 0.8989
Ss 4 0.0617
S, 0 0.0000
S, 1 0.0000
Sy 2 0.0000
S,y 3 0.0000
S,y 4 1.0000

Table 2.3: Table showing the frequency with which each rank is determined by the maximum
eigenvalue test for the Sugita VECM’s. Each of the 10,000 datasets consisted of 150 observations
from each of the 5 models. The most frequent estimated rank for each model is highlighted in
bold-face type.

These results show that the Johansen ML method, and associated likelihood ratio tests, provide an
effective methodology for determining the cointegration rank of a VECM system. For example the
procedure correctly identified that model Sy has cointegration rank 2 for 92.3% of the synthetic
datasets. It may be important to have a method for determining the cointegration rank; the
samplers we develop in chapter 5 for the challenging task of joint estimation of static parameters
and latent states in CVAR models operate conditional upon rank. By determining the rank using
the ML procedure the appropriate model can be run to find the latent states and parameters.

Remark In a complete Bayesian analysis however, we could introduce a prior over cointegration
rank, r, and then evaluate the model evidence after running each of the alternative models with
r=0,1,...,n.

12



Chapter 3

Bayesian Cointegrated Vector Autoregressive

Models

3.1 Introduction

In this chapter the Cointegrated VAR (CVAR) models introduced in Chapter 2 are incorporated
into a Bayesian modelling framework. The Bayesian analysis of CVAR models has been addressed
in several papers, see [Koop et al., 2006] for an overview. The specification of the matrix vari-
ate model priors must be carried out with care to ensure that the posterior is not improper, see
[Koop et al., 2006]. Here the aim is not to design novel prior specifications so we will adopt the
Bayesian model of [Sugita, 2002] and [Geweke, 1996], which has desirable conjugacy properties.
The resulting posterior distribution for an n—dimensional CVAR model is matrix-variate in di-
mension up to 3n? + n for full rank models [Peters et al., 2010]. Significant correlation exists
between the blocks of matrix variate random variables, and for these reasons it is extremely diffi-
cult to design effective schemes for sampling the posterior distribution.

The focus of this research is the design and implementation of state-of-the-art stochastic sampling
techniques which can attack such a high-dimensional and complex problem in the matrix-variate
setting. In Chapter 5 suitable techniques are introduced, and for the remainder of this chapter the
three main model categories are set out. The first model considered is an ECM CVAR model built
on top of a static latent system; this has a fixed latent mean level with noise, and will be referred
to as Model Mg throughout.

The second model considered, Model My, has a latent system with dynamic linear or non-linear
trend terms. The final model has a stochastic driving process for the covariance matrix of the
CVAR model observation error terms, and is labelled Model My. The models are introduced in
the following sections.

3.2 Model My: Bayesian Static CVAR Model

Model M, Initially consider the case of a CVAR model with an intercept, but no time trend or
other dynamics; this amounts to having a stationary mean level pg - with noise w; - as the latent
system process:

e = po + wy (3.1)

We assume that x; is an integrated of order 1, I(1), (n x 1)-dimensional vector with r linear
cointegrating relationships. The Error Correction Model (ECM) representation for the cointegrated
series of vector observations at time ¢, x4, is given by:

p—1
(i =) Awi=p+afm 1+ Vidz i +e, (3.2)

=1

13



CHAPTER 3. BAYESIAN COINTEGRATED VECTOR AUTOREGRESSIVE MODELS

where t = p,p+1,...,T and p is the number of lags [Sugita, 2002]. The observation errors are
assumed to come from € ~ N(0,%) and are uncorrelated over time, and the system errors are
from w; ~ N(0,X,); the matrix dimensions are:

Matrix Dimension
Tt, bty €t (nx1)
v, X %, (nxn)

a, 3 (nxr)

3.2.1 The Multivariate Regression Format

We can now re-express the ECM model in a multivariate regression format:

Y =XI'+ZBd' +FE (3.3)
Y X r z E
B o
/ / N N —
Az, 1 Az, , ... Az’ o Tp_1 3,1 Teu €
Az, 1 Az, ... JAV: 24 ¥, x, . €p+1
. - . . . . + . . N . 9
: : : . : 3 o
Az 1 Az ..o Azh ] [Py xp_q | D €T
~ nxr XN
txn txa axn txn txn

where t is the number of rows of Y, hence t = T'—p+1 giving X dimension ¢t x (1+n(p—1)) =t xa,
I" with dimension a x n. This can be re-expressed in the following very compact form:

Y=WB+E (3.4)
B
f_AT
Y w Ko E
’ ’ vy
A$p 1 Aacp_l ce Aa:l wp—l,BI ce a:p_l,Br : €p
Az, 1 Az, ... JAV: 24 xp,B81 ... X0 : €p+1
. = . ; \I'p—l + : ,
Azt 1 Amé‘fl o Aw%7p+1 zpB1 ... 16, , €T
5 N—_——
txn {tx(a+r)}=txk o | txn
———
kxn

where I have highlighted in cyan the submatrices of W and B which together specify the long-run
multiplier matrix (I = a3’). The dimensions of W and B are as shown in equation 3.4. It
will be useful to also define B = (W'W)~'W'Y to be the OLS estimate of the matrix B, and
S = (Y —WB) (Y — WB) to be the residual sum of squares from the OLS fit.

Priors Now we consider conjugate priors for some of the parameters in equation 3.4, and follow the
suggestions given in the paper by Sugita [Sugita, 2002], and used in Peters [Peters et al., 2010]. It
is popular to consider hierarchical prior models for matrix-variate parameter ¥ (when not evolving
dynamically) and B given as:

e The prior for the ECM noise covariance Y. can be given as an Inverse Wishart distribution
with h degrees of freedom and where S is an (n x n) positive definite matrix:

S ~ IW (S, h) (3.5)

1
7(2) ~ |S|"2 |5~ (h /2 exp {—2 Tr{ElS}}

14



3.2. MODEL Mj: BAYESIAN STATIC CVAR MODEL

e The conjugate prior density for B conditional on the noise covariance X follows a matrix-
variate Gaussian distribution with covariance matrix ¥ ® A~! of the form:

B’Z ~ Nkz,n(B‘§7A_1vz) (36)

2(BIS) ~ S| F/2| A2 exp —%Tr{Z’l(B—E)’A(B—E)} ,

with hyperparameter PSD matrices A (k x k) and mean PSD matrix B (k x n),

e The prior for the matrix of cointegration vectors 3 can be written as a matrix-variate Gaus-
sian

6 ~ Nn,T(IB‘B7H_1aQ) (37)
-n r 1 — a2 2
m(B) ~ QI H P exp |~ e {QTN(B - BYH(B - B)} |,
where 3 is the prior mean of 3, @ is an (r x 7) positive definite matrix and H is an (n x n)
PSD matrix.

If we assume as in [Sugita, 2002] that 3, ¥ and ¥,, are mutually independent then the joint prior
of the parameters of interest is:

p(B,B,%) = p(B)p(B|X)p(¥) (3.8)

k4+h4n+1
2

o n(B)Al2|Z] exp |3 T {x7(5 + (B~ BYA(B - B))}

Note: When N is followed with sub-scripts e.g. Y ~ N, 7(u, 3, 2) it refers to the matrix-variate
normal distribution with row dependence captured in the (n x n) covariance matrix ¥ and column
dependence captured by a (7" x T') matrix €.

15
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System Model
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° } Observations
Observation Model
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Figure 3.1: Directed Acyclic Graph (DAG) showing the full Bayesian hierarchical ECM considered
here. The priors for the latent system are discussed in the next section; the parameters F', Ag, hy,
and Sy, are hyperparameters of the latent system model.

(z L...T

Likelihood According to [Gupta and Nagar, 1999] for an (n xT') random matrix-variate Gaussian
Y’ ~ N, 7(p, X, ) then the vectorised form, in which the columns are stacked on top of each other
to make a nT x 1 random vector, is multivariate Gaussian and denoted:

Vec(Y) ~ Npr (Vec(p), X @ Q). (3.9)

Therefore we can represent the matrix-variate likelihood for this regression, for the parameters of
interest B, and 3 by:

. 1
L(Y|3,B,%) = (2r) 2| ® |2 exp —5 VeeY = WB)'(5™' ® 071) Vee(Y - WB)|  (3.10)

Posteriors The conjugate prior distributions allow us to easily write down the posterior distribu-
tions for the observation system. We condition upon the observations Y = [Ax,, ..., Azyp|’. For
derivation details see [Sugita, 2002].

e The conditional posterior of 3 is derived as an Inverted Wishart distribution with parameters

S* and h*:
Y~ IW(S™, h¥)

PEIBY) o ST e ey | S tnis s ()
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3.2. MODEL Mj: BAYESIAN STATIC CVAR MODEL

where we define

~

S, =8+S5+(B-B[A +WW) ' "Y(B-B)
h* :t+h

e The conditional posterior of B is a matrix-variate normal distribution with covariance ¥ ®
ATl

B ~ Npn(By, AL YD)

P(BIS, 2, Y) o |82 exp | ST {(571(B — B ALB - B} | (3.12)

or alternatively if X is integrated out B follows a matrix-variate student distribution:

B ~ MSTy..(Bs, A7 L, Sy)
p(BIB,Y) o [Su/2| A2 | S, + (B — B.) Au(B — B,)| " T/, (3.13)

where we have defined
A* — A + W/W,

B, = ATY(AB+W'WB),
(3.14)

e By integrating the joint posterior distribution with respect to B the posterior distribution
for the cointegrating vector, §, is found to be

p(BIY) o m(B) |8, HHHHI/2| 4,7/ (3.15)

The log-posterior for 3 therefore is:

(t+h+1)

log p(BlY) o< — 5

log | S| — glog|A*|, (3.16)

and this is plotted in Figure 3.2 for data-sets of varying size.
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Figure 3.2: Plots showing the effect of altering the data-set size, T' = 50, 100, 150, 200 on
log p(B[Y).

It is trivial to sample from the posteriors for > and B given the observations, Y, however sampling
from ( requires the use of a sophisticated stochastic sampling methodology: we will introduce
Adaptive Markov Chain Monte Carlo (AdMCMC) sampling for this purpose in section 5.3.

Remark Aside from the fact that it is impossible to sample from the posterior distribution of
logp(B|Y) exactly in closed form the surface is difficult to sample from using standard stochastic
techniques. This is both because the posterior surface possesses a very sharp ridge running along
certain directions, and also because the shape is very sensitive to small changes in the matriz
varitate components on which it depends.

3.3 Model M;: Latent Linear Dynamics CVAR Model

We now increase the flexibility of the model by allowing the latent system to possess a linear latent
dynamic in mean. A simple version of this model may be generated via the autoregressive process
with transition matrix, F} :

pe = po + Frpg 1 4 wy. (3.17)

Again we may re-express this in a multivariate regression format by stacking the latent state
vectors:
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3.3. MODEL M;: LATENT LINEAR DYNAMICS CVAR MODEL

M=XF+E (3.18)
M X E
—_—N—
1 1 0/ r wq
M2 1 l'l/]_ o w2
= +
: : : 13 ol
, —~—
ur T pr_ 1] axn wr
—_—
Txn Txa Txn

where T is the number of observations and thus rows of M, giving X dimension T'x (1+n)) =t xa,
and F' which is defined as F' = [wo F4]’, dimension a x n. The OLS estimator of F' is given by
F = (X'X)"1X'M, and the residual sum of squares is S, = (M — XF)'(M — XF).

System Model Priors Now in a similar way we consider conjugate priors for the latent system
p1.7, due to their attractive properties. It is possible to specify hierarchical conjugate priors
[Koop and Korobilis, 2010] for the latent state transition matrix and the latent state noise covari-
ance. Referring to Figure 3.1 the latent system can be seen to have a similar model structure to
that of the observation system, particularly the conjugate relationships for F'|¥,, and B|X. We
specify:

e The prior for the latent state noise covariance may be given as an inverted Wishart dis-
tribution, with parameter, S,,, an (n x n) hyperparameter PSD matrix, and h,, degrees of
freedom

S ~ IW (Sw, huy)

1
T(Sw) ~ | Sw| /2|8y Petr /2 exp [—2 Tr{z;lsw}} (3.19)

e The conjugate prior density for F' conditional on the latent state noise covariance ¥, follows
a matrix-variate Gaussian distribution, with covariance matrix ¥,, ® A;,l of the form:

F|Sy ~ Noo(F|F, AR, Sy)

1 _ _
T(F|S0) ~ S| %2 Ap|™? exp [—2 Tr {E,(F — F) Ap(F — F)}] , (3.20)

where F' is a (a x n) mean matrix, a = n + 1 and Ap is an (¢ x a) hyperparameter PSD
matrix.

Latent states Likelihood We can write down the likelihood of F' and X,,, where the latent states
are denoted M = [py po,...,pr"

L(M|F, ) o [So|~T/2 exp [—; {2;1 [S*w +(F-FYX'X(F - F)] }] (3.21)

System Model Posterior Analysis Conditional upon knowledge of the latent system states M =
1 pa2,. .., pr] we may evaluate the posterior distributions of p(X,,|M) and p(F|X,,, M) under
the hierarchical framework specified above. The posterior distributions are available exactly since
we have chosen conjugate priors.
e The latent system noise covariance, ¥,,, has posterior distributed as an Inverse Wishart with
Yo ~ IW(Sy, hy)

wr W

O e D H Tr{zwlszz}} . (322)
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where we have defined (analogously to the observations system):
St =Sy + Sw+ F'X'XF +F ApF — F/[A}]F,
hy, =T + hy

e The latent system transition matrix, F', has a matrix-variate normal distribution, conditional
upon the noise matrix X,

F ~ Ny, (FIF, (A7), Z)
p(FIB, 5, Y) oc | AR["/2|8u| /% exp %Tr {30/ (F = R AR(F - B}, (3.23)

and, again, by integrating out >,,, we can express the conditional posterior for F' as a matrix-
variate student form:

F ~ MST, ,(F, (A5) 71, S5)
P(FIM) o |S5|T/?| A2 Sy + (F — F) AR (F — F,)|7 T2, (3.24)
where we have used
F=Ar+X'X
F* = (ALY ApF + X'XF)
(3.25)

3.4 Model Ms: Latent Covariance Structure CVAR Model

The third model that we consider involves extending the basic static model to incorporate a dy-
namic latent covariance structure for the ECM observation noise process. The phenomenon of
stochastic volatility observed in numerous real-world financial time series is termed heteroskedas-
ticity, and we would like to be able to account for its presence in the observed price series error
distribution. Various model classes for modelling the multivariate dynamic dependence structure
of the errors has been proposed in the literature. Ome possibility is based around parametric
Wishart process models and is the approach we explore briefly here. This approach will focus on
incorporating dynamically evolving heteroskedasticity in the innovation process of the CVAR error
time series.

The matrix Wishart process as presented in [Bru, 1991] and developed further in [Cuciero et al., 2011]
and [Fox and West, 2011], denoted by W (s,n,®q), of dimension n with index d and initial state
®g, defined by the square ®; = Ny N/ of a d x n Brownian matrix V¢, has matrix ®; that satisfies
the s.d.e

dq)t =\ (I)tth + dW,t\/ (I)t + S]Idt, (326)

where W is an n x n Brownian matrix and I is an identity matrix. The matrix Wishart pro-
cess is guaranteed to remain on the space of symmetric positive definite matrices as shown in
[Cuciero et al., 2011] and [Fox and West, 2011]. Another benefit of utilising the processes of the
matrix Wishart form is that it is possible to write an exact representation for the transition prob-
abilities for the matrix states which can be derived in closed form. Conditionally they are defined
as:

‘I’t_l‘ v, St—1 ~ W(Si—1,v)
1 /
Si—1|A, @1 = o <A1/2> (‘I);ll) <A1/2> )

where the scattering matrix, S;, defines the time-variation of the covariance structure, and the
parameter matrix A is chosen to be postivie definite. For simplicity here we focus on the simplest
member of the family of Wishart diffusion processes: the univariate square Bessel process.
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3.4.1 The Square Bessel Process

The univariate square Bessel process is defined by the closed form transition density given by:

qt(z, y) ! (y)y/QeXp <x+y) I, <\/@> (3.27)

o \s 2t ¢

where I, is the modified Bessel function of the first kind with order v, which for any real v is given
by

le)k:

1\ (
L(z) = <2Z) kZ:O k!F(V4+ k+1)

We consider a simple example stochastic volatility CVAR model where the covariance matrix is
sparse, >; = o, with the stochastic volatility process o; given by the square Bessel process
as defined by the transition densities in equation (3.27). The innovation error process, w, is a
multivariate Gaussian random vector which evolves according to the square Bessel process:

wy ~ N(O, Et), where Et = O't]In
1 o —v/2 oi_1+o0 Oi_10¢
otlor—1 ~ q(o-1,0¢) = (t> exp <t1t> I, <> (3.28)

2t \ oy

3.4.2 Sampling from the Square Bessel Process

In [Makarov and Glew, 2009] a simple sequential sampling algorithm is given for simulating a path
from a square Bessel diffusion process. First a sample Y, is drawn from a Poisson distribution
mean X,,_1/2At, then conditional on this random draw X, is sampled from a gamma distribution.
The algorithm returns samples evenly spaced in time.

Algorithm 1: Square Bessel Process Sequential Sampling Algorithm

Input: Xg>0,0=¢tg<t; < - <tn, u>-—1
for n from 1 to N do

1. Sample Y;, ~ Po (%)

2. Sample X,, ~ G (Yn +pt 1, m>

end
Output: (Xo, X1,...,Xn)

The algorithm is based on sampling from a randomised gamma distribution of the form G(a+Y, )
where a +Y > 0 and 5 > 0 are scale and rate parameters, respectively, and Y is a non-negative
integer-valued random variable. This algorithm assumes that v = 2; in the general situation when
v # 2 [Makarov and Glew, 2009] suggest proceeding as follows:

e For given \g,v and Xy sample a path from the square Bessel process with p = 2)g/v? — 1
that starts at (2/v)* X, using the algorithm above.

e After obtaining the path, rescale its values by multiplying them by (v/ 2)2
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Figure 3.3: Paths drawn from the square Bessel process with parameters (clockwise from top left)
{d =1,v =125} {N=1rv =2} {A=1v=35}and {\ = 2,v = 2} for 200 time steps
starting at Xg = 1 using Algorithm 1.

Remark Currently we do not attempt the difficult task of attempting to estimate the value of v,
If we did wish to attempt this estimation we would need to use a very strict prior to constrain its
value, since otherwise the evaluation of the modified Bessel function in the simulation can cause
the square Bessel process to ‘blow-up’ numerically. Thus, building a hyper-prior structure for v is
a challenge in practice. Instead, for the moment, we assume that v is known.
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Chapter 4

State-Space Models and Linear Filtering

4.1 Introduction

State-space models have been studied and used extensively within the physical sciences, engineering
and systems theory. The general format of these models is that an observed (vector!) time series
Yi.T = Y1,Y2,--.,Y7 depends upon an unobserved or latent underlying state zi.;7 = z1,22,...,2z7
which is driven by a stochastic process.

The state vector evolves according to

Z :Ft_lzt_l + w1, t= 1,2,... (41)
where F; is a matrix which may, in general, depend upon the time, ¢, and w; is an error process.
This is often called the transition equation, and F; the transition matriz, because together they
describe the transition of the latent state between times ¢ and ¢ + 1.

The relationship between y; and z; is governed by the observation or measurement equation
Yt = tht+vt, t= 1,2,... (42)

where Hy is the measurement matriz, which may in general depend upon the time period ¢, and
v is usually assumed to be a noise process. We may assume:

z;: is an (n x 1) vector of unobserved or latent state variables,

2 is an (n x 1) vector of observable output variables,

wy is an (n x 1) vector of transition equation errors or noise,

Ut : is an (n x 1) vector of observation/measurement errors or noise,
F,: is an (n x n) transition matrix,

H, : is an (n X n) measurement matrix.

In general these matrices are allowed to be time varying, but we will often be able to assume that
one or more of them are time invariant. We also assume that the process generating the system
states z;, and thus the observed states y;, starts from an initial state zg.

The general specification of this state-space model is completed by making assumptions about
the noise processes [Liitkepohl, 2007]. The joint process

wy
Uy ’
is a zero mean, serially uncorrelated noise process with possibly time varying covariance matrices:

|: Ewt Ewtvt :|
Evtwt E'vt '

'Here for example: y; = [ Yie Y26 .- Yd }/.
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CHAPTER 4. STATE-SPACE MODELS AND LINEAR FILTERING

The DAG for this state-space model is given below in Figure 4.1; note the latent state process
has first order Markov dynamics. An identical DAG also corresponds to the large class of discrete
state Hidden Markov Models (HMM’s) and continuous state Linear and Non-Linear Dynamical
Systems (to which our models belong). More general versions of the SSM are possible (including
for example exogenous variables), but the current model will be sufficient for our purposes.

Figure 4.1: DAG for the state-space model with first order Markov latent dynamics.

With the stochastic assumptions mentioned above the means and covariance matrices of the output
process can be derived:

ty, = E(y:) = HiE(z) (4.3)

Cov(ys, Yirn) = HiCov(zy, zeyp)H'y.

In general the means and autocovariances of the y,’s are not time invariant, therefore in general y;
is a nonstationary process [Liitkepohl, 2007].

4.2 The Filtering Problem

For a moment let us consider a more general non-linear discrete-time state-space model:

Z; = ft(zt—lawt—l)

yi = he(ze,v1),

where the variables are as defined previously, except for f; and h; which are now permitted to be
non-linear, time-variant, deterministic functions.

The general objective of filtering is to estimate the set of system states {z;,t € N} based on the
set of observations from the measurement equation {y;,7 = 1,...,¢} up to time ¢. In the Bayesian
viewpoint the aim of filtering is to calculate the posterior distribution p(z;|y;.t), which naturally
captures the degree of belief in the range of values that state z; may take, conditional on the
observations yi.;. Given the initial, or prior, distribution of the state vector, p(z;), the posterior
distribution can be obtained recursively in a two stages process: prediction and update.

Prediction Stage

The result of the prediction stage is a calculation of an a priori estimate of the posterior distri-
bution, p(z¢|y1.t), at time ¢. This a priori estimate is based on the a posteriori estimate from
the previous time step, and utilizes the identity p(z:|z;—1,y1:1—1) = p(z¢|z¢—1) in the Chapman-
Kolmogorov equation, giving:
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4.3. THE KALMAN FILTER

p(ze|y1:e—1) = | p(z¢, Ze—1]y1:0—1)dze—1

P(Z¢|Ze—1, Y1:0—1)P(Ze—1|Y1:0—1)dZe 1

Il
—

p(zt|ze—1)p(ze—1]y1:4—1)dze—1. (4.4)

Update Stage

In the update stage an a posteriori estimate of the posterior distribution at time ¢ is produced,
given a new measurement y;. The a posteriori estimate is calculated using the following equations:

p(y1:t|z:)p(z:)
P(Yl:t)
_ plyt, y1e-1]ze)p(z:e)
p(Yt; Y1:4-1)
_ p(yelyre—1,20)p(yre—1(ze)p(21)
P(Yely1:t—1)p(Y1:t—1)
_ pyelyre—1,20)p(zely1:e-1)p(y1:e-1)p(z1)
p(Yely1:e—1)p(Y1:e—1)p(2¢)
_ plyelze)p(zely1:e-1)

a p(yely1:t-1) ’ (4.5)

p(zt‘YI:t) -

and the denominator is given by:

p(yelyr:-1) = /p(Yt|Zt)p(Zt|Y1;t—1)dZt- (4.6)

During the update stage, the measurement, y;, is used to modify the prior density to obtain the
posterior density of the current state. The recursive structure of the prediction/update scheme
(sometimes also called predictor/corrector) is clear from these equations. For general models this
optimal solution is intractable due to the potentially high-dimensional, non-analytic integrals in
the prediction and update equations.

By imposing linearity restrictions on the model it is possible to perform these integrals exactly,
and the continuous variable case is termed the linear dynamical system. In conjunction with Gaus-
sian assumptions for the transition and observation error processes the system can be optimally
estimated using the Kalman Filter, which is described in the next section.

4.3 The Kalman Filter

The Kalman filter is a recursive tool to estimate the latent states z; given observations of the
outputs yj., originally developed by Kalman [Kalman, 1960], and Kalman and Bucy. Under nor-
mality assumptions the Kalman filter provides the conditional expectation E(z;|y1,ys,...,y:) and
the conditional covariance matrix Cov(z:|y1,y2,...,Y:), where the latter may be used as a mea-
sure of prediction uncertainty. The computation of the estimators E(z|y1,y2,...,y:) is called
filtering, to distinguish it from smoothing E(zi|y1.7,y2,...,yr) for t = 1,...,T, and prediction

E(Zt—i-l’ylay?? LERN) Yt)

The Kalman filter is very widely applied in science and technology: particularly for the guidance,
navigation and control of vehicles and weapons systems. It has also found a wide variety of appli-
cations in the fields of signal processing and econometrics, where, rather than filtering the likely
location of an object based on noisy measurements of position, it is used to filter the likely under-
lying states based on noisy observations of outputs or econometric variables. The Kalman filter
recursions are now presented.
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CHAPTER 4. STATE-SPACE MODELS AND LINEAR FILTERING

4.3.1 The Kalman Filter Recursions

We assume a state-space model as defined by a slightly modified version of equations (4.1) and
(4.2):

z;=Fz; 1 +JIx; 1 +ws_q, Transition Equation
y: = Hyzy + Gx; 4 vy, Observation Equation
for times ¢t = 1,2,.... The transition matrix, F, is assumed to be time invariant and known. The

measurement matrix, Hy, is assumed to be known and non-stochastic at time ¢, and may include
lagged output variables (since these are available at time ¢). The greyed-out matrices, J and G,
and variables x; are input matrices and input variables; they will not be used in all applications of
the Kalman Filter but are included for completeness. The noise processes are assumed to both be
Gaussian, with time invariant covariances:

we ~ N(O, Ew),
Vg ~ N(07 z:’U)a
and the initial state is also assumed to be Gaussian, zg ~ N (10, Xo).
Some additional notation may help prevent the presentation from becoming cluttered:
2y, =E(z¢]y1:s),
’?‘5 :COV(Zt|y1:s)a
Yt\s =E(ytly1:s),
%), =Cov(yely:s),

and (z]y) ~ N (u, ) means the conditional distribution of z]y is multivariate normal with mean g
and covariance Y. Under the stated conditions of the model, the normality assumptions imply:

(zelyr:e—1) ~N (zt‘t 1 2 1) fort=2,...,T,

(Zt‘t, t|t) fort=1,...,T,

(yely1:e-1) ~N (yt‘t 15 t|t71> fort=2,...,T,

and
(ztly1.1) ~N <Zt\T, t\T) fort > T,

(yelyrr) ~N (yt\T, Et‘T> for t > T.

[Liitkepohl, 2007] The conditional means and covariance matrices for the data period can be ob-
tained from the Kalman filter recursions, which together form a predictor corrector method for
optimally filtering the underlying states.

The Kalman filter recursions are illustrated in Figure 4.2. The recursions begin at time ¢ = 0 with
knowledge of the initial state gy = 29 and the initial state covariance an = 3o, which are used

in the prediction step, to form a prior: estimates for the state z;|p and its covariance 21‘0 at time
t = 1. Predictions are also made for the observation y;|o and its covariance Y . At time t =1

10"
a new measurement is obtained and the innovation e; (the difference between the prediction and
the observation) is calculated. The correction step updates the predictions in the light of the new
information to calculate a posteriori estimates of the state z;|; and its covariance Eﬁl.

The updates are weighted by the Kalman Filter Gain, which is optimal in that it ensures the filter
produces minimum mean square error (MMSE) estimates. The Kalman gain is proportional to the
a priori state covariance matrix and inversely proportional to the innovation covariance matrix.
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4.3. THE KALMAN FILTER

Algorithm 2: The Kalman Filter

Preditions

2y 1 =Fzy g1 +JIx State Prediction

X1 = FEf_l‘t_lF’ + X State Covariance Prediction (4.7)
Yiji—1 = Hizy—1 + Gx Observation Prediction
Zill b1 = Hthlt_lH’t + 2y Observation Covariance Prediction
Corrections
\Z Receive new Measurement
e =Yt — Yiji—1 Calculate the Innovation
2y = zy 1 + Keey Update the State Estimate
2:It = 2:|t—1 — KtEZ‘t_lK’t Update the State Covariance

Ky =35, H(Z), ) Kalman Filter Gain (4.8)

For each time step of the Kalman filter the entire history of states is summarized by a set of
sufficient statistics; the a posteriori state z;; and state covariance X7, The Kalman filter provides
the MMSE estimator of the state if the gain matrix K; is chosen to be the Kalman Gain. Under

these conditions the trace of the a posteriori estimated covariance matrix 2; , 18 minimized.

Prior Knowledge Prediction Step Observation Correction Step
Vi Ve Vi
Initialization DR
® — @ - @ ® -
. =2 Kalman Gain
00 = =0 ittt i1 K =3 H'(Zy )_1 e
27 = Z z z t = ;It—l te-1 z
% 0 z“t—llt—l Z“tlt—l ZtIt
<
=0 t=1,2,..,T
Figure 4.2: Diagram illustrating the Kalman recursions of Algorithm 2 for time stepst =1,...,T.

The a priori predictions of the latent state and its covariance are updated to become a posteriori

estimates once an observation is received.
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4.3.2 Alternative Covariance Update Forms

The a priori predicted state covariance, 2:| +_1> (4.7), is, by definition, a positive semi-definite
matrix. However when applying the filter in practice, computed values of the matrix can lose
this property due to computer numerical errors. If this occurs the Kalman gain may have an
incorrect sign, and estimates produced by the filter may diverge (see [Anderson and Moore, 1979]
for a discussion of these issues). An approach used to guard against these problems is to employ

an alternative form of covariance update. Possible forms are listed in the following table.

’ Form ‘ Equation
Standard 2§|t = 2;15 ) Kt2¥|t71K/t
Joseph | 3%, = (I, - K;Hy) 2f, ([, - K/Hy)' - KB, K

Table 4.1: Alternative forms of covariance updates for the Kalman Filter

Remark The standard covariance update can result in a loss of symmetry and positive definiteness
due to computer rounding errors. The Joseph form is guaranteed to preserve positive definiteness
and symmetry so long as 33, | > 0, however this comes at a greater computational cost that
the standard form. The Joseph form holds for any gain, K}, and not just the optimal gain K.
There are also further forms of the filter (called information filters) which update the inverse

-1
A§|1371 = <2§|t71> :

4.3.3 The Log-Likelihood Function

We will be interested in obtaining the marginal log-likelihood of the data given the static param-
eters, logp(y1.7|®), from the Kalman filter. We assume that the matrices F,H;,J, G, %,, and %,
all depend upon (or can be written as) a vector of time-invariant static parameters © (i.e. © is
time invariant even if H; is not [Liitkepohl, 2007]). By Bayes’ theorem:

P(Y17-~-7YT‘®): )p(YQ;--wYT’)ha@)
( ©)p(y2ly1, ®)...p(yrly1, .-, yr-10)

T
p(y1,© H (yelyts -, ye-1, ©).

Therefore the log-likelihood can be written (for an observation vector with dimension n):

L(y1,.--,y7|®) =Inp(y1,...,yr|O)
T

=Inp(y1[®) + Y _Inp(yilys,...,y:i-1,0)
t=2
T _
:Lm 27r) —721n\2t|t - Z e (3,_,) e, (4.9)

where we have used (yt|y1.t—1) ~ N(Yt\t—1,2§|t_1)~ In other words the log-likelihood is easily
evaluated from the innovations and predicted covariances which are produced when running the
Kalman filter, without the need for further computation.
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4.3. THE KALMAN FILTER

4.3.4 Limitations and extensions of the Kalman Filter

The Kalman filter is the optimal linear filter and can be successfully applied to linear systems.
However very few real systems are completely linear and various extensions to the filter to the
case of non-linear systems have been proposed. The Eztended Kalman Filter (EKF) uses a Taylor
series style expansion to linearise about the currently estimated mean and covariance. Unlike the
linear version, the EKF is in general not an optimal estimator, and if modelling or initial state
estimates are incorrect the filter may quickly diverge. The EKF is in general more difficult to use
than the Kalman filter and can be difficult to tune and can give poor results.

The Unscented Kalman Filter is a further potential improvement over the other filters, in which
probability densities are represented by a deterministic sampling of points which represent the
underlying distribution as a Gaussian. The deterministic sampling technique is called the unscented
transform; the samples define a minimal set of sigma points around the mean. The sigma point
samples are propagated through the non-linear functions that define the system, after which the
mean and covariance can be recovered. The filter can more accurately capture the true mean and
covariance than the simpler EKF technique. In some sense this method resembles the particle filter
approaches explored in more detail in Chapter 5, however the points are chosen deterministically
and for more complex distributions (i.e. very non-linear, bimodal examples, etc.) true particle
filters are superior.
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Chapter 5

Modern Particle Filters and Non-Linear Filtering

5.1 Introduction

Non linear non-Gaussian state-space models arise in numerous application domains, from control
and signal processing, to econometrics, finance, and even ecology. Particle Filters, also known as
Sequential Monte Carlo (SMC) methods, provide very good numerical approximations to the latent
states estimation problem in these models. However, in many situations the state-space model of
interest also depends on unknown static parameters that need to be estimated from the data. In
these contexts standard SMC methods fail and it becomes necessary to rely on more sophisticated
algorithms.

Specifically, in the case of the non-linear CVAR models introduced in Chapter 3 the target for
inference is the joint estimation of the static parameters and the hidden latent system states. Not
only is this scenario very high dimensional, due to the inclusion of the path space, but it has the
added challenge of a complex matrix-variate setting with multiple unknown static parameters. The
following subsection introduces the key types of simulation algorithm on which the overall strategy
for attacking these complex problems depends, and the remainder of this Chapter explains each
component of these algorithms in more depth.

51.1 From SMC to PMCMC

Consider a generic state-space model, as introduced in the previous Chapter, with parameters, 6,
prior p(#), and latent Markov process x;1, p(x1]0) = pg:

p(Xt‘Xllt—lv 0) - p(xt’Xt—la 6) = fe(xt‘xt—l)a t Z 17 (51)

and observation process

P(Yely1t—1,%1:0-1,0) = p(ye|xs, 0) = go(ye|xt), t>1

We are interested in the recursive exploration of the sequence of posterior distributions:
mo(0) = p(0), (0, x1:tly1:t),

and may also be interested in computing the model evidence p(yi). The sequential analysis of
state-space models is of interest in a wide variety of settings; even in the batch estimation setting
(where fixed observation data yq.7 is available) recursive exploration may be computationally ad-
vantageous [Chopin, 2010]. SMC methods for this type of problem are considered state of the art.
Their effectiveness stems from their efficient re-use of samples across different times ¢, which is
in contrast to Markov Chain Monte Carlo (MCMC) methods - which are usually re-run for each
time horizon. MCMC methods will, however, form a key component of the algorithms used in the

"Where we have dropped the bold-face on the vector states, for readability, but should retain the idea that these
may be vector valued. Also we have switched to using x for the hidden states to conform to the prevailing convention
in the literature.
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joint estimation problem; they are introduced along with general Monte Carlo sampling methods
in section 5.2.

Under mild assumptions SMC methods now have well understood convergence properties (with re-
spect to the number of simulations), see for example [Crisan and Doucet, 2002] or [Chopin, 2004].
The problem of inference in the path space is very effectively addressed using SMC methods, which
explore the simpler sequence of posteriors:

T (xe|0) = p(xe|y1:2, 6) (5.2)

This is a simplification compared to the general case, since the static parameters are treated as
known and inferences are made concerning x; rather than the whole path xj.¢; this corresponds to
the filtering problem as introduced in the previous Chapter. Particle filters evolve a collection of
N, weighted, re-sampled particles x; ", so that at each time ¢ they represent a properly weighted
sample from 7(x;|#). In this context properly weighted means that the importance weights given to
each particle represent the unbiased estimate of the Radon-Nikodym derivative between the target
and proposal distributions, see [Fearnhead et al., 2010] and also section 5.7.1 which appears later
in this Chapter.

Unbiased estimators of the likelihood increments and the marginal likelihood are also available as
a by-product of the particle filter output:

T

py1:7l0) = p(ya|0) [ [ p(yslyr:s—1,0), 1<t <T, (5.3)
s=2

the variance of which increases linearly with time [Chopin, 2010]. SMC methods are described in
more detail in 5.7.

However, despite the success of standard SMC methods, the general case of sequential inference for
both parameters and latent states for a generic, non-linear non-Gaussian, state-space model is a
very challenging problem, which, although extremely important for a wide variety of applications, is
still somewhat unresolved; see [Doucet et al., 2009] or [Andrieu et al., 2010] for recent discussions.
Even the batch estimation problem of estimating 77 (x1.7, 0) is a difficult MCMC problem in its own
right. The reasons for this are both the high dependence between the parameters and the latent
process (which hampers Gibbs strategies, see [Papaspiliopoulos et al., 2007]), and the difficulty in
designing efficient schemes for sampling from 7p(x1.7|6).

To attempt to overcome these difficulties [Andrieu et al., 2010] developed Particle Markov Chain
Monte Carlo (PMCMC) algorithms. These are MCMC algorithms which use a particle filter of
size, N, to generate their proposal. The algorithm replaces the intractable true value of (5.3), with
the unbiased estimator provided by the particle filter. Andrieu et al. ([Andrieu et al., 2010]) show
that as N grows the PMCMC algorithm’s behaviour approaches that of the theoretical MCMC
algorithms which target the intractable 7 (), and also that for any fixed value of N the PMCMC
algorithm admits 7p(x1.7,6) as a stationary distribution [Chopin, 2010]. PMCMC methods are
discussed in more depth in section 5.8.

5.2 Monte Carlo Methods

Monte Carlo methods are a class of stochastic computational statistical techniques that employ
pseudo-random numbers to solve certain problems. For example Monte Carlo methods include
stochastic integration, where a simulation based method is used to evaluate an integral, and
Markov-Chain Monte Carlo (MCMC), where a Markov chain is constructed which hopefully con-
verges to a stationary distribution of interest.

Consider attempting to approximate a probability density m(x;.;) for fixed ¢. If we sample N in-
dependent random variables, Xi., for « = 1,..., N, then the Monte Carlo method approximates
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m(x1.¢) by the empirical measure:

T(X1:¢) Z(SX (X1:t)s (5.4)

where dy, (x) indicates the Dirac delta mass located at xo.

Based on this approximation it is straightforward to approximate any of the marginals, for example:

L
Xj) = % Zf&;(xj),
=1
and the expectation of a test function h¢(z1.) given by:

E,(he) = / () (1),

may be estimated by

N
~ 1
EYC (h) = /ht(xl:t)ﬂ'(xl:t)dxlzt =N th( 1)
i=1
Such an estimate may be shown to be unbiased, and to have variance given by

Var {EMC (h,)} = % (/ h2(x1.4)7 (x1.¢ ) dx 1. — EQ(’“))

The principal advantage of Monte Carlo methods is that the variance of the approximation error
decreases at a rate O(1/N) irrespective of the dimension of the space. However there are also two
main problems with the basic method:

e In most practical applications it is impossible (or computationally infeasible) to draw samples
directly from the distribution of interest.

e Even in the event that we can sample exactly from m(x;.t) the computational complexity
will increase at least linearly in ¢.

To address the first problem certain methods draw samples from a proposal distribution from
which it is easy to sample, and then use a weighting or selection scheme to ensure that the samples
represent the target distribution properly: these are respectively termed importance sampling and
rejection sampling methods, and the weighting or selection ensures the bias from the proposal
distribution does not influence the approximation of the target distribution. The second problem
will be discussed in section 5.7.1

5.2.1 Rejection Sampling

Rejection sampling was introduced by von Neuman [von Neuman, 1951]. The fundamental idea
is to sample from an easy to sample proposal distribution, q(x), and to reject samples which are
unlikely under the hard (or impossible) to sample target distribution, p(x). The density of p(x) is
known up to a proportionality constant C', and the algorithm proceeds as:

Algorithm 3: Rejection Sampling

1. Draw X ~ q(z);
2. Accept X as a sample from p(x) with probability:

p(z)
C-q(x)

otherwise go back to step 1.
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The algorithm produces exact samples from the target distribution, and is most efficient when
the proposal distribution is a good approximation to the target. The acceptance probability is
inversely proportional to the constant C.

Remark Rejection sampling is of interest since it will be used in the accept/reject stage of the
MCMC section of the complete PMCMC algorithms.

5.2.2 Importance Sampling

In rejection sampling compensation is made for the fact that the samples have come from the
proposal distribution ¢(z), instead of the target p(x), by rejecting some of the values proposed by
¢(x). Importance sampling is based on the idea of using weights to correct for the fact that we are
sampling from the proposal distribution rather than the intended target distribution. The support
of g(x) is assumed to cover p(x).

Importance sampling is derived from the identity:

B (h() = [ pon@as = [ 4(o) p(“@ ha)de = [ ae)u@h(o)ds = B, wCOMX). (56)

x)
Assuming a sample X,..., Xy ~ ¢, and provided E,|w(X) - h(X)| exists,

—~

(

=w

—~

N a.s.
1 N
N D w(Xi)h(X;) == Bg(w(X) - h(X))
i=1
and therfore, by (5.6)
1 N a.s.
N
S D WX X B fw(X) - h(X))
1=
Therefore we can estimate p = E,(h(X)) using the samples drawn from ¢(x), by
LN
= Nzw(Xi)h(Xi)' (5.7)
i=1
While the expectation of the weights under ¢(z), E, (p(x ) f p(z) z)dr = [ p(x)dz = 1, the
weights themselves wi(X),...,wy(X) do not necessarily sum up to N so we might prefer to use
the normalized version:
~ X
B(X;) = ;ﬂil)
> izt w(Xi)

Algorithm 4: Importance Sampling

Choose g such that the support of ¢ covers that of p - h;

For i=1,... N;
1. DraWX ~q(z);
p(Xi).
2. Set w(X;) = (X
3. Return either:
N
X;)h(X; .
ﬁ:zi:l w(N Jh(Xi) (Un-normalized)
N N
; X;)h(X; .
Or I :Z{E(Xi)h(Xi) = 21:1;{”( Jh(Xi) (Normalized) (5.8)
i—1 > e w(X5)
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Remark Importance sampling is relevant since the SMC methods which perform the filtering stage
i PMCMC algorithms implement a type of importance sampling in a sequential fashion, see 5.7.1
for details.

Bias and Variance of Importance Sampling

The bias and variance of the un-normalized, fi (5.7), and normalized, i (5.8) estimators are:

N N
E,(7) = E, <}V Zwm)h(&-)) = 3 DB (X)) = By(h(X)

N N | |
Varg () = Varg <Zif Zw(Xi)h(X¢)> = % Zvarq(w(Xi)h(X@')) _ Varq(w()]\(;)h(Xl))
=1 i=1

V(X)) = Corul3) 00NN - 59
Varg (w(X)h(X)) — 2uCovy(w(X), w(X)h(X)) + u*Var,(w(X))
N

see [Johansen and Evans, 2007]. These results imply that unlike the un-normalized version, the
normalized estimator i is biased. It is consistent however, with the bias vanishing at a rate bounded
above by N. The normalized estimator may also have a lower variance. For practical applications
of importance sampling it is crucial that the variances of the importance weights remain finite.
When this condition is not met the variance of g will be infinite. Finite importance weights can
be obtained through careful selection of the proposal distribution ¢(z).

Eq() =+

Var, (1) = +O(N7?)  (5.10)

Optimal Proposal Distribution

In the case that we already know the function of interest h(x) , the proposal distribution that
minimizes the variance of [ is:

) - )
T = TIhs) p(s)ds o
Consider
Var, (i) = %Varq (h(z)w(z ))
Varq h( )

W) p@)\ 2\ _ L [ () pe)\)?
N q()
/ R
N
The variance is minimized by minimizing the first term and the optimal choice for g(z) is therefore

q(x) o |h(x)|p(x), which obviously cannot be made in practice since it would remove the need for
importance sampling. Plugging in ¢* gives:

:(/h(m(p)p;v > </|h e >
= ([ moterar) -
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The practical point being that the proposal distribution ¢(z) should be chosen to have a shape
which is close to that of p - h(x). We can also apply Jensen’s inequality to the first term in the

(55 )= (5 (M) = (feomons)- 29

A key result is that importance sampling using proposal ¢* can actually be super-efficient; i.e
more efficient than sampling directly from p:

N - Var, (h(Xl) R h(XN)> — E,(h(X?)) — 12

N
> (Ep|h(X)])? — 12
- (Juera)
= Varg. (1) (5.14)

where the use of ¢* concentrates the attention of our sampling on regions of high probability where
|h| is large contributing most to the integral, see [Johansen and Evans, 2007] for more details of
these points. Finally it is advisable to select g(x) such that the weights w(z) remain bounded by
a positive finite constant.

5.2.3 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods are a very general and powerful framework for
sampling from a large class of distributions, and they scale well even in sample spaces of very high
dimensionality. These techniques originate in physics [Metropolis and Ulam, 1949] and are now
very widely researched and applied by statisticians.

Remark MCMC methods underlie the portion of the PMCMC algorithms used for estimation of
the static model parameters for the cointegration models.

As with rejection and importance sampling they rely on the use of proposal distributions, but now
they also retain a record of the states that they visit and the proposal distribution g(x|x*)) is allowed
to depend upon the current state. The sequence of sampled states x® = x() x2) . x(T) forms
a Markov chain. Suppose the density of the desired states p(x) is available up to an (unknown)
normalizing constant, Z:

In other words we are able to readily evaluate p(x) for any of the states, but not to sample from it
directly.

The algorithm uses a proposal distribution ¢(-[x()) that is chosen so that it is straightforward to
sample from. At each step of the algorithm we generate a proposed new state x*, drawn from the
proposal distribution, which is then accepted or rejected according to an acceptance criterion.

In the original Metropolis version of the algorithm [Metropolis et al., 1953] a symmetric proposal
distribution was used (i.e. g(x(V[x(?)) = ¢(x|xM)). The proposed candidate state is accepted
with probability:

A(x*,x®) = min {1, ]?i(x)i;) } (5.15)

This can be achieved easily by sampling a uniform random number u from the interval (0,1) and
accepting the proposed state if A(x*,x(t) ) > u. For all proposed new states which increase the
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CHAPTER 5. MODERN PARTICLE FILTERS AND NON-LINEAR FILTERING

value of p(x), taking the minimum with 1 in the acceptance criterion ensures that the new state
will be accepted. If the candidate state is accepted then x(*t1) = x* otherwise the candidate state,
x*, is discarded, x*T1) = x(®) and the chain remains in the current state.

If the value of ¢(xV|x(?)) is positive for all states x(!) and x(?) then the distribution of x®) will
tend to p(x) as t — oo. The samples produced by the Metropolis algorithm are not independent
samples from the distribution, since successive samples are correlated. Figure 5.1 shows samples
of a bivariate Gaussian density generated using the Metropolis algorithm.

Figure 5.1:  This plot shows samples
drawn from a bivariate Gaussian density

using the Metropolis algorithm. The el- 1" 1
lipses are the 1 and 2 standard devia-
tion contours of the target density, where & ol |

the covariances are 07 = 1, 03 = 1, and
p1,2 = 0.7. The proposal density was cho-
sen to be a symmetric Gaussian centred
on the origin. The blue lines show the
accepted steps.
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Student Version of MATLAB

Algorithm 5: Metropolis Algorithm

Choose symmetric g(+|x);
1. Draw candidate state X; ~ g(x*[x(®));
2. Accept candidate state with probability

A, x®)) = min{l, i) }

and set x(H1) = x*, otherwise set x(H1) = x(®)

Markov Chains

It is useful to briefly discuss under what conditions we can expect a Markov chain to converge to
its stationary distribution (these basic points follow the presentation in [Bishop, 2006]). A first
order Markov chain is defined to be a series of random variables x(1),x(?) ... x(T) (which we will
also refer to as states) such that:

PO, XD = p( D),

in other words the state at time ¢ + 1 is conditionally independent of all states other than the one
at time t. A Markov chain is said to be homogeneous if the transition probabilities that define
the chain T;(x®), x(t+1) = p(xtH+D|x®)) are the same for all t. Marginal probabilities for specific
variables in the chain can be expressed in terms of the probabilities of previous variables and the
transition probabilities:

PO = 37T, XD )p(x)

x(t)
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5.2. MONTE CARLO METHODS

A distribution is called invariant or stationary, with respect to a Markov chain, if the steps
through the chain leave the distribution invariant. Therefore for a homogeneous Markov chain the
distribution p*(x) is invariant if

pr(x) =Y T )p* (X).

A single Markov chain may have more than one stationary distribution. A sufficient (but not
necessary) condition for the states to be invariant is to select the transition probabilities to satisfy
the property of detailed balance, which is given by:

p*(X)T(x,x") = p*(X)T'(X,x), (5.16)

which means that the probability of being in state x and moving to state x' is the same as the
probability of starting in state x’ and moving in the opposite direction. A transition probability
that satisfies the detailed balance condition with respect to a particular distribution leaves that
distribution invariant:

P =35 )T, %)
=D P (T X) = > p (X x) = p*(x).

A Markov chain that respects the detailed balance condition is called reversible. A Markov chain
that converges to the desired stationary distribution regardless of the choice of initial conditions
is called ergodic, and such a chain will obviously only have a single stationary distribution - called
the equilibrium distribution.

5.2.4 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [Hastings, 1970] is a generalization of the earlier Metropolis
algorithm to the case of non-symmetric proposal distributions. At time t of the algorithm, in
current state x(¥) a sample is proposed from g, (x*|x*) (where now g,(x"|x®)) #£ g, (x@|xM)).
The acceptance probability for the new state x* is modified to compensate for the asymmetric
proposal, and is

~(U* () |
() P(X")qa (xV[x%)
AL x) mm%ﬁ&%mmw»‘

Algorithm 6: Metropolis-Hastings Algorithm
for timest=1toT do

1. Draw candidate state X; ~ gq(x*|x®);

2. Accept candidate state with probability:

o x®) — min Px*)ga (X1 [x*)
A6 %ﬁw%%www ‘ 40

| and set x(H1) = x* otherwise set x(#T1) = x(®),

By using the detailed balance condition (5.16), the distribution of p(x) can be shown to be an
invariant distribution of the Markov chain defined by the Metropolis-Hastings algorithm:

P(X)qa (X" ) A(X",x) = min {p(x)ga(x*|x), p(x")ga(x|X") } ,
= min {p(x")qa(x|x"), p(x)qa(x"[x)} ,
= P(X")ga(x|x") A(x,X")
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5.2.5 Gibbs Samplers

The Gibbs Sampler [Geman and Geman, 1984] is a special case of the more general Metropolis-
Hastings algorithm which samples sequentially from a series of full conditional distributions, which
are the distributions of one variable in a space conditioned on the values of all the other variables.
Consider the case of sampling from a multidimensional space p(x(lt), xgt), e ,xg)). Each step of the
algorithm samples a variable for one of the dimensions conditioned on the current values of the
variables in the other dimensions, for example:

Sample x;] ~ p(x1|x§t), e ,xg)),
Sample x5 ~ p(x2|x§t),x§t), . ,xg)) ete.

The complete systematic sweep Gibbs sampling algorithm is given in Algorithm 7, and 500 samples
from a bivariate Gaussian example are plotted in Figure 5.2.

i © Samples
Figure 5.2:  This plot shows samples

drawn from the same bivariate Gaussian 2r
density as the Metropolis example in Fig-
ure 5.1 (correlation p = 0.7) using the se- 1t
quential sweep Gibbs algorithm. For each
step the x; variable is sampled conditional o ol
on the previous value of the xo variable,

and then vice versa. The proposal density b =
was chosen to be a symmetric Gaussian O B o
centred on the origin. The red lines show - e :

the first 25 Gibbs conditional moves, and
the larger red spot is the starting position.

I I I I I I ,
-4 -3 -2 -1 0 1 2 3

Student Version of MATLAB

Algorithm 7: Systematic Sweep Gibbs Sampling Algorithm

0. Initialize zj(xg())7)<g))7 o ’Xz(iO))
for timest=1toT do
1. Sample x{” ~ p(xl§ <)
- Sample x§) ~ p(xafxt”,x§ 7V, xTY)
- Sample x§ ~ p(xs|xi”, x5, x§ ™)
- Sample xi ~ p(xalxi”, xS, %))

The systematic sweep version of the Gibbs algorithm is not reversible, however there is also a
random sweep version which does produce a reversible chain.

The ergodic theorem for Gibbs Samplers states that: If the Markov chain generated by the Gibbs
sampler is irreducible and recurrent, then for any integrable function h:

n—oo [N

N
lim — 3 h(XO) 5 E(h(X)) (5.18)
t=1
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5.3. ADAPTIVE MCMC

for almost every starting value X(©, [Johansen and Evans, 2007]. This allows us to perform in-
ference using a single Markov chain, and a very similar result also holds for Metropolis-Hastings
samplers.

Block Gibbs

The basic versions of the Gibbs Sampler updates a single variable at a time, which creates strong
dependencies between successive samples. The other extreme would be to update the full joint
distribution simultaneously, which we have assumed is intractable, but this would result in inde-
pendent samples. A possible intermediate alternative, which we will explore in more detail for the
Bayesian CVAR models, is to update groups or blocks of variables instead of single variables. See
[Jensen et al., 1995]

5.3 Adaptive MCMC

Various classes of adaptive MCMC algorithms have been proposed in the literature, for exam-
ples see [Roberts and Rosenthal, 2009]. Unlike the MCMC algorithms described so far, Adaptive
MCMC (AAMCMC) algorithms generate their Markov chains via a combination of time or state
inhomogeneous proposal kernels. The proposal kernels are allowed to depend upon the past history
of the Markov chain and most of the literature on adaption describes on-line AAMCMC algorithms.
Since the Markov kernels used in AAMCMC are inhomogeneous it is very important to ensure that
the chains produced are ergodic with the desired stationary distribution.

Recently, several papers have proposed theoretical conditions which must be satisfied to guarantee
ergodicity in AAMCMC algorithms, these include [Haario et al., 2001], [Andrieu and Atachade, 2005],
[Andrieu and Moulines, 2006], and [Andrieu and Atachade, 2007]. A proof of ergodicity under con-
ditions, known as Diminishing Adaptation and Bounded Convergence is provided by the authors
in [Roberts and Rosenthal, 2009]. In general it is non-trivial to develop adaption schemes which
can be shown to fulfil these conditions. We will use an AAMCMC algorithm to learn the proposal
distribution for certain of the static parameters in our Bayesian CVAR models. The particular
Adaptive Metropolis algorithm chosen uses a mixture proposal kernel that is known to satisfy
the two ergodicity conditions for unbounded state spaces and general classes of target posterior
distributions [Peters et al., 2010].

5.3.1 Adaptive Metropolis Proposal Kernel for 3

The proposal kernel is an adaptive Gaussian mixture distribution, one component of which has a
covariance structure that is learnt adaptively on-line as the algorithm explores the posterior distri-
bution. Consider the specific case of sampling from the posterior distribution of the cointegrating
vector 3, in the Bayesian CVAR models, p(8|Y). An adaptive mixture proposal distribution was
implemented for parameters 8* (size d = (n — 1) x r) of the form:

(2.38)2

pUD, = Qj) +(1—wN <ﬁ*

(0.1)2

Q;(B*BYUY) = wN (ﬂ* YU, e Id,d> . (5.19)

where €2, is the current empirical estimate of the covariance matrix for the unrestricted section
of the parameters 3*, and where the theoretical motivations for the scale factors 2.38, 0.1 and
dimension d are given in [Roberts and Rosenthal, 2009]. The parameter w of the mixture was set
to 0.95, based on the suggestion in the same paper. The empirical estimate for €2; is calculated
using samples from the Markov chain up to time j via:

1 .
Pi+1 = M5 + jﬁ('@(j b _ ,Uj)a
1 . .
Qji1 =5 + j ((5(3_1) — i) (B9 — )~ QJ’) ’ (5:20)
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5.3.2 Laplace method for Proposal Covariance

Even with the adaptive scheme just described it is necessary to start the Metropolis algorithm with
some initial proposal covariance. We wish to use an appropriate covariance matrix in the multi-
variate Gaussian proposal distribution Q(8*|8Y~Y) ~ N (8*|8U~1,Q0)). The Laplace method
makes an empirical estimate of the mode and nearby curvature of the posterior surface and uses
these to inform the choice of covariance matrix; this amounts to performing a second order Taylor
expansion in the vicinity of the mode (for a Gaussian distribution only the moments up to second
order exist). At the mode of the posterior distribution the log posterior can be approximated as:

log p(BIY) ~ Togp(BolY") — (8 — Bo) A(B — Bo) + ..
where
A 782
= — 1 Y
1] 8@6@ ng(16’ )ﬁ:ﬁo

The appropriate value to use for the Gaussian proposal covariance matrix is therefore:

QLaplace = [—VV log p(ﬂ‘Y)] _17

the inverse of the negative of the Hessian matrix.

5.4 (Case Study: Adaptive Metropolis scheme for 3: effect of prior choice.

A random walk Metropolis sampler (Algorithm 8) was coded up for parameter 3, in order to draw
samples from the posterior density:

p(BY) o p(B)|S,|~EHHD/2| 4, 7n/2

The proposal covariance matrix (Q(j )) can be specified either through a Laplace approximation to
the posterior surface local curvature, or via the adaptive scheme described previously.

Algorithm 8: Random Walk Metropolis Algorithm

for iterations j=1 to J do
1. Generate a proposal for 8* from Q(8*|8Y~1) ~ N(B8*|3U—1), Q)
2. Accept the proposed move with probability A(3Y~, 3*) = min {1, %}, and
set BU) = 3*
Otherwise set B = gli—1),

The priors for 3 were set to those specified in [Peters et al., 2010], and are listed in Table 5.1
below:

3 ) BIx
B=E[B=[I,0 S=rY'Y P=WW) Wy
=1, h=n+1 A=AWW)/T
H=12'Z r=1/T W =[X ZB]

Table 5.1: Priors for 3
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5.4. CASE STUDY: ADAPTIVE METROPOLIS SCHEME FOR 8: EFFECT OF PRIOR CHOICE.

The rank 2 model from [Sugita, 2002] was chosen to test the performance of the Metropolis
sampling algorithm running with both the adaptive scheme, and a non-adaptive scheme using the
Laplace method proposal covariance.

Sugita Rank 2 Model:

02 —02
02 —02|[1 00 -1
Ari=prt| 59 02 [0 10 —1]$t—1+€t (5:21)
~02 02 5
«

This is a cointegrated VAR of rank 2, with dimension n = 4. Sugitasetsu =1 0.1 0.1 0.1 0.1].
We note that in this model there are no lag matrices (¥;). The observation errors are assumed
independent and come from €; ~ N(0,%) = N(0,0.1 x I,).

Posterior Surface: The posterior surface of log[p(8*|Y')] as a function of B; 3,323 is plotted in
Figure 5.3 below?. 100 data points were generated from the Sugita rank 2 model (equation 5.21)
and then used with the priors specified in Table 5.1 to calculate the log-posterior log[p(B8*|Y)].
Two different values for the prior mean 3 were tested, either

B:[Ir]:[l 00 0]’

0 0100

as suggested in Peters [Peters et al., 2010] or, subsequently, the true values setting 3 = 3. As is
clear from the upper surface and contour plots in Figure 5.3, with a default setting for the prior
mean 3 = [I. 0]’ the shape of the posterior is highly elongated. On setting 3 = Byt the mode
now more obviously corresponds to the correct parameter values. Changing the prior parameters
has affected the posterior surface shape, and this also alters the convergence of the Metropolis
algorithm. The sample plots in Figure 5.3 show that running the Metropolis algorithm on the
more elongated posterior surface for the default prior settings results in poorer convergence of the
chain; only around 5% of the proposed moves were accepted. Despite this the true parameter values
have been recovered (the initial state was set away from the true values). Also the mixing isn’t as

good as is required to treat the samples as approximately independent since the autocorrelation
function still has a value of around 0.7 after lag [ = 20.

Running the Metropolis algorithm on the posterior with the prior set to the true parameters for
B results in a chain with more efficient convergence. The autocorrelation function has decayed to
around 0.2 after lag [ = 20, and the true parameters have been recovered. Around 13% of proposed
moves were accepted.

These plots also demonstrate the effect of switching on the adaptive MCMC proposal covariance;
after step 10,000 in each algorithm the adaptive scheme was started. The chain can be seen to
almost immediately find the true parameter values in the default prior case, and settle into more
robust convergence on these values for the case of the truth prior.

Bi1 B21

*Where 8 = 21’2 ZQ’Q , and I have highlighted the ‘unrestricted’ portion of the matrix (which we label 3*)
1,3 2,3
Bia Boa

in cyan (the other part being determined by the r? restriction).
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5.5. CASE STUDY: ADAPTIVE METROPOLIS SCHEME FOR 3; EFFECT OF HYPERPARAMETER .

5.5 Case Study: Adaptive Metropolis scheme for 3; effect of hyperparameter
T.

The adaptive Metropolis scheme was also tested on the posterior generated after adjusting the
prior parameter 7. Small values of 7 effectively down-weight the prior, and give increased weight
to the data likelihood. The plots in Figure 5.4 show the posterior surface shape for the cases
7=0.1, 0.01, and 0.001 (top to bottom rows).
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Figure 5.4: Surface and contour plots showing the effect of altering 7 on the log posterior log p(3]Y").
From top to bottom row: 7 = 0.1, 0.01, 0.001. Dataset size = 100, the initial parameter state
was B* = [1 1; 0 0], and the prior mean was set to 3 = [I, 0]’ throughout. Also shown are the
results of running the Adaptive Metropolis algorithm on each surface to produce 40,000 samples,
and the corresponding autocorrelation functions (calculated from samples 20,000:40,000). These
show that despite the elongated posterior surface shape the AAMCMC algorithm can achieve good
convergence.

Weakening the effect of the 3 prior by using smaller values for 7 produces a more peaked
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posterior surface; this is easier for the the Metropolis algorithm to sample from than the more
diffuse surfaces. All three examples have an acceptable decay to their autocorrelation functions,
however the first example has failed to converge to the true parameter values for 3.

5.6 Convergence in Practice

The theory of Markov chains guarantees that a Markov chain that is irreducible and has an invariant
distribution, f, converges to that distribution. The ergodic theorems, for example 5.18 allow us to
approximate the desired expectations using the appropriate means:

T
1
- > (X)) = Bp(h(X)) (5.22)
t=1
using the entire chain; in practice however often a reduced subset of the chain is used. A number
of alternatives methods to define that subset are popular:

e Burn-in: Depending on the initial starting point for the chain i.e. how X(©) is chosen, the
distribution of X() for small ¢ might still be far from the stationary distribution f. Therefore
it may be advantageous to discard the first ¢y samples, i.e. X©O x® . X)) The early
stage of the sampling process is often termed the burn-in period, and the size of this period
depends on the speed of mixing in the chain. A burn-in period is illustrated in Figure 5.5

below:
1.5
R T B1.3
; Burn-in — B3
(Discard) — B4

0.5

-1

A A o bl

0 05 1 1.5 2 25 3 35 4
x10*

Figure 5.5: The samples in this chain have an obvious burn-in period.

e Sub-sampling MCMC methods usually result in chains with positive autocorrelations p(X(t), X(tH)
for small [. If these are considered too large sub-sampling the chain can reduce them.

5.6.1 Monitoring convergence

The most basic method to monitor the convergence of the chain is to plot the samples produced
in order, as in Figure 5.5, where we note that the convergence is in distribution, i.e. we do not
expect the path itself to converge to a single value.

A key tool for monitoring the convergence of MCMC methods is a plot of the autocorrelation
function p out to around lag I = 30. Ideally we would like to observe a rapid decay in the empirical
ACF to around the level of 0.2 by lag [ = 30; this will indicate that the samples only have a small
autocorrelation at this lag. If the ACF is higher than this we may consider sub-sampling.

Various formal tests also exist to monitor and evaluate the convergence of Markov chains, for
example non-parametric test such as the Kolmogorov-Smirnov test can determine whether an
existing chain has already converged (see [Johansen and Evans, 2007] for details). Simple averages
can be compared to known values in the case of a synthetic study, and multiple separate chains
can also be compared to ensure that they have converged to the same distribution.
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5.7 Sequential Monte Carlo

Many scientific problems involve making inferences for the unknown quantities of models which
have a sequential, if not explicitly temporal, basis. Since we are in a Bayesian setting a prior
distribution is specified over the unknown quantities capturing the prior knowledge of the system,
and all the available information from the prior and the data becomes summarized in the posterior.
As new observations become available the information that they carry is incorporated into the
posterior distribution on-line. In Chapter 4 it was shown that for the case of linear dynamical
Gaussian state-space models it is possible to calculate an exact analytical expression for the evolving
sequence of posterior distributions via the Kalman filter recursions. A similar recursive method
exists for the class of discrete-state Hidden Markov Models (HMMs) which is called the Baum-
Welch algorithm [Baum, 1972]. These filters rely on several restricting assumptions to ensure
tractability; real data can be much more complex, non-linear, high dimensional and non-Gaussian,
and thus preclude an analytic solution.

Sequential Monte Carlo methods are a collection of simulation-based techniques for computing a
recursive series of posterior distributions over such complex models. SMC methods are very flexible,
relatively easy to implement, parallelisable and applicable in a very wide variety of settings. Since
computing power has become so readily available, and due to certain recent advances in applied
statistics these methods have recently become a mainstay of advanced research methods in this

field.

SMC methods are applicable to continuous-space hidden Markov models of the type that are
described by the graphical model in Figure 4.1. An empirical approximation of the distributions
of interest is propagated forwards in time using a technique derived from importance sampling.
We can view these algorithms as approximating the filtering distribution p(x¢|y1.;) directly; at each
step a weighted empirical distribution is evolved forwards in time according to a specified sampling
scheme. In the SMC framework the posterior distribution is empirically represented by a weighted
sum of N samples, termed particles as follows:

(dX1 t|Y1 -t N Z wzé dX1 t

where

N is the number of independent samples,
wi is the weight of sample i at time t,
Xf; are iid samples drawn from p;(X;.|Y1.) at time t,

0y, (x) indicates the dirac delta mass located at xo

Note: in this section when we discuss particles and write X!, this indicates the set of particles
XiZI:N'

SMC methods sample sequentially from the sequence of probability densities {p;(x1.t)} of increasing
dimension, where

pe(x1:t) = ﬁt(;z:t), (5.23)

and p is known pointwise. SMC methods provide an approximation of pj(x;) and an estimate of
Z1 at time 1, then an approximation of p;.2(x1.2) and an estimate of Zy at time 2 etc. The basic
categories of SMC filters are described in the proceeding sections.

5.7.1 Sequential Importance Sampling

The simple form of importance sampling already discussed is not applicable to the problem of
recursive estimation. It is necessary to have all the observations, x;.;, before estimating p(x1.¢|y1:¢)-
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In general, as each new data point y;+1 becomes available it is necessary to recompute the im-
portance weights over the entire state sequence; the computational complexity of this operation
therefore increases with time. Sequential Importance Sampling (SIS) is a technique designed to
overcome this problem and to offer a solution for recursive estimation with fixed computational
cost.

The solution depends upon choosing an importance function with the following structure

ka(XLt) ZQt—l(XLt—l)Qt(Xt\X1:t—1)
t

=q1 [ [ an(xxlx16—1)- (5.24)
k=2

To obtain the particles il:t ~ q¢(x1:¢) at time ¢, we sample Xg ~ q1(x1) at time ¢t = 1, then X}'C ~

qk(xk|Xi1:k71) at times k£ = 2,...,t. The corresponding unnormalized weights can be computed
using
pi(x1:t)
Wi \X1:t) = —
Ga) qt(x1:t)

. D—1(X1:¢-1) ﬁt(xlzt)

qt—1 (Xlzt—l) Di—1 (Xlzt—l)Qt(Xt)

which can be written as

wt(Xlzt) = wtfl(xlctfl) : Oét(Xlzt)
=wi(x1) [ ] ewCxam),
k=2

where the incremental weight function ay(x1.) is defined as

ﬁt(xlzt)
5t—1(X1:t—1)Qt(Xt) .

Oét(Xlzt) =

[Doucet and Johansen, 2011].
Algorithm 9: Sequential Importance Sampling Algorithm

begin
At time t = 1:
1. Sample X¢ ~ q1(x1)
2. Compute the weights w(X?) and the normalised weights w;(X}) = %
i=1 W1\

for timest =2 to T do

3. Sample X} ~ g (x¢[X7.;_1)

4. Compute the weights w(X4,,) = wi—1(X%,_;) - ax(X},,) and the normalised weights

—~ 7\ ’LUt(X’i:t)
DX = S

At any time ¢ we can obtain the approximations to p(x;) and Z; from

N N

~ » 1 .

Pr(x1:t) = E 1 Wiy, (ki) Ze= o E 1 wi(Xiy¢)- (5.25)
1= 1=

Despite the attractive recursive structure of the SIS algorithm it is well known to suffer from
some serious problems. The degeneracy problem occurs, when, as t increases the distribution of the
importance weights becomes more and more severely skewed; in practice after a few time steps only
one of the particles will possess a non-zero importance weight. Also, the variance of the estimate
can be shown to increase exponentially with ¢, see [Doucet and Johansen, 2011].
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5.7.2 Resampling

Resampling is a technique for removing particles with a low weight with high probability; this is
important in the sequential framework since we would like to concentrate computational effort on
areas of the distribution with high mass. Resampling also allows us (in some scenarios) to solve
the problem of the exponential increase in variance mentioned above. Consider approximating
the distribution of interest, p(xi.), using the importance sampling approximation, p(xj.;). This is
based on weighted samples from ¢;(x1.¢), and does not provide samples from p(x;.¢). However, to
obtain samples from p(xj.t) samples can be drawn from the importance sampling approximation
itself p(x1.¢); i.e. we select X%, with probability w;. This operation is termed resampling; if we
require N samples we simply sample N times from p(xj.). Equivalently this can be viewed as
associating a number N} offspring with each particle Xi., such that N}V = {Ntl, NZ,...,NN } has
a multinomial distribution N}V ~ Multinomial(N,w;V), and a weight for each offspring particle
1/N.

Now, a second approximation to p(x}.,) is available

ﬁ(xlzt) = Z Wtfsxli:t (Xl:t)’
=1

and the resampling scheme that we choose should satisfy the unbiasedness property:

E[P(x1:¢ly1:4)] = D(xa:ely1:e)- (5.26)

The multinomial scheme mentioned above satisfies this property since E[Nj|w} V] = Nwi. Re-
sampling alleviates degeneracy, but can introduce extra noise and also the problem of sample
impoverishment. Sample impoverishment occurs when samples with high importance weights are
repeatedly selected, which leads to loss of diversity amongst the samples. Several improved re-
sampling schemes have been suggested; these must select N} such that the unbiasedness property
(5.26) is preserved, and such that Var[N}|w/*V] is smaller than that achieved by the multinomial
scheme [Doucet and Johansen, 2011].

Residual Resampling

The residual resampling scheme is closely related to splitting up the empirical CDF up into N
components and ensuring a sample is drawn once from each (this is called the stratified approach,
and was introduced in [Carpenter et al., 1999]).

Algorithm 10: Residual Resampling Scheme
1. Set Ni = [Nt
2. Sample N ~ Multinomial(N,@%‘N), where Wi o W} — %
3. Set Nj = Nj + N,.

Systematic Resampling

The systematic resampling scheme has been shown to have the lowest variance of the aforemen-
tioned schemes [Douc and Cappe, 2005] and extends the stratified type approach. In the systematic
scheme the random variables drawn from each ‘strata’ are deterministically linked. The scheme
proceeds as:

Algorithm 11: Systematic Resampling Scheme
1. Sample Uy ~ U[0, ]
2. Define U; =Uy = St fori=2,...,N

3. Set Nj = HUJ' : Zi;ll wf < Uj < E;c:lﬁ;f}’
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The samples produced can be shown to be unbiased, but not independent [Kiinsch, 2005].

5.7.3 Sequential Importance Sampling Resampling (SISR)

In general, SMC methods combine sequential importance sampling and resampling. The sequential
importance sampling resampling algorithm is the most basic full SMC method. At time ¢t = 1 we
calculate the importance sampling approximation p(x;), which consists of a weighted collection of
particles {@’1, Xi} The resampling step is used to eliminate (with high probability) those parti-
cles having low weights. After resampling the distribution is represented by an equally weighted
collection of particles { Xl}. At time t = 2 we sample X} ~ go(xo[X}), and thus (X}, X3) is

now approximately distributed according to pi(x1)g2(x2|x1) (therefore the corresponding impor-
tance weights are simply equal to the incremental weights as(x1.2)). The algorithm continues by
resampling these particles with respect to those normalized weights etc. and is listed as Algorithm
12 below, and depicted graphically in Figure 5.6.

Algorithm 12: Sequential Importance Sampling Resampling Algorithm

begin

At time t = 1:

1. Sample X¢ ~ q1(x1)

2. Compute the weights w (X}) and the normalised weights w;(X}) = %
i=1 W1\

3. Resample {@i, le} to obtain N equally weighted particles {%,ﬂl}

for timest =2 to T do
4. Sample Xi ~ g4(x¢|X].,_;), and set X, < (X’lzt_l,xg)

5. Compute the weights a;(X{,,) and the normalised weights w;(X%) = %
i=1 Y\ e
1 i

6. Resample {@%,Xﬁ:t} to obtain N equally weighted particles {N? 1t

At each time, t, the algorithm provides two approximations to p;(xi.), either p;(x1.) after the
sampling step, or p,(x1.t) after the resampling step:

1 (X1:1) Zwt‘SXZ X1:¢), 4 (X1:1) 25X1t X1:¢), (5.27)

the first of which is to be preferred [Doucet and Johansen, 2011].
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Time = t-1

coo o o o O OO0 O ©0 O Equal Weights

CJ) YT

_YY Y — A
YYVY VY Y VY \ A4
° ° Normalized Weights
~ i
f I {Wt—l’Xt—l}
(5 o 0 é Resample
o

Time =t

7
4

o i

’ v

(!(& \5 Prediction

r j
Y

EVV 4 4 YV Yy Y 'V N | dW ht
ormalize el S
. 0@ Ooo@ooo Y ¢
{wi.x}

Figure 5.6: The steps of the SISR algorithm: at time ¢t — 1 an equally weighted set of particles
approximates p;—1(x;—1), importance weights are calculated and normalized based on the informa-
tion at ¢ — 1 resulting in the weighted samples {@é_l,Xi_l}. Resampling selects the most likely

v,

particles to give the equally weighted approximation {%,Xﬁ,l . The sampling/prediction step

at time ¢ evolves these, introducing variety, resulting in {ﬁi,Xil:t} which is an approximation to
pi(xt)-

As mentioned above resampling also has the effect of introducing some extra variance, therefore
it is prudent to only perform the resampling step in practice if the variance of the unnormalized
weights is above some pre-define threshold Ngr. The effective sample size is a tool to measure the
variability of the weights, and an estimator for it (which takes values between 1 and N) is given
by:

N —1
ESS = (Z(@z')?) ,

i=1

5.7.4 SMC for Filtering

Before discussing PMCMC algorithms for jointly estimating latent states and static parameters
this section explains the use of SMC methods in the context of sequential filtering for the models
defined in (5.1). Here we are interested in approximating the series of distributions {p(x1.|y1.¢)} for
t=1,...T. Assume for the moment that the static parameters 6 are known. Given observations
y1:t, inference about the state x;.; is given by the posterior:

Do\ X1:t, Y1:
p9(X1:t’y1:t) — M
p@(y1:t)
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where the joint distribution of latent and observed states is given by
t ¢
po(xat,y1:) = po(xa) [ ] foCalxn—1) T g0 (vilxe),

the marginal likelihood is given by pg(y1+) = [ po(Xi:t, y1:¢)dx14. Also

) fo(xelxt—1)ge(ys[xt)

Po(X1:¢1Y1:t) = Po(X1:t—1|Y1:t—1
( ’ ) ( ‘ p0<Yt|y1:t—1)

and pg(yely1t—1) = [ fo(xe|xe—1)g0(ye|x¢)po(X¢—1|y1:4—1)dx¢—1.¢. The SMC filtering algorithm relies
on the introduction of the importance density gg(xily1) at time 1, and gg(x¢|ys,x—1) at times
t > 1. The default choice is made by using gp(x1) = pe(x1) and go(x¢|ys, xe—1) = fo(xe|xe—1)-
Optimal choices are given by pg(x1]y1) and gg(x¢|ys, xt—1) [Doucet et al., 2009]. The SMC Filtering
algorithm is presented as Algorithm 13.

Algorithm 13: Sequential Monte Carlo for Filtering

Assuming we know the parameter vector 6:
begin

At time t = 1:

1. Sample X¢ ~ q1(xq1)

2. Compute the weights w (X}) = 10 (X4 )90 (¥ X})

a0 (Xi|Y1)
3. Resample {wl,XZ} to obtain N equally weighted particles { ,Xﬁ}

and normalised weights w;(X%)

for timest =2 to T do
4. Sample Xi ~ g(x¢|X].,_;), and set X, (Xllzt_l, X@)

Jo(X31X; )90 (YEIX)
4 (K7 X )

5. Compute the weights w;(X¢_;,) =
Wy (X})
6. Resample {w}, X!} to obtain N equally weighted particles {%7Tm}

, and normalised weights

At time ¢ we can obtain approximations to py(xi¢|y1:t) (before resampling) or py(xi1¢|y1:¢) (after
resampling) from

N

1
o(x1:tly1:e) = Zwﬁxz X1:t), Po(x1:tly1:) = v Z(&;t(xlzt). (5.28)
i=1

Finally the marginal likelihood may be estimated via Dg(y1.¢) = po(y1) H Do(Ye|Y1:k—1)-
k=2

5.8 PMCMC Algorithms

As discussed the standard approach in statistics to sample from distributions for which analytic
forms are unavailable is MCMC, for example we could use MCMC to approximate p(xj.¢, 0|y1.¢). Un-
fortunately it is very difficult to design effective proposal distributions for non-linear non-Gaussian
state space models. Particle Markov Chain Monte Carlo (PMCMC) methods are a recently de-
veloped class of MCMC techniques which use embedded SMC algorithms to create efficient high-
dimensional proposal distributions. A popular example of such PMCMC algorithms is the Particle
Marginal Metropolis Hastings algorithm, which is described in the following section.
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5.8.1 The PMMH Algorithm

The Particle Marginal Metropolis Hastings (PMMH) algorithm is an approximation of an ideal
Marginal Metropolis-Hastings sampler for sampling from p(xj.7,0|y1.7) (static parameter vector
§ = O\, for model My for example). The standard marginal Metropolis-Hastings algorithm has
acceptance probability given by:

min {1 p(xT:T, 9*\Y1:T)q((x1:T, 0)|(xt.r, 9*)) }
" p(xur, Olyrr)a (x5, 0%)| (x1or, 0))

)
— min 1,p<XT:T’9*‘y1T) q(010")pe(x1:7|y1:T)
p(xv7, 0ly1:1) q(0*]0)po- (3.1 lyr7)

:min{l pe*(YI:T)p(H )q(gw*)}
" po(y1T)p(0)q(6%]0)

Ideally the samper would use the following proposal density:

q((<3.r, 0)|(x1:7,0)) = q(0710)po~ (1. lyr:T), (5.29)
to propose moves in the joint parameter/latent space, where ¢(6*|0) is some proposal density for a
move in the static parameter space to candidate 8* when we are at location 0, and pg-(x].;|y1.7) is
the conditional density of the latent states xj.;- given the observations and the proposed parameters
0*. Unfortunately, in practice, this ideal algorithm cannot be implemented since we can neither
sample exactly from pg«(x}.p|y1:7), nor can we compute the terms pyp«(y1.7) and py(y1.7) which
appear in the acceptance ratio. The PMMH sampler approximates this ideal sampler by using
SMC approximations of the unknown terms; Algorithm 14 is the general version, and a specific
version for joint estimation of parameters {3, ¥, B} and latent states z;.p in Bayesian CVAR
model My is given as Algorithm 15.

Remark More complex versions of PMCMC algorithms exist; for example there is a Particle
Gibbs version of the algorithms first described in [Andrieu et al., 2010]. This samples iteratively
from p(0)y1.7,x1.7) and pg(x1.7|y1.7). To create a valid particle approximation to the Gibbs sampler
requires a special type of conditional SMC update which ensures that a prespecified path Xy.1, with
known ancestral lineage, is guaranteed to survive all the resampling steps. This increases the
algorithmic complexity, particularly in the matriz variate setting.

Algorithm 14: PMMH sampler for static parameters @ and latent states zj.p
if iteration k = 0 then

1. Set statatic parameter vector 8(0) arbitrarily.
2. Run an SMC algorithm targeting pg ) (x1.7]y1.7), sample x1.7(0) ~ De(0) (dx1.7|y1.7)
2a. Compute the marginal likelihood estimate pg(o)(y1.7)

end

for iterations k > 1 do

3. Sample a proposal 8* ~ q(6*|0)

4. Run an SMC algorithm targeting pg=(x1.7|y1.7), sample x*1.p ~ pg= (dx1.7|y1.7)

4b. Compute the marginal likelihood estimate pg=(y1.7)

5. Calculate the Metropolis Hastings Acceptance Probability:

po~(y1.7)p(0*)q(0(k — 1)|6*) (5.30)
Pok—1)(Y1:1)p(8(k — 1)) q(6*|6(k — 1)) .

Set O(k) = 0*, x1.7(k) = x*1.7 and pg(k)(y1.1) = Peox(y1.7). Otherwise set
0(k) = 0(k — 1), xi.7(k) = x1.7(k — 1) and poy (Y1.:7) = Po(r—1)(Y1.7)-
end

A(0*=Y 9*) = min {1,
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5.8.2 The PMMH algorithm in the CVAR context

We conclude this section by listing the key components of the complete PMMH algorithm for the
joint estimation of 3,3, B and z1.7, as described over the earlier parts of this Chapter:

An adaptive method to learn, online, an appropriate covariance matrix for use in a multivari-
ate normal distribution to generate proposed states for the cointegrating vector B on each
iteration of the PMCMC algorithm.

A SISR filter which sequentially evaluates the filtering distribution of the latent states
pp(z1:7|y1:7), and is also capable of providing an estimate of the marginal likelihood pg(yi.7).
The filter incorporates sequential importance sampling and one of a number of re-sampling
algorithms as described earlier.

A suitable acceptance ratio to use with a rejection sampling technique to accept/reject moves
proposed by the algorithm; such a ratio is given in equation (5.30).

For estimation in a Bayesian setting we also require components to calculate the prior den-
sities based on the conjugate analysis presented in Chapter 3; these need to be included in
the acceptance ratio of equation (5.30).

If we are interested in also estimating > and B we will also require a component to sample
‘exactly’ from the known posterior distributions p(X|3,Y) and p(B|3,Y).

The complete specific version for joint estimation of parameters {3, X, B} and latent states zj.p
in Bayesian CVAR model My is given as Algorithm 15.

Remark To avoid confusion with the earlier notation for the observations (Ax;) in Bayesian
CVAR models we will use z1.p to represent the latent states when discussing concrete applications
of the algorithms.
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Algorithm 15: PMMH sampler for parameters 3, X, B and latent states z;.p7 (Model My)

Input: Initial parameter states @ { B ).B (0)}, observations yi.7, priors
m(8),7(X), 7(B).
Output: Parameter estimates {H(t)} = {,B(t), =) B(t)} ,t=1,...,T, and latent states
Zy.T.
begin
if iteration k = 0 then

1. Set 8(0) = 6

2. Run an SMC algorithm targeting pg(q) (z1.7|y1:7)
Using:
- Prior: p(Zy)=6(2) = Zy
- Transition Proposal: p(Z;|Z;—1) = MVN(Zt|bg(0)(Zt-1), Xw)
- Observation Likelihood: p(Y;|Z;) = MVN(Y|cg(0)(Zt), %)
where by and cg are functions dependent upon the parameters of the model.

2a. Sample z1.7(0) ~ Pg(o)(dz1.7|y1:7)

T
2b. Compute the marginal likelihood estimate: pg()(y1:7) = Do(¥1 H (Yelyi—1).
t=2

end

for iteration k=2 toT do

3. Sample candidate parameter 3* from proposal: 3* ~ ¢(8*|38) = N (8*|3,9Q)
3a. Sample ¥* ~ (|3*,Y) and B* ~ (:|8*,Y) exactly from conjugate posteriors.
3b. Form the proposed state: 8* = {3*,¥*, B*}

4. Run an SMC algorithm targeting pg~(z1.7|y1.7)
Using:
- Prior: p(Zy)=6(2) = Zy
- Transition Proposal: p(Z;|Z;—1) = MVN(Z|be=(Zi-1), Xw)
- Observation Likelihood: p(Y;|Z;) = MVN(Y:i|cox(Zy), 2)

4a. Sample z*1.7 ~ po=(dz1.7|y1:7)
T

4b. Compute the marginal likelihood estimate: pg+(y1.7) = po=(y1) H «(Yelyi—1)
t=2

5. Calculate the Metropolis Hastings Acceptance Probability:

k=1 9*) — min po~(y1.7)p(0*)q(0(k — 1)|6*)
AOT0 {1’ po—1)(yr7)p(0(k — 1)) q(6*|0(k — 1))

—min 1 po~(y1.7)p(B*, X%, B)q(0(k — 1)|6*)
" poe—1) (Yrr)p(BE—1, Bk-1) Bk=1)q(0*|0(k — 1))

Ha. By rejection, with probability A:

Set ) — g* = {8*,2*,B"}, ng% =Zz"1.7 and ﬁe(k) (y1.r) = po=(y1.1),
Otherwise set 8%) = g-=1) zgk% = z&’f{l)and Po(k)(Y1:7) = Po(k—1)(Y1:1)-

end
end
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5.8.3 Rao-Blackwellised PMMH

For models My and M; which are totally linear we are in the happy position of being able to apply a
Rao-Blackwellised version of the PMMH algorithm. The term Rao-Blackwellisaztion derives from
the Rao-Blackwell theorem of statistics, which states that if 0 is any estimator of a parameter 6
then the conditional expectation of 6 given T', where T is a sufficient statistic, is at least as good

~

(in the mean square error sense) as 6. Writing 8*(X) = E[0(X)|T(X)):

~

MSE(6*) < MSE(§) V6. (5.31)

In the case of an ECM observation system with linear latent system we can use the optimal
Kalman filter solution to finding p(z1.7|y1.77,©). The filter is optimal since when we choose the
matrix K to be equal to the Kalman gain the estimators of z;.;7 are the MMSE estimates. The
Rao-Blackwellised PMMH algorithm (RB-PMMH) is a modified version of Algorithm 15 of section
5.8.1 where now the latent state estimation, and the calculation of the marginal likelihood, are
performed by an optimal Kalman filter rather than a sub-optimal particle filter. Effectively this
is the same as evolving a single particle to perfectly represent the Gaussian sufficient statistics of
the linear system, and is thus computationally much less costly than using the full particle filter
with its population of particles. However use of the RB-PMMH algorithm is limited to systems
with linear latent dynamics.

Algorithm 16: RB-PMMH sampler for parameters 3, 3, B and latent states z;.7.

Note: Only those parts which differ from Algorithm 15, the PMMH algorithm, are listed
here.

if iteration k = 0 then

2. Run an optimal Kalman Filter algorithm to calculate z1.7(0) ~ pg(o)(z1:7|y1:T)

T
2b. Compute the marginal likelihood exactly: pg()(y1.7) = pe(y1) Hpg(yt|yt_1) using
t=2

the outputs from the Kalman filter.
end

for iteration k=2 toT” do

4. Run optimal Kalman Filter algorithm to calculate z*1.7 ~ pg=(z1.7|y1.7)

T

4b. Compute the marginal likelihood exactly: pg«(y1.7) = Do=(¥1) Hpg* (Yt|y¢—1) using
t=2

the outputs from the Kalman filter.

Accept/reject using the Metropolis Acceptance probability as for PMMH Algorithm.
end

5.8.4 Case Study: Rao-Blackwellised PMMH and PMMH Marginal Likelihoods

The Rao-Blackwellised PMMH sampler embeds a Kalman filter to perform the latent state estima-
tion and the calculation of the marginal likelihood pg(y1.7). The performance of both algorithms
depends on the estimates of the marginal likelihoods produced with the Kalman or SMC filters. To
check that the SMC filter is working effectively we can compare the marginal likelihood with that
produced by the Kalman Filter for any of the linear models. The top left plot in Figure 5.7 shows
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the surface of log p(y1.7|3) as estimated using the Kalman filter for model My. We can compare
this to the esimate calculated using the particle filter; for clarity we will look at the values from
both filters for a slice through the surface at 813 = 0.
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Figure 5.7: The surface and corresponding contour plots show the marginal likelihood as evaluated
from the output of the Kalman Filter; the lower plots show a ‘Slice’ through the marginal likelihood
surface at 31 3 = 0 for SNRs of -10dB (left), +10dB (right)

The example for +10dB shows a divergence between the two filters - the reason for this is a
too low noise level in the SMC filter. Figure 5.8 shows the latent states recovered by the Kalman
Filter and the SMC filter for the same settings of the signal-to-noise ratio (SNR).
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Figure 5.8: The latent states recovered using either the Kalman Filter or the SMC filter: the left
plot is for SNR= +10dB, and the right plot is for SNR= —10dB.
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5.9 Challenges in Practice

Despite the great benefits brought by the adaptive MCMC scheme the algorithms can still (in
their present form) require a certain degree of manual tuning. Several additional parameters were
encoded to give greater control over the properties of the algorithms (particularly the proposal
covariances):

e Writing the initial Laplace covariance for the 3 proposals as Qraplace, We introduce a scaling
factor ~1, which multiplies the initial covariance 00 = M, X QLaplace- A value close to 1, and
certainly in the range 0.1 < 1, < 5 was chosen.

e Writing the adaptive covariance for 3 proposals as ng‘)i we introduce a scaling factor ~ya
which multiplies the adaptice covariance: Q) = v, x Q(A]<)i Values close to 1, and certainly
in the range 0.1 < yaq < 1 were chosen.

These setting were made manually by observing a short run (= 2000 samples) of the chain for
a small set of values of yaq or 71, and noting the acceptance ratio. The settings which gave the
highest acceptance rate were chosen (it was rarely the case that too many moves were accepted as
can sometimes occur for MCMC methods).

Another variable that in practice must be considered is the number of iterations, m, for which the
initial proposal covariance Qpaplace (Or its scaled version if 41, is not set to zero) is used. This can
be set using a small-scale empirical run of the algorithm for a few different values, and defining
some criterion (e.g. high acceptance ratio) to target.

A key aim in future work would be to remove these manual tuning components altogether, and
to find a more robust way to increase the likelihood of good mixing performance and good initial
parameter settings. Possible alternative methods for the initialisation include raising the system
to a temperature, T', and gradually reducing the temperature in an optimisation approach derived
from simulated annealing. Alternatively more sophisticated adaption schemes are possible, and
these may also lead to improved mixing performance.

o6



Chapter 6

Synthetic Studies

6.1 Introduction

Various synthetic studies were performed to better understand the performance of the proposed
samplers in the context of Bayesian CVAR models. In the case of model types My and M; the
observation model is chosen to be one of the following 2 models, (S1, and S3), where the digit
indicates the cointegration rank, based on those of [Sugita, 2002]. We will restrict attention to the
case of n = 4-dimensional observations, y; (= Ax;), and latent states pu.

| Label | Sugita Model | Rank, 7 |
—-0.2
S Axy = 02 (1 0 0 —1]
1 X¢ = pt + 09 Xi—1 + €
0.2
05 o2 _es |[1 00
53 AXt = Mt + ’ . ’ 01 0 -1 Xi—1+ €
0.2 0.2 —-0.2 00 1 -1
0.2 0.2 0.2

Table 6.1: ECM observation models considered: these govern the cointegrated part of the system.

6.2 Model My: Static Latent Process (ECM rank = 1)

A series of synthetic studies were run to establish and tune the performance characteristics of the
PMMH algorithm in the case of the static CVAR model My. The static latent system is of the
form:

”t:H0+Wt WtNN(O)Ew))

where po = [0.1 0.1 0.1 0.1}, and the noise level in the latent system was set to ¥, = 0.2 x L,.
The noise level in the observation system was set to ¥ = 1 x [, giving a signal to noise ratio of
~ —7dB.

In each case 150 synthetic states were generated from the static latent system, which were used
to simulate 150 corresponding observations from Sugita model S;. In the following sections the
PMMH algorithm is used initially to estimate just the cointegrating matrix 3; the conjugate
analysis of chapter 3, and prior knowledge, are used to sample exactly from parameters B and
3. After establishing that the MCMC mixes adeqately for this limited version the other static
parameters are gradually re-introduced to the problem and used to drive the SMC filter embedded
within the PMMH algorithm. In effect we explore several alternative sampling schemes:

e Scheme la: Assume prior knowledge (ML estimation for example) enables us to take param-
eters B and ¥ as known and use them to drive the filter. Adaptive proposals are made for
B and the PMMH algorithm targets p(z1., B|y1.t). Conditional on the accepted values of 8
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we sample ¥ and B exactly from the posteriors developed in chapter 3. On each iteration of
the PMMH algorithm the proposed value of 8 is used within the SMC filter to estimate the
latent states p(z1.t|y1.+,3) and the marginal likelihood p(y;.); i.e. Algorithm 15 was run but
only the sampled values for 3 enter function cg (the others are set to the true known values).

e Scheme Ib: As well as targetting B we now assume that B is also unknown. Conditional
on the accepted values of 3 we sample exactly (from the posterior form) for B|3,Y and use
this sampled value to drive the SMC filter. We continue to assume that ¥ has been set with
prior knowlegde.

e Scheme Ic: Now we target p(z1.¢, 3,3, Bly1.t). Values for both B and ¥ are sampled exactly
from p(B|B,Y) and p(X|B,Y) and these are both used, along with the current proposed
value of B, to drive the SMC filter and to estimate the latent states zy.p.

In the examples that follow the PMMH algorithm was started with random initialisation for 30
and the other parameters. The recovered parameters and plots are presented for each variant of
the algorithm having each been run for a chain length of 10,000 samples. The averages are made
with samples 3,000:10,000 to allow for a ‘burn-in’ period.

For the full PMMH, and RBPMMH algorithms 5 seperate chains were generated and the averages
made by first calculating the mean and standard deviation for each chain and then combining; in
this way we can also calculate the standard errors of these quantities between the different chains.

6.2.1 PMMH for {3,z1.7|Y} (Exact Sampling for 3, B, Scheme la)

A first example consists of running the PMMH algorithm solely for parameter 3, and assuming that
prior knowledge has allowed us to take parameters B and X as known, this corresponds to Scheme
la mentioned above. We assume for example that the values for B and % have been estimated
via maximum likelihood procedures on a subset of our observation data. Diagnostic plots are
presented in Figure 6.1 below. The embedded SMC algorithm was run with 27 = 128 particles.
This initial example shows good mixing for all the parameters of interest, and the algorithm is
clearly converging towards the correct value for 3.
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Figure 6.1: Model : My,S;, Samples
from p(B|Y), p(X[B,Y) and p(B|B,Y).

The PMMH algorithm was run to tar-
get {B,z1.7|y1.7} for 10,000 steps, with
adaptive proposal covariance from the
5th iteration. The table gives the mean
parameter values for 3, 3 and B from
samples 3,000:10,000 of the algorithm;
the values for ¥ and B are sampled con-
ditional on the 3 samples.
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6.2.2 PMMH for {3, B,z;.7|Y} (Exact Sampling for ¥, Scheme Ib)

The PMMH algorithm was re-run and the values of B which are exactly sampled (conditional on
the accepted values of 3) were used as parameters driving the SMC filter.
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6.2.3 PMMH for {3,%, B,z;.7|Y} (Scheme Ic)

The full PMMH algorithm was run for 10,000 samples targeting static parameters 3,3, B and the
latent states z1.p with 5 separate data-sets each having 150 observations of the rank 1 model.
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6.2.4 RBPMMH for {3,%, B,z;.7|Y}, (Scheme Ic)

The Rao-Blackwellised version is considerably faster than the PMMH algorithm (= 2070s for

RBPMMH, with 5 x 10, 000 samples, vs.

Processor with 4GB RAM).
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6.2. MODEL My: STATIC LATENT PROCESS (ECM RANK = 1)

6.2.5 Discussion Model My, ECM Rank =1

In this section results have been presented for three variants of Algorithm 15 - the Particle Marginal
Metropolis-Hastings algorithm, and the corresponding Rao-Blackwellised version - for estimation
of a static latent system with rank 1 observation model.

PMMH: Scheme la

This example achieves good mixing with the required decay of the autocorrelation function by lag
[ = 30 (to =~ 0.2) for two of the components of 3. Since the other parameters, B and X, are
‘exactly’ sampled we would expect there to be good mixing for these; this is confirmed by the
ACF plots. The value of Tr(X), 3.335, is below its true value (4), and lies outside the limit of 1
standard deviation (0.214). The reason for this is probably related to the performance of the filter
under varying noise conditions, more discussion of this is postponed to section 6.4. The values for
B12 and By 3 are recovered within one standard deviation of their true values, but B3 4 is slightly
outside this; but clearly converging towards the true value.

PMMH Scheme Ib

Including the parameter B has, in this example, actually improved the performance of the sampler;
the decay of the ACF for 8 is in line with the desired performance. Again the value for Tr(X) is
slightly low as in the previous example. The values for oy have been recovered within 1 standard
deviation of their true values (apart from «; 4, which is also slightly too low).

PMMH: Scheme Ic

This is an example of the full PMMH scheme, and targets 8, and B as well as the latent states.
For this scheme standard errors between 5 separate datasets were calculated to give an indication
of the variability in the algorithm’s performance. The mixing is adequate, and could perhaps
be slightly improved for two of the B components (sub-sampling could be used to reduce the
autocorrelation between the generated samples as discussed in section 5.6).

All the parameters for 3 are recovered within standard error. The signal-to-noise characteristics
for this run were the same as for the previous examples (+7dB) and the recovered value for
Tr(X) is, again, slightly lower than the true value. Overall the algorithm has shown encouraging
performance, and has enabled the most difficult parameter 3 to be recovered satisfactorily, and
the a parameter (which is part of B) is also recovered well (very nearly within standard error for
all components).

RBPMMH

The RBPMMH algorithm is - in practice - much faster to run than the particle version, and also
generally gives good results. The decay of the ACF for 3 in this example is slightly slow for two of
the components, and indicates that sub-sampling may be necessary to reduce the autocorrelation
amongst the generated samples. In the example plots it is interesting to note the point somewhere
around sample 5500 where the algorithm ‘gets stuck’; after around 300 samples the algorithm
begins to make progress again. The decays of the ACF’s for ¥ and B are both acceptable.

The standard errors have been calculated between 5 separate chains, and the average recovered
value for X is closer to its true value than for earlier versions (but still outside the S.E.). The
recovered value for 3 is not in agreement with the true value; this may be improved by adjusting
the tuning of the algorithm or implementing sub-sampling to reduce the ACF amongst the 3
samples.

Remark The examples in the proceeding section are from the same static latent model, but for the
rank 3 observation system.
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6.3 Model M: Static Latent Process, ECM rank =3

6.3.1 PMMH for {3,%, B,z1.7|Y}

3 T T T T 1.2

Bia —o By,
Bo 4 16 —o Baa ||
b i
Bsa —o Bg,
o.8f
1
<> ¢ P
= 0.6 ]
= [
@ O g
o
£ 0.4
[92]
0.2t
> o
-3 -0.2
(o) 2000 4000 6000 8000 10000 (o) 5 10 15 20 25 30
Sample Number Lag Student Version of MATLAB
0.6 1.2
T
0.5 1d —o P55 ||
ith o PG,
0.4r P, »
o.8f kS 2 i i 447
«» 0.3 i i i $
s 0.6 LY ii fi ii
= L PP if > OB
@ o2 g iifiifi
= o
S o.at RN
9 0.1
0.2t
J i i
—oal —L{M‘u‘“ﬁm %JJJWIPM W o
-0,2 -0.2 : : : :
2000 2000 6000 8000 10000 (o) 5 10 15 20
Sample Number Lag Student Version of MATLAB
0.15 . ‘ ‘ 1.2 .
Bl.l —o p(Bl 1)
0.1 Bllz i 1 —o p(Bl 2)
0.05 BoaH e o PB, )
B 8 P(B, )
o 25 0.8 820 24
(=) 5 jo)
@ (=] e ps (<]
=2 7008 ] 0.6 880(’338@
= -01 , S Pooscg oo
= < > & & ®ooe
& —0.15 L | ‘ Poo o
(]
—0.2} I{hal I ‘JM [i‘ lll‘ 1 0.2} 1
0 '|I Sl Ll
—0.25} - i il | | i —Il I
[ “ o
_o.3l ]
-0.35 -0.2
2000 4000 6000 8000 10000 (o) 5 10 15 20 25 30

Sample Number Lag Student Version of MATLAB

9)) ‘ Jg(SE(O’g) ‘

Par. (/) [ Truth [ 6(S

Bis | -1.0 | -0.897 (.070) | 0.081 (.015

Bou | -1.0 | -0.973 (.076) | 0.084 (.011 , . . .

Bsa 1.0 | -1.022 (.039) | 0.068 (.014 Figure 6.5: Model : My, S3 : Sam-
Te(X) | 2.0 | 1.503 (.056) | 0.069 (.005 ples from p(@Y), p(¥[8,Y) and
I 0.0 | 0.020 (.023) | 0.026 (.001 p(B|B,Y) for the PMMH algorithm
Qi -0.2 | -0.235 (.015) | 0.024 (.002 run to target {3, %, B,zy.7|y1.r} for
Qi 0.2 | 0.174 (.010) | 0.029 (.002 10,000 steps repeated over 5 separate
X4 0.2 0.162 {.023 variance from the 5th iteration. The
o1 -0.2 -0.228 004

table shows parameters found from
averaging samples 3000:10000 of the
output. The numbers in brackets are
standard errors between the 5 data
sets.

033
013) | 0.028
015) | 0.028
028) | 0.034
015) | 0.031

)

0.031 (.003
002
003
001

004
002

013) | 0.028
2.2 0.2 | -0.208 )
2.3 0.2 | 0.186
Q2.4 0.2 | 0.191
Qa3 1 -0.2 -0.160
Qs 2 -0.2 -0.187
Qa3 3 -0.2 -0.214
@34 0.2 | 0.260

025) | 0.032

E( )
(.07 )
(.07 )
(- )
(. )
(- )
(- )
(.010) )
a3 0.2 | 0.191 E 021; 0.025 001; datasets, with adaptive proposal co-
(- )
(- )
(. )
(. )
(. )
(. )
(- )
(.015) | 0.031 )

(-
(-
(-
(-
(-
(-
(-
(-
0.025 (.002
(-
(-
(-
(-
(-
(-
(-
(-

002




6.3. MODEL My: STATIC LATENT PROCESS, ECM RANK =3

6.3.2 RBPMMH for {3,%, B}, z1.1|Y
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6.3.3 Discussion: Model My, ECM Rank = 3

The examples in this section were from the PMMH and RBPMMH algorithms running on a rank
3 model.

PMMH

The algorithm has succesfully converged towards the true parameter values, finding B2 4 and B34
within standard error. Parameter B3 4 is slightly out. Unfortunately the mixing properties of the
algorithm applied to this example are not as good as for the rank 1 system. The ACF’s are still
too high at lag [ = 30 having a value of around ~ 0.5 for 3. The rank 3 system is more difficult to
tune (in the sense of choosing the appropriate covariance scaling) than the rank 1 system.

The SNR in this example is +0d B, both ¥, and ¥ were set to 0.5 x I,,. The recovered covariance of
the observation noise, > has Tr(X) = 1.503, with standard error 0.076; the true value is 2. Around
half the elements of o were recovered within standard error.

RBPMMH

This version has slightly better performance than the PMMH algorithm in the rank 3 system for the
examples given here. The mixing, although not perfect, is better than for the PMMH algorithm;
the ACF of 3 has decayed to =~ 0.4 at lag [ = 30, and the ACF’s for the other parameters > and
B has dropped to =~ 0.3 or better by the same point.

B1,4 and B2 4 are recovered within standard error, and a clear majority of the elements of o are
recovered within error too. The value of X, however, is too low and takes a similar value to the
previous example: the reasons for which will be discussed in section 6.4
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6.4. MODEL M;: DYNAMIC LINEAR LATENT PROCESS & SAMPLING SCHEMES

6.4 Model M;: Dynamic Linear Latent Process & Sampling Schemes

A VAR(1) system is introduced as the latent linear dynamic process, which is of the form mentioned
in Chapter 3:

pe = Fpy 1+ po + wy.

Since this model is linear the Rao-Blackwellised version of the PMMH sampler can be used. The
marginal likelihood surface is the same for both filters as shown, for a linear model, in Figure 5.8.
In this model we may also be interested in attempting to perform inference for the latent transition
matrix F', and the latent state noise covariance Y,,. To aid in this task we can use the posterior
analysis given for this system in Chapter 3. The sampler components are gradually built up in
stages, in what amount to several possible alternative sampling schemes, as follows:

e Scheme I: The adaptive proposal mechanism is used to explore the cointegrating vector
parameter 3. Known parameter values are used to drive the Kalman Filter or SMC filter,
and then, conditional on 3 and Y the conjugate posteriors allow ‘exact’ sampling from ~
p(X|B,Y) and ~ p(B|B,Y). The sampled values of 3, B are not used as part of the acceptance
ratio, exploration is driven purely by 3. This scheme allows us to test the conjugate sampling
components. Figure 6.1 was generated by scheme I.

e Scheme II: The adaptive proposal mechanism is used to explore the 3 posterior, prior knowl-
edge is used to set the parameter values which drive the Kalman Filter or SMC filter and
Y ~ p(¥|B,Y) and B ~ p(B|B,Y) are sampled exactly. At each iteration the SMC or
Kalman filters return a draw from the latent path space z1.7 ~ pp(zi.7|y1.r) (where 6 is
the vector of static parameters). Conditional on these sampled latent states the posterior
analysis of Chapter 3 can be used to sample in a block Gibbs scheme from F' ~ p(F|z1.7)
and X, ~ p(Xy|z1.7)-

e Scheme III: As scheme II, but now all the sampled parameters from the Gibbs blocks are
used to drive the SMC or Kalman filters.
6.4.1 RBPMMH for {3,z;.7|Y}, with Gibbs blocks for { B, %, F',¥,,} (Scheme II)

The Rao-Blackwellised PMMH sampler was run for a chain length of 10,000 samples on system
model M;(VAR(1)). The observation noise level was set to € ~ N(0,0.1 x I,), and the system
noise level was set to w; ~ N(0,1 x I,); giving a signal-to-noise ratio of —10dB. The samples
drawn for one run of the algorithm are plotted across two figures in Figures 6.7 and 6.8
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Figure 6.7: Model : M;(VAR(1)),S1,{¥, = 1 x [,,¥ = 0.1 x I,, F = 0.3 X I,,po =
[0.1 0.1 0.1 0.1]"} Samples from logp(3]Y), logp(X|5,Y) and logp(B|B,Y) for the RB-PMMH
algorithm run for 10,000 steps, with adaptive proposal covariance from the 100th iteration.

The autocorrelation functions for the exactly sampled variables ¥ and B show a very rapid decay;
this is expected since these are random samples (there is some slight autocorrelation introduced in
the ¥ and B samples through the value of 3, if we sampled exactly from p(X|Y", 5p) and p(B|Y, Bo)
for a fixed value of 3y the ¥ and B samples would display zero autocorrelation).
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10,000 steps, with adaptive proposal covariance from the 100th iteration.

Table

Model : M; (VAR(1)),S;.

6.2:

Average

| Parameter (6) | Truth | Mean () | o(6) |

P14 0.0 -0.041 0.043
B2,4 0.0 0.056 0.037
B34 -1.0 -0.941 | 0.095
Tr(X) 0.4 0.038 0.002
Y12 0.0 -0.001 0.001
aq,1 -0.2 -0.203 0.004
1,2 -0.2 -0.202 0.004
1,3 -0.2 -0.203 0.004
Q14 0.2 0.198 0.004
Tr(X,) 4.0 3.793 0.224
Y12 0.0 -0.112 0.075
(10)1 0.1 0.144 | 0.090
(120)2 0.1 -0.117 0.093
(110)3 0.1 -0.040 | 0.091
(10)4 0.1 -0.082 0.092
Tr(F) 1.2 0.981 0.162
Fip 0.0 0.031 0.079
parameter values calculated from samples
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CHAPTER 6. SYNTHETIC STUDIES

6.4.2 RBPMMH for {3, B, F',¥,z1.7|Y} (Scheme IlI)

The RBPMMH algorithm was run for a chain length of 10,000 samples targeting static parameters
B, B, F 3, and the latent states z;.7 with 5 separate data-sets each having 150 observations of
the rank 1 model. This algorithm follows sampling scheme III as set out at the start of the section:
block Gibbs updates are used to sample F' and ¥, conditional on the sampled latent path, and
then these parameters are used to drive the filter on the subsequent iteration. The acceptance
ratio includes 8, B, X, and F'.
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Figure 6.9: Model : M;(VAR(1)),S; : Samples from p(5|Y), p(X|8,Y) and p(B|35,Y) for the
PMMH algorithm run to target {8, %, B, F, ¥y, z1.7|y1.7} for 10,000 steps.
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Figure 6.10: Model : M;(VAR(1)),S; : Samples from p(F|Y), p(X,]5,Y) for the RBPMMH algo-
rithm run to target {3, %, B, F, ¥, z1.7|y1.7} for 10,000 steps.

[ Parameter (9) | Truth | (SE(0)) [ 04(SE(09)) |

B1.2 0.0 | 0.022 (0.071) | 0.066 (0.018)
Bi3 0.0 | -0.040 (0.008) | 0.036 (0.007)
Bra 1.0 | -0.938 (0.083) | 0.060 (0.011)
Tr(S) 0.4 | 0.097 (0.005) | 0.016 (0.002)
S 0.0 | 0.003 (0.001) | 0.003 (0.000)
a1 0.2 | -0.158 (0.024) | 0.018 (0.001)
a1 0.2 | -0.171 (0.029) | 0.019 (0.001)
a1s 0.2 | -0.220 (0.030) | 0.020 (0.002)
a1y 0.2 | 0.161 (0.012) | 0.020 (0.002)
Tr(Sw) 40 | 3.740 (0.104) | 0.166 (0.007)
S 0.0 | -0.021 (0.021) | 0.079 (0.006)
(ko)1 0.1 | -0.029 (0.040) | 0.097 (0.005)
(ko)2 0.1 | 0.080 (0.066) | 0.099 (0.004)
(ko)a 0.1 | 0.143 (0.036) | 0.108 (0.008)
(10)a 0.1 | 0.077 (0.014) | 0.094 (0.005)
Te(F) 1.2 | 0.961 (0.113) | 0.116 (0.002)
Fio 0.0 | 0.080 (0.066) | 0.099 (0.004)

Table 6.3: Average parameters from 5 separate runs of the RB-PMMH algorithm with dynamic
latent VAR system.
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6.4.3 Disussion: Model M,

In this section the RBPMMH algorithm was used to target one of two schemes:
e {B,z1.7|Y} with Gibbs blocks for {B, %, F,3,} (Scheme II)
e {B,B,F,%,,z1.7|Y} (Scheme III)

Scheme |11

The ACF plots for 8 for this dynamic example shows that the samples are still too correlated, and
sub-sampling may be required to overcome this. The samples for ¥, B have very low autocorrelation
since they are being sampled exactly from the known posteriors; the values of the components of
B in particular have small variance. This scheme really serves to test the exact sampling portions
of the algorithm, and in the setting of this model also the recovery of the noise in the latent states,
Sw-

The samples for F' and ¥, also show a very sharp decay in their autocorrelation functions; this is
as expected since the samples, conditioned on the recovered latent paths, are being exactly sampled
(and in this scheme are not being used to drive the filtering). The value for Tr(X) recovered was
3.79, which is within one standard deviation of the true value, 4. The value of Tr(F') has been
recovered as 0.98, where the true value is 1.2.

Scheme Il

This scheme brings together all the elements of the sampler into a single RBPMMH algorithm
(and these schemes can be applied to similar effect in the PMMH version). The recovered latent
states are used to condition the exact sampling of the parameters from the posteriors and these, in
turn, drive the filter. The autocorrelation of the B samples does not decay as rapidly as desired;
again either improvements in tuning or sub-sampling are required here. The algorithm is more
complex, and there are now more dependencies between the sampled parameters and the filter;
this appears to make tuning more difficult. However the algorithm is successfully recovering many
of the parameters within standard error, despite the inadequate mixing.

We may begin to understand the poorer mixing performance for the cases where we attempt the
estimation of a greater number of parameters by considering the effect this has on the shape of the
posterior likelihood surface. In the sampling schemes we have described, parameters such as ¥ and
B that are used to drive filtering are sampled exactly from their known posterior distributions.
The stochasticity generated in this sampling causes the likelihood surface (which, of course the
MCMC portion of the algorithm is exploring) to become distorted. A simple example is given in
Figure 6.11 below, which shows the effect on the marginal likelihood pg(yi.7) of either taking ¥
as fixed throughout or sampling it before evaluating the likelihood at each point on the surface;
the marginal likelihood surfaces are generated using the SMC filter. Also the same test was tried
where we sampled the parameter B and used this to drive the SMC filter conditioned on each of
the different values for 3; this creates a different shaped likelihood function. Effectively, in this
case, the marginal likelihood becomes highly constrained in a small region of parameter space.
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log p(YIB.%,B)
!
plog (YIBL,B)

Figure 6.11: Introducing sampling of parameters that subsequently drive the embedded SMC filters
will distort the likelihood surfaces. These plots show the surface for p(Y|3, %, B) either taking ¥
as known (left plot) or sampling it exactly from its posterior distribution (centre plot) or taking
> as known and sampling B. This may partially explain the observation that estimating more
parameters in a PMMH algorithm generally makes the algorithms less stable and more difficult to
tune. The rightmost plot shows the effect on the marginal likelihood surface calculated using the
SMC algorithm when parameter B is sampled before each evaluation, conditional on the current
value of (3.

6.4.4 Recovering Noise

As is clear from several of the examples given so far the recovery of the noise in the observation
and latent systems is more or less effective dependent on the signal-to-noise ratio of the two parts
of the system. For example, in a situation where the signal-to-noise ratio is high (i.e. there is
more noise in the latent system than the observation system) it is possible to effectively recover
the latent states, and from these estimate the noise level; an example is the left plot of Figure
5.8. However if the noise in both parts of the system is equally matched the filters are unable to
completely capture the variations in the latent system and thus the reconstructed latent states do
not contain the full complement of noise from the true latent system. In more extreme situations, if
the observation noise is much greater than the latent system noise, only a fraction of the variations
in the latent system are captured by the filters, see for example the right plot of Figure 5.8.
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6.5 Model M7: Dynamic Non-Linear Latent Process

The PMMH algorithm is suitable for running on non-linear systems, which are outside the scope of
application of the Kalman filter and the RB-PMMH. As an example, a non-linear dynamic latent

system with equation: pe = po+ Crie_1 + DHtQ—l +wy (6.1)

was simulated with parameter C' = 0.07 x I,,, D = 0.07 x L, po = [0.1 0.1 0.1 0.1} and noise
covariances Y, = 0.1 x I, and ¥ = 0.5 x [,. Examples of the performance of the SMC algorithm
(running with 27 = 128 particles) at recovering the latent states of this model are plotted in
Figure 6.12 below. Samples from the PMMH algorithm (scheme I) are shown in Figure 6.13. The
observation equations were from the Sugita rank 1 model S;.

25 25
—Mu3 ~—Mud

—Mu4 (SMC)

—Mu3 (SMC)

Mus3(t)
Mud(t)

0 30 60 90 120 150

0.5 0.5
Time (t) Time (t)

Figure 6.12: The plots show the latent states (uz; and f4,) from the non-linear system recovered
using the SMC filter.
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Figure 6.13: Plots showing the samples for 3 generated by a short chain (5000 samples) run on
the non-linear model

The samples plot demonstrates that in the non-linear case we can use the PMMH algorithm
for the joint estimation of static parameters and latent covariance states. Although the mixing is
poor, the samples are clearly coming from the correct distribution for the 3 parameter. Further
work is required to improve the tuning and mixing for this model.
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6.6 Model My: Dynamic Latent Covariance Process

Before demonstrating the operation of the PMMH sampler for the model with dynamic latent
stochastic volatility observation error covariance, it is important to verify that the embedded SMC
filter can recover the latent states u; and the latent variances which are following the square Bessel
process. The examples in Figure 6.14 show the filtered values of 1 ; and o; for three different values
of parameter )y in the square Bessel process driving the observation noise. In all the examples the
latent states follow the static system:

e = po + wy

with latent state noise covariance having value ¥, = 0.5 x I, and po = [0.1 0.1 0.1 0.1]".
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Figure 6.14: The left plots show the latent states (u;’s) and the right plots show the observation
noise variances (o;’s) recovered using a 5-dimensional SMC filter. The top row has \g = 0.25, the
middle row has Ao = 0.5 and the bottom row has Ay = 1 resulting in observation noise processes
with different means.
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Figure 6.15: Plot showing the samples of 3 produced by running the PMMH algorithm in Scheme
Ia; i.e. it is targeting p(83, z1.7|y1.7)-

The algorithm appears to correctly converge towards the true, known, components of 3, as
shown in Figure 6.15. This example is limited due time/processor constraints which prevented a
longer example from being run. The examples in Figure 6.14 demonstrate that augmenting the
SMC filter to target both latent system states and observation noise covariances is achievable in
practice. Therefore extensions to the joint estimation of latent states, static parameters and latent
dynamically evolving covariances in new classes of flexible CVAR models is likely to be achievable
too.
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Chapter 7

Conclusions & Future Work

This thesis has explored the design and implementation of state-of-the-art PMCMC algorithms for
the purposes of jointly estimating latent states and static parameters in the challenging matrix-
variate context of cointegrated VAR models. Several classes of latent system have been explored;
static, linear dynamic, and non-linear dynamic. Also, a class of models with dynamic covariance
structure has been described, and basic estimation demonstrated.

In the case of the static latent systems the PMCMC algorithms display generally good mixing
properties, and are able to recover known parameter values for 3,% and B adequately. Two
versions of the algorithm were coded up: a full PMMH algorithm with embedded particle filter,
and a Rao-Blackwellised version which used a Kalman filter to perform the filtering and estimate
the marginal likelihoods used in the PMMH acceptance ratio. The RBPMMH version is much
faster to run than the full PMMH sampler, but its use is limited to state-space systems with linear
equations.

A dynamic linear VAR system was used to test the PMMH and RBPMMH algorithms, and slightly
modified sampling schemes (I, IT and IIT) allowed the joint estimation of further parameters and
latent states. For this category of models it is possible to sample from exact posterior distributions,
not only for static parameters ¥ and B, but also from the conditional posteriors of the static
parameters of the latent system given the recovered latent states F'|zi.r and ¥, |z1.7. Incorporating
more sampled parameters into the filters driving the estimation alters the likelihood surface; for
these schemes we may achieve superior results using the Particle Gibbs Algorithm, which embeds
a conditional SMC filter.

The project represents the methodological development stage of a larger piece of work, which
will apply the samplers that have been created to estimation of the parameters and latent states
in extended classes of dynamic CVAR models. A simple example of the estimation for a model
following a latent square Bessel process in the dynamic covariance structure of the observation
errors has been given. It has been demonstrated that recovering the latent square Bessel process
volatilities is possible with an augmented SMC filter, and that the marginal likelihood from such
a filter can be used to drive a PMCMC algorithm to perform joint inference of static parameters
and latent dynamic states.
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Appendix A

Johansen Procedure Derivation

We proceed by minimizing the log-likelihood, Equation (2.11), with respect to the ¥ matrix,
keeping all other parameters fixed. The matrix derivative of Equation (2.11), ignoring the constant
term, is defined by,

T

Z(Z(]t,oz - (aﬂ/zlt)a + \Ija'yZ2t,y)
t=1

Oln L(o, B8, V, ) 0 T 1
OV a0y | 2 |2 = 5

05 (Zots — (aB' Zue)p + ‘I’Bazzt,a)}

T
1
5 Z {(Z(]t,Oé - (aﬁlzlt)a + \I’afyZZt’»y) Q;;Z2t77+
t=1

ZZt,le_ﬁl (Zorg — (af' Z1e)s + ‘Ifﬁazzt,a)} : (A1)

If we assume that the log-likelihood function is convex, the minima of Equation (A.1) is given by,

T

> (Zow — o' Zyy + W Zoy) Zy = 0. (A.2)
t=1

Solving for W, we substitute the results back into Equation (2.11) and proceed to minimise the
log-likelihood with respect to a with 8 and €2 held fixed. By defining the product moment matrices,

T
1 roL .
Mij == ZuZy 1,3=0,1,2,
t=1
the solution of Equation (A.2) with respect to ¥ is given by,

\i’ = MOQMIEI - Oéﬁ,MlgMil. (A?))

Next the short run transitory effects, UZy;, in Equation (2.9), are removed. By using the Frisch-
Waugh-Lovell theorem [Lovell, 2005], we are able to define the following auxiliary regressions,

Zot = MoaMyy' Zay + Roy,
Zv = MiaMyy' Zoy + Ry

The residuals of the auxiliary regressions can now be used to define a concentrated model,
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Rot = aff' Ryt + €, e ~ MVN(0,%),
€t = Rot — OéB/th- (A.4)

The concentrated model is helpful for understanding both the statistical and economic properties
of the VECM in Equation (2.8). The VECM model contains both short-run adjustment and in-
tervention effects, whereas the concentrated model contains long-run adjustments [Juselius, 2006].
The log-likelihood of the concentrated model, Equation (A.4), can be expressed as,

T
T 1
In L(a, 8,92) = constants — 3 In|Qf — 3 Z(R()t —af'Ri) QU Y(Ros — aff Ryy). (A.5)

t=1

Now we minimise Equation (A.5), with respect to a with € and ( held fixed,

T
alnL(a,B,Q) _ 0 {_ZIHKN . %Z (ROt,a _ Oéa'y(B/th)'y)Q;é(ROt,ﬁ - a,@&(ﬁ/th)(S) }(AG)

aakl 80%[ P
= % Z { Roto — Qary (B Rut)y) Qi (8" Rus)i + (B'Rut)i€ 5 (Rots — Oéﬁ(;(ﬁ/th)(;)} .

The minimum of Equation (A.7) corresponds to the solution of:

T

> (Rot — a(B'R1)) (B Ryy)’ = 0. (A7)

t=1

By defining the residual sum of squares as matrices,

1 I
=5 Bl 1j=0,1
t=1
the solution of Equation (A.7) with respect to « is given by,

A = Sp18(8'S118) (A.8)

Substituting Equation (A.8) into Equation (A.5), we minimise the result with respect to £ with
held fixed. For convenience we will use the notation M (3) = So18(8S118)!3". Solving for Q,

T
dIn L(B,9) T ., 1 o
.~ "3 t3 ;(Rom = M(B)aryR11.4) Q00 5 (Rors — M(B) s Ras)
T T
= _EQ’;Zl + {QgéROt,aROt,ﬂQl}l — Qg Rot.a M (B) g5 Rt 52,5
t=1
— QM (B)ay Ruvy Ror s
+ Qa]iM(/B)a”/thﬁth,vM(5),35R1t,591_,31} .

In matrix form this reduces to,
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d1n L(B,Q)

T
T _ 1 _
a0 = -39+ thlm Y { RotRGy — Rot Ry M (B)' — M (8) Ry Riy

+ M(B)RuRyM(B)} (@)

- _%Q_l + —g(Q_l)/ + {Soo — St M (B)" — M(8)Sho
+ M(B)SuMpB)} QY. (A-9)

Multiplying both sides of Equation (A.9) by € yields,

Q= Soo — So1 M (B)" — M(B)S10 + M(B8)SuM(B)". (A.10)
By noting that,

S M(B)' = So1S08(8'S118) 75"
= SuB(8'S118) 7" 8/t
= SuB(8'S118) " 8 Sm
= M(3)So,

and

M(B)SuM(B) = SpB(B'S118) " 8 S11B(8'S118)~* B'Sio
= So1B(8'S118) "B Sou,

Equation (A.10), can be written as,

Q = Soo — So1B(8'S118) " B'Sor. (A.11)

For a multivariate normal distribution, up to an overall constant, the maximum possible value of
the likelihood function is |Q| =772, which is also denoted by,

Lo2F(8) = 198)|
= [Soo — So18(8'S118) ™" B'Soul- (A.12)

Thus, the problem of maximising the likelihood function reduces to finding the matrix g which
maximises the determinant of Equation (A.12). To find the determinant we make use of the
expression,

[ S0 So1B
M= (5/501 5l5015> ’

the determinant of M is:

|M| = |Soo||8"S018 — B'S10S00 So01]
= |B8"S018!|S00 — So1B(8'S118) " B’ S1al. (A.13)

The determinant of 2 is contained in Equation (A.13). Solving for || yields:
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| 18'S118 — B8'S10S05 S01]

Q| =S, i

1= 150 8751 ]
~ 100l 18" (S11 — S10550 So1)|

8" S11]

The values of 8 which maximise the likelihood function are the solutions to,

(S11 — S10S59-So1)v' = p'Syyvi,

or equivalently for A = 1 — p’,

SloSO’Olvai = )\iSHvi. (A.14)

The vectors, v¢, represent cointegration relations. By choosing the normalisation v¢Sy v/ = I, (if
i = j and 0 otherwise) then 5’5105&]15016 = diag(A1, A2, .. .). With this choice of 3, the maximum
likelihood function is then,

Lol = (\500! ﬁ(l - 5\i)> : (A.15)

In summary, the Johansen Maximum Likelihood method produces estimates of the parameters of
a Vector Error Correction Model (VECM) of the form given in Equation (2.8). The parameter
estimates and the resulting likelihood function are summarised in Table (A.1), where, r, represents
the cointegration rank and the other symbols are as defined previously.

Estimator ‘ Form ‘
& So18(8'S116) "
B [vl,...,vr]/Sil/Q
Q Soo — S018(8'S1.8) 1 8'So1
v Moo Mp,' — af' Mya My,
Maximum Likelihood <\Sog| H (1— 30)
i=1

Table A.1: Summary of Estimates from the Johansen Maximum Likelihood Method
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Appendix

B

Selected Code Components

B.1 Bayesian CVAR Probabilities

This object is used by the samplers to calculate, and sample from the priors and posteriors

various stages.

classdef BayesianCVARProbabilities < handle
% BayesianCVARProbabilities Class

o

This file contains code to calculate the CVAR Likelihood, Prior and Posterior

% Probabilities under a Bayesian Hierarchical Model
% PROPERTIES (Public)
properties (GetAccess = public, SetAccess = protected)
dimension % Dimensionality of the system process
t % t=T-p+1 (where T is the number of observations and p is the number of
lags)
k % k=n(p-1)+r+1
c %
% The Stored ECM model object & data:
ECMModelObject
ECMParStruct
rank
Y % Transformed Data = (Xt-Xt-1)
YBlock % This is Y as it appears in the literature (del(x p), ... del(x T))'
X % Data
XBlock % This is X as it appears in the literature (augmented with (t*n) block of
ones)...
ZBlock % This is 2Z2 from the literature dimension (t*n)
Gamma % This is the matrix with the mean level, and the Psi matrices
Mu % The Mean level from the System Process
Psi % The Psi Matrices
B

% Transformed Datasets for easy incorporation into the marginalised
% posterior formulae:

w

wWW

B_Hat
B_Star
A Star
S_Hat
S_Star

% The Heirarchical Prior Parameters (Observation Model)

% Beta

Beta_Bar

Beta_ Q
Beta_H

% Sigma

S
h

N(BetaBar, Q (*) H"-1)
% The prior mean for Beta
% (r*r) PSD matrix
% (n*n) PSD matrix

~ IW(S,h)
% (n*n) PSD matrix
% DOF

% B|sSigma ~ N(P, Sigma (*) A"-1)

Beta_ Hat

P
A
AInv

% The prior mean for B (k*n)
% (k*n) PSD matrix

% The Heirarchical Prior Parameters (System Model)

% SigmaW ~ IW(Sw,hw)

Sw
hw

% (n*n) PSD 'mean' matrix
% IW DOF
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end

% PROPERTIES

B.1. BAYESIAN CVAR PROBABILITIES

% F|SigmaWw ~ N(F_Bar, SigmaW * A F"-1)

F_Bar

AF

%
%

properties(GetAccess

end

YminusWB_Hat
PminusB_Hat
BminusB_Hat
BminusB_Star
posteriorArg

% METHODS (Public)
methods (Access = public)

1;

o0 o0 od° oP

Function:
Input:
Output: None
NOTES:

function this =

o

(Private)

(n+l)*n prior mean for F
A F {(ntl)*(n+l)} PSD covariance matrix

private, SetAccess = protected)

Construct Bayesian CVAR Probability Object
ecmModelObject

BayesianCVARProbabilities(ecmModelObject, ecmParStruct)

% BayesianCVARProbabilities Default Constructor

this.ECMModelObject = ecmModelObject;

this.ECMParStruct = ecmParStruct;

this.rank = size(this.ECMParStruct.MeasurementProcessParameters.Beta,2);
this.dimension

this.Psi

= size(this.ECMParStruct.SystemProcessParameters.InitialState,2

= this.ECMParStruct.MeasurementProcessParameters.LagMatrices;

if(size(this.Psi,2)==0)

this.t

= this.ECMParStruct.NumberObservations...

- this.ECMParStruct.MeasurementProcessParameters.NumberLags + 1;

else
this.t

= this.ECMParStruct.NumberObservations...

- this.ECMParStruct.MeasurementProcessParameters.NumberLags;

end;
this.k

= this.dimension...

* (this.ECMParStruct.MeasurementProcessParameters.NumberLags-1)+this.rank +

this.Mu

sum(this.ECMParStruct.SystemProcessParameters.SystemProcessParameters.TransitionMatrices(:,

:,1),2);

lpha'];

end

this.Gamma
this.B

this.X
this.Y
tBlock

[this.Mu this.Psi(:,:,1)]1"';
[this.Gamma; this.ECMParStruct.MeasurementProcessParameters.A

this.ECMModelObject.getDataSet (1, 0);
[this.X(2:this.t,:)-this.X(l:this.t-1,:)];
= ones(this.t-1,1);

% Note: at the moment this can only handle p=1 or 2:
if this.ECMParStruct.MeasurementProcessParameters.NumberLags == 1
this.XBlock = [tBlock];

else

this.XBlock = [tBlock this.Y(l:this.ECMParStruct.NumberObservations-1,:)];

end
this.Y¥Block
this.ZBlock

this.Y(l:this.ECMParStruct.NumberObservations-1,:);
this.X(l:this.ECMParStruct.NumberObservations-1,:);
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% Function: SetBetaPriorParams
% Input: BetaBar, Q, H

% Output:

% NOTES:

function SetBetaPriorParams(this,BetaBar, Q, H)
this.Beta Bar = BetaBar;

this.Beta Q = Q;
this.Beta H = H;
end
% Function: SetSigmaPriorParams
% Input: S, h
% Output:
% NOTES:

function SetSigmaPriorParams(this, S, h)
this.S = S;
this.h h;

end

oo

Function: SetBPriorParams

Input: P, A

Output:

NOTES:

function SetBPriorParams(this, P, A, Beta Hat)
this.P = P;

this.A = A;

this.AInv = inv(this.A);

this.Beta Hat = Beta_Hat;

o0 0@

oo

end

o0

Function: SetFPriorParams

Input: F Bar, A F

Output:

NOTES:

function SetFPriorParams(this, F_Bar, A F)
this.F_Bar = F_Bar;

this.A F = A F;

o0 oo

o0

end

% Function: SetSigmaWPriorParams
% Input: Sw, hw

% Output:

% NOTES:

function SetSigmaWPriorParams(this, Sw, hw)
this.Sw = Sw;
this.hw = hw;

end

Function: PriorProbBeta

00

% Input: Beta

% Output: p(Beta)

% NOTES:

function [pBeta] = PriorProbBeta(this, Beta)

preFactor = det(this.Beta_ Q)" (-this.dimension/2)*det(this.Beta_H)"(this.rank/2)
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argument = -0.5*trace(this.Beta_Q\(Beta-this.Beta Bar)'*this.Beta H*(Beta-this.

Beta_Bar));

pBeta = preFactor * exp(argument);
end

Function: logPriorProbBeta

% Input: Beta

% Output: log p(Beta)

% NOTES:

function [logPBeta] = logPriorProbBeta(this, Beta)

preFactor = det(this.Beta_ Q)" (-this.dimension/2)*det(this.Beta_H)"(this.rank/2)

argument = -0.5*trace(this.Beta_Q\(Beta-this.Beta Bar)'*this.Beta H*(Beta-this.

Beta_Bar));

logPBeta = log(preFactor) + argument;
end

o

Function: logPriorProbSigma

% Input: Sigma

% Output: log p(Sigma)

% NOTES:

function [logPSigma] = logPriorProbSigma(this, Sigma)

preFactor = (this.h/2)*log(det(this.S))-(this.h+this.dimension+1)*log(det(Sigma

argument = -0.5*trace(Sigma\this.S);
logPSigma = preFactor + argument;

end

% Function: logPriorProbB

% Input: B

% Output: log p(B)

% NOTES:

function [logPSigma] = logPriorProbB(this, Sigma, B)
preFactor = -(this.k/2)*log(det(Sigma))+(this.dimension/2)*log(det(this.A));
BminusP = B-this.P;
argument = -0.5*%trace(Sigma\BminusP'*this.A*BminusP);
logPSigma = preFactor + argument;

end

% Function: GetZBlock

% Input: dsNum (data set number)
% Output:

% NOTES:

function [zBlock] = GetZBlock(this)
zBlock = this.ZBlock;

end

% Function: GetXBlock

% Input: dsNum (data set number)
% Output:

% NOTES:

function [xBlock] = GetXBlock(this)
xBlock = this.XBlock;
end

oo

Function: GetYBlock

Input: dsNum (data set number)
Output:

NOTES:

o0 o

oo

function [yBlock] = GetYBlock(this)
yBlock = this.YBlock;
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sB_Star;

end

oo

Function: logPBetaGivenY, marginal posterior probability of Beta

% given the observations Y.

% Input: Individual Beta Parameters:

$ Output: log[p(Beta|Y)]

% NOTES:

function [logPBetaGivenY] = logP_Beta_GivenY(this, Beta)
this.W = [this.XBlock this.ZBlock * Beta];
this.WW = this.W'*this.W;
this.B Hat = this.WW\(this.W'*this.¥Block);
this.A Star = this.A + this.WW;
this.¥minusWB_Hat= this.YBlock-this.W*this.B Hat;
this.S_Hat = this.YminusWB_Hat'*this.YminusWB_Hat;
this.PminusB_Hat = this.P - this.B_Hat;

this

.S_Star = this.S + this.S_Hat...
+ this.PminusB_Hat'/(this.AInv + inv(this.WW))*this.PminusB_Hat;

logPBetaGivenY = this.logPriorProbBeta(Beta) + ...

(-(this.t+this.h+1)/2) * log(det(this.S Star)) + ...
(-this.dimension/2)*log(det(this.A Star));

% Or set the prior to 1 (for testing):
% logPBetaGivenY = (-(this.t+this.h+1)/2) * log(det(this.S Star)) + ...

%

end

Functi
of Bet
Input:
Output
NOTES:
function
this
this
this
this
this
this
this
this

o0 o0 o° o0 o

this
this
this
this

(-this.dimension/2)*log(det(this.A Star));

on: logP_BetaSigmaB_GivenY, log posterior probability
a, Sigma and B given the observations Y.
Beta, Sigma, Y

g log[p(Beta,Sigma,B|Y)]
[logP_BetaSigmaB GivenY] = logP_BetaSigmaB GivenY(this, Beta, Sigma, B)
W = [this.XBlock this.ZBlock * Beta];
JWW = this.W'*this.W;
.B_Hat = this.WW\(this.W'*this.¥Block);
.A Star = this.A + this.Ww;
.YminusWB_Hat= this.YBlock-this.W*this.B_ Hat;
.S_Hat = this.YminusWB_Hat'*this.YminusWB_Hat;
.PminusB_Hat = this.P - this.B Hat;
.S_Star = this.S + this.S_Hat...
+ this.PminusB_Hat'*((this.AInv + inv(this.WW))\this.PminusB_Hat);
.B_Star = (this.A + this.WW)\(this.A * this.P + this.WW*this.B Hat);
.BminusB_Star= B-this.B_Star;
NE] = this.t+this.k+this.h+this.dimension+1;
.posteriorArg = this.S_Star+this.BminusB_Star'*this.A Star*this.Bminu

logP_BetaSigmaB GivenY = this.logPriorProbBeta(Beta) + ...

% Or
g% lo
2

end

o

of Y g
Input:
Output
NOTES:

o0 o0 od° oe

function
this
this

(-this.c/2) * log(det(Sigma)) + ...
(-1/2)*trace(Sigma\this.posteriorArg);
set the prior to 1 (for testing):
gP_BetaSigmaB_GivenY = (-this.c/2) * log(det(Sigma)) + ...
(-1/2)*trace(Sigma\this.posteriorArg);

Function: logP_Y GivenBetaSigmaB, log Likelihood

iven Beta, Sigma and B.
Beta, Sigma, B, Y
: log[p(Y|Beta,Sigma,B) ]

[logP_Y Given BetaSigmaB] = logP_Y Given BetaSigmaB(this, Beta, Sigma, B)
W [this.XBlock this.ZBlock * Beta];
JWW this.W'*this.W:
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this.B_Hat
this.A Star
this.¥minusWB_Hat
this.S_Hat
this.BminusB_Hat
likelihoodArg
logP_Y Given BetaSi
(-1/2)*trace(Si

B.1. BAYESIAN CVAR PROBABILITIES

this.WW\(this.W'*this.¥Block);
this.A + this.WW;
this.YBlock-this.W*this.B Hat;
this.¥YminusWB_ Hat'*this.YminusWB_Hat;
B - this.B Hat;
= this.S_Hat+this.BminusB Hat'*this.WW*this.BminusB_Hat;
gmaB = (-this.t/2) * log(det(Sigma)) + ...
gma\likelihoodArg) ;

end

% Function: (1) sample SigmaGivenBetaY

% Input: Beta

% Output: An exact sample from sigma xx~(Sigma|Beta, Y)
% NOTES:

function [Sigma]

this.W =
this.WW =
this.B_Hat =
this.A Star =
this.¥minusWB_Hat=
this.S_Hat =
this.PminusB_Hat =
this.S_Star =

+ this.PminusB

= sample SigmaGivenBetaY(this, Beta)

[this.XBlock this.ZBlock * Beta];

this.W'*this.W;

this.WW\ (this.W'*this.YBlock);

this.A + this.Ww;

this.YBlock-this.W*this.B_ Hat;
this.Y¥minusWB_Hat'*this.YminusWB_Hat;

this.P - this.B_Hat;

this.S + this.S _Hat...

Hat'/(this.AInv + inv(this.WW))*this.PminusB_Hat;

dof = this.t + this.h;
Sigma = iwishrnd(this.S_Star, dof);

end

o0 o0 oe

oo

%

Function: (2) sample BGivenBetaSigmaY

Input: Beta, Sigma
Output: An exact sai
NOTES: NOTE: This
path-space!

function [B] = sample_B

this.w =
this.WW =
this.B_Hat =
this.A Star =
this.¥minusWB_Hat=
this.S_Hat =
this.PminusB_Hat
this.S_Star =
+ this.PminusB_|
this.B_Star =
Vec_B_Star = reshap
Kron_Sigma_ AStar =

mple from B~(B|Beta, Sigma, Y)
function does not take account of the latent

GivenBetaSigmaY(this, Beta, Sigma)

[this.XBlock this.ZBlock * Beta];

this.W'*this.W;

this.WW\ (this.W'*this.YBlock);

this.A + this.WW;

this.YBlock-this.W*this.B Hat;
this.¥minusWB_Hat'*this.YminusWB_Hat;

this.P - this.B_Hat;

this.s + this.S_Hat...

Hat'/(this.AInv + inv(this.WW))*this.PminusB_Hat;
(this.A + this.Www)\(this.A * this.P + this.WW*this.B Hat);
e(this.B_Star, this.k*this.dimension, 1);
kron(Sigma, inv(this.A_Star));

Vec_B = mvnrnd(Vec_B_Star, Kron_ Sigma_AStar);

B = reshape(Vec_B,

end

o0 o0 0P oP

this.k, this.dimension);

Function: (3) sample BGivenBetaY

Input: Beta,
Output: An exact sa
NOTES:

function [B] = sample B

this.W =
this.WW =
this.B_Hat =

this.A Star =
this.¥minusWB_Hat=
this.S_Hat =

mple from B~(B|Beta, Y)

GivenBetaY(this, Beta)
[this.XBlock this.ZBlock * Betal;
this.W'*this.W;
this.WW\(this.W'*this.¥Block);
this.A + this.WW;

this.YBlock-this.W*this.B Hat;
this.¥minusWB_Hat'*this.YminusWB_Hat;
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TN1S.PM1NUSB_HAT = TO1lS.P - TOLlS.B_HAaT;
this.S_Star = this.S + this.S_Hat...

+ this.PminusB Hat'/(this.AInv + inv(this.WW))*this.PminusB_Hat;
this.B_Star = (this.A + this.WW)\(this.A * this.P + this.WW*this.B Hat);

B = MatricvariateStudent(this.B_Star, this.A Star, this.S_Star, this.t);
end

oo

Function: (4) sample SigmaGivenBetaY tilde

% Input: Beta, M(Latent Variables)

% Output: An exact sample from Sigma~(Sigma|Beta, M)

% NOTES: This works by subtracting off the latent variables Mu's to
% generate Y tilde internally.

function [Sigma] = sample_SigmaGivenBetaY tilde(this, Beta, M)

% Translate the Y variables by subtracting the Latent paths:

YT this.YBlock - M(2:this.ECMParStruct.NumberObservations,:);
tBlock ones(this.t-1,1);

% Note: at the moment this can only handle p=1 or 2:

if this.ECMParStruct.MeasurementProcessParameters.NumberLags == 1
XBlock T = [tBlock];
else
XBlock T = [tBlock Y _T(l:this.ECMParStruct.NumberObservations-1,:)];
end

YBlock T = Y _T(1l:this.ECMParStruct.NumberObservations-1,:);

ZBlock_T = this.X(1l:this.ECMParStruct.NumberObservations-1,:);

W = [XBlock T ZBlock T * Betal;

Wi = (W'*W);

B_Hat = WW\ (W'*YBlock T);

W_B_Hat = W*B_Hat;

YminusWB_Hat = YBlock T-W_B_Hat; $#ok<*PROP>

YminusWB_Hat = YminusWB_Hat(2:end,:);

S_Hat = YminusWB_Hat'*YminusWB_Hat;

PminusB_Hat = this.P - B_Hat;

S_Star = this.S + S_Hat + PminusB_Hat'/(this.AInv + inv(WW))*PminusB_Hat

% Sample from an inverse Wishart distribution:
dof = this.t + this.h - 2;
Sigma = iwishrnd(S_Star, dof);

end

Function: (5) sample BGivenBetaY tilde

Input: Beta, 7
Output: An exact sample from B~(B\Beta, V=)
NOTES: This takes in the discovered latent variables (Mu's) and

o0 o0 o o° o°

samples exactly from ~(B|Beta7xx,Y~), where Y~=Y-2
function [B] = sample BGivenBetaY_ tilde(this, Beta, M)
% Translate the Y variables by subtracting the Latent paths:
YT this.¥Block - M(2:this.ECMParStruct.NumberObservations,:);
tBlock ones(this.t-1,1);
% Note: at the moment this can only handle p=1 or 2:
if this.ECMParStruct.MeasurementProcessParameters.NumberLags == 1
XBlock T = [tBlock];
else
XBlock T = [tBlock Y _T(1l:this.ECMParStruct.NumberObservations-1,:)];

end
YBlock T = Y _T(l:this.ECMParStruct.NumberObservations-1,:);
ZBlock_T = this.X(1l:this.ECMParStruct.NumberObservations-1,:);

W = [XBlock_ T ZBlock T * Beta];
WW = (W'*W);

B Hat = WW\(W'*YBlock T);

W_B_Hat = W*B_Hat;

YminusWB_Hat YBlock T-W_B_Hat;
% Remove the first element - since it is often inaccurate...
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YminusWB_Hat = YminusWB_Hat(2:end,:);
S_Hat = YminusWB_Hat'*YminusWB_Hat;
PminusB_Hat = this.P - B_Hat;
S_Star = this.S + S_Hat + PminusB Hat'/(this.AInv + inv(WW))*PminusB_H
at;
A Star = this.A + WW;
B_Star = (A_Star)\(this.A * this.P + WW*B_Hat);
B = MatricvariateStudent(B_Star, A _Star, S_Star, this.t-2);
end
% Function: (6) sample_ SigmaWw
% Input: Latents
% Output: An exact sample from SigmaW~(.|M)
% NOTES: This takes in the discovered latent variables (Mu's) and
% samples exactly from ~(SigmaW|M)
function [SigmaW] = sample_SigmaW(this, M)
tBlock = ones(this.t,1);
MBlock = [zeros(1l,this.ECMModelObject.dimension);...
M(1l:this.ECMParStruct.NumberObservations-1,:)];
X = [tBlock MBlock];
F_Hat = (X'*X)\X'*M;
MminusXF_Hat = M-X*F_Hat;
MminusXF_ Hat = MminusXF_Hat(2:end,:);
Sw_Hat = MminusXF_Hat'*MminusXF_ Hat;
A F_Star = this.A F+(X'*X);
F_Star = A F Star\(this.A F*this.F Bar+(X'*X)*F Hat);
F_Comb = F_Hat'*(X'*X)*F_Hat + this.F Bar'...
*this.A F*this.F_Bar - F_Star'*A F Star*F_Star;
Sw_Star = this.Sw + Sw_Hat + F_Comb;
Sw_Star = (Sw_Star+Sw_Star')/2;
dof = this.t + this.hw;
Sigmaw = iwishrnd(Sw_Star, dof);
end
% Function: (7) sample F
% Input: Latents
% Output: An exact sample from F~(.|M)
% NOTES: This takes in the discovered latent variables (Mu's) and
% samples exactly from ~(F|M)
function [F] = sample F(this, M)
tBlock = ones(this.t,1);
MBlock = [zeros(l,this.ECMModelObject.dimension);...
M(1l:this.ECMParStruct.NumberObservations-1,:)];
X = [tBlock MBlock];
F_Hat = (X'*X)\X'*M;
Sw_Hat = (M-X*F_Hat)'*(M-X*F_Hat);
A F Star = this.A F+(X'*X);
F_Star = A F Star\(this.A F*this.F Bar+(X'*X)*F_Hat);
Sw_Star = this.Sw + Sw_Hat + F_Hat'*(X'*X)*F_Hat...
+ this.F_Bar'*this.A F*this.F_Bar - F_Star'*A F_Star*F_Star;
dof = this.t;
F = MatricvariateStudent(F_Star, A F _Star, Sw_Star, dof);
end
end
end
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B.2 PMMH Sampler

This is the code for the adaptive PMMH sampler.

classdef PMMHSampler < handle
% ParticleMarginalMetropolis(Hastings)Sampler Class
% This file contains code for the PMMH Sampler

% PROPERTIES (Public)
properties(GetAccess = public, SetAccess = protected)

% The name of the sampler
name

% Make BCVARProbs object a data member:
BCVARProbs

ParticleFilter

% Class Data Members:

initialState % the initial parameter states

initialOmega % initial covariance matrix for the Q proposals
Mu % Adaptive parameter mean

Omega % Adapted covariance matrix for the Q proposals
stateStore % Record of the accepted parameter states
startCovMeanEstimation

proposalCovScale

NumberParticles % #Particles in the SISR filter

ResampleThreshold % #Particles below which resampling is triggered
ResamplingSchemeFunc$

InitialParticles % Initial Particles

InitialWeights % Initial Particle Weights

SystemParams % System Model Parameters

ObservationParams % Observation Model Parameters

pfOptions % The Particle Filter Options

continueOnError

NumberTimeSteps

$TransformedDataSet

DataSet

chainLength % Number of samples to generate

numAccepts % Total number of accepted moves

numRejects % Total number of rejected moves

d % adaptive dimension d=(n-r)*r

truncate % Are we working with the compelete

% parameter matrix? or are there r”2 constraints imposed?

end

% PROPERTIES (Constant)
properties(Constant)
% The default flag for ContinueOnError
DefaultContinueOnError = 0;
end

$ METHODS (Public)
methods (Access = public)

% Function: PMMH Sampler

% Input: ParameterState
% Output: None

% NOTES:

function this = PMMHSampler (BCVARProbs, initialState, ...

initialOmega, truncate, startCovMeanEstimation, ...
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proposaltovscale, Numberrarticles, Resamplelnhresnhold, Kesampllingschemerunction)
% Particle Marginal Metropolis-Hastings Sampler. The default Constructor.
this.name = 'PMMH Sampler';

this.BCVARProbs = BCVARProbs;

this.initialState = initialState;

this.initialOmega = initialOmega;

this.NumberParticles = NumberParticles;

this.ResampleThreshold = ResampleThreshold;

this.ResamplingSchemeFunc = ResamplingSchemeFunction;

this.truncate = truncate;

this.startCovMeanEstimation = startCovMeanEstimation;
this.proposalCovScale = proposalCovScale;

if (this.truncate)

this.d = (initialState.dimensionality - initialState.rank)...
* initialState.rank;
else
this.d = (initialState.dimensionality) * initialState.rank;
end

this.ParticleFilter = SMCParticleFilter(this.NumberParticles, ...
this.ResamplingSchemeFunc, this.ResampleThreshold);
end

oe

Function: Initialise Particle Filter

% Input: Initial Particles, Initial Weights

% Output: None

% Notes:

function InitialiseParticleFilter(this, InitialEstimates, SystemParams, ...

ObservationParams, pfOptions)

this.InitialParticles = InitialEstimates.InitialParticles;
this.InitialWeights = InitialEstimates.InitialWeights;
this.SystemParams = SystemParams;
this.ObservationParams = ObservationParams;
this.pfOptions = pfOptions;

if (isfield(pfOptions, 'ContinueOnError'))
this.continueOnError = this.pfOptions.ContinueOnError;

else
this.continueOnError = PMMHSampler.DefaultContinueOnError;
end
this.NumberTimeSteps = this.BCVARProbs.t - 1;
this.DataSet = this.BCVARProbs.ECMModelObject.getDataSet (
1, 0);
% And remove the first two (empty) rows:
this.DataSet = this.DataSet(3:end,:);
end
% Function: runChain BetaSigmaB_Adaptive
% Input: chainLength, ECM data object
% Output: states (Matrix Array)
% NOTES: This function runs the Metropolis-Hastings sampler to
% create an instance of the Markov Chain for Beta, Sigma and B, and
% the Latent States. It uses an SMC filter to calculate the
% Marginal Likelihood
function [outputStateStore] = runChain BetaSigmaB Adaptive(this, chainLength, start
Adapt)

this.chainLength = chainLength;
this.stateStore{l} = this.initialState;
currentState = this.initialState;

ids = currentState.parameterNames;
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this.Mu(:,1) = zeros(size(currentState.GetBetaTruncatedvec),1l);
this.Mu(:,this.startCovMeanEstimation) = ...
zeros (size(currentState.GetBetaTruncatedvec),1);
else
this.Mu(:,1) = zeros(size(currentState.GetBetaVec),1);
this.Mu(:,this.startCovMeanEstimation) = zeros(size(currentState.GetBetaVec

end

this.Omega(:,:,1) = this.initialOmega;
this.Omega(:,:,this.startCovMeanEstimation) = this.initialOmega;

% Initial Parameter Beta:

Betal = this.stateStore{l}.GetNamedParameter( 'Beta');
Sigma0 = this.stateStore{l}.GetNamedParameter('Sigma');
BO = this.stateStore{l}.GetNamedParameter('B');
logProbBetaOld = this.BCVARProbs.logPriorProbBeta(Betal);
logProbSigma0Old = this.BCVARProbs.logPriorProbSigma(Sigma0l);
logProbBOld = this.BCVARProbs.logPriorProbB(Sigmal0, BO);
sysModelFunc = this.SystemParams.SystemEquationFunctionHandle;

$measModelFunc = this.ObservationParams.MeasurementEquationFunctionHandle;
%0bservationNoiseMatrix = this.ObservationParams.NoiseMatrix;
ObservationNoiseMatrix = Sigma0;

% Now generate an ECM parameter struct to store the current
% values of the variable paramters (beta0)

SystemModelParams.NoiseMatrix = ...
this.BCVARProbs.ECMParStruct.SystemProcessParameters.SystemProcessParameter
s.NoiseMatrix;
SystemModelParams.TransitionMatrix = ...
this.BCVARProbs.ECMParStruct.SystemProcessParameters.SystemProcessParameters.Trans
itionMatrices(:,:,1);
Alpha = this.BCVARProbs.ECMParStruct.MeasurementProcessParameters.Alpha;
LagMatrices = this.BCVARProbs.ECMParStruct.MeasurementProcessParameters.LagMatr
ices;
%0bservationNoiseMatrix = this.BCVARProbs.ECMParStruct.MeasurementProcessParame
ters.NoiseMatrix;

ecmParameters = ecmParameterGenerator(this.BCVARProbs.ECMModelObject.dimension,

this.BCVARProbs.ECMModelObject.numberDataSets, ...
this.BCVARProbs.ECMModelObject.numberObservations, SystemModelParams, ...
Alpha, Beta0, LagMatrices, ...

ObservationNoiseMatrix);

try
% Run the this.ParticleFilter on the dataSet for the specified
% NumberTimeStemps
[mmse, ess, marginalLogLikelihoodOld] = this.ParticleFilter.run4(this.Numbe

rTimeSteps, ...
this.DataSet, ...

sysModelFunc, ecmParameters, this.InitialParticles, this.InitialWeights

ObservationNoiseMatrix);
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catch Exception
fprintf('SISRParticleFilterStudy:Run:ERORR: DataSet Number %i\n', 1i);
% Check whether to continue with computation or halt
if (this.continueOnError == 1)
Exception
$continue
else
rethrow(Exception)
end
end

Z_t = mmse;
% Add in some padding (for compatibility with the KF version):
Z_t = [zeros(2,this.BCVARProbs.ECMModelObject.dimension); Z_t];
logPYGivenBetaOld = marginallLogLikelihoodOld + logProbBetaOld + ...
logProbB0Old + logProbSigmaOld;
it = 2; this.numAccepts = 0; this.numRejects = 0;
while it < this.chainLength+1
% Propose a new state (adaptively) for Beta:
proposedState = this.betaStateProposalAdaptive(this.stateStore{it-1}, it,
startAdapt);

Beta_xx proposedState.GetNamedParameter( 'Beta');
logProbBetaNew = this.BCVARProbs.logPriorProbBeta(Beta_ xx);

% Now sample (Sigma|Beta,Y) exactly:
Sigma_xx = this.BCVARProbs.sample SigmaGivenBeta_ tilde(Beta_xx, Z_t)

~e

logProbSigmaNew = this.BCVARProbs.logPriorProbSigma(Sigma_xx);

% Now sample (B|Beta, Y) exactly:
B_xx = this.BCVARProbs.sample BGivenBetaY tilde(Beta_ xx, Z_t);
logProbBNew = this.BCVARProbs.logPriorProbB(Sigma xx, B XxX);

Alpha xx = B _xx(2:end,:)';
ObservationNoiseMatrix = diag(diag(Sigma_xx));
%0bservationNoiseMatrix = this.ObservationParams.NoiseMatrix;

% Sample the parameters of the latent system:
F_xx = this.BCVARProbs.sample F(Z_t);
SigmaW_xx = this.BCVARProbs.sample_SigmaW(Z_t);

Params_complete = {Beta_ xx, Sigma_xx, B_xx', SigmaW xx, F_xx'};
proposedState = ParameterState(ids, Params_complete, 'NewParameterState xx'

Now generate an ECM parameter struct to store the current
values of the parameters in the model (Beta_xx, Sigma_xx, etc)

G e e
ecmParameters = ecmParameterGenerator (this.BCVARProbs.ECMModelObject.dimens
ion,...
this.BCVARProbs.ECMModelObject.numberDataSets, ...
this.BCVARProbs.ECMModelObject.numberObservations, SystemModelParams, A
lpha, ...

Beta_ xx, LagMatrices, ...
ObservationNoiseMatrix);
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% Run the this.ParticleFilter on the dataSet for the specified

% NumberTimeStemps with the updated parameters...

[mmse, ess, marginallLogLikelihoodNew] = ...
this.ParticleFilter.run4(this.NumberTimeSteps, this.DataSet, ...
sysModelFunc, ecmParameters, this.InitialParticles, ...
this.InitialWeights, ObservationNoiseMatrix);

catch Exception
fprintf('SISRParticleFilterStudy:Run:ERORR: DataSet Number %i\n', i);
% Check whether to continue with computation or halt
if(this.continueOnError == 1)
Exception
%continue
else
rethrow(Exception)
end
end
= mmse;
dd in some padding:
_t = [zeros(2,this.BCVARProbs.ECMModelObject.dimension); Z_t];
Evaluate the marginal probability of Y, and add the prior

r"twlﬁ'

Z
Z
%
% probabilities:

logPYGivenBetaNew = marginalLogLikelihoodNew + logProbBetaNew ...
+ logProbBNew + logProbSigmaNew;

f————= Calculate the acceptance probability for the state xx:----
acceptRatio = logPYGivenBetaNew - logPYGivenBetaOld;
if isnan(acceptRatio)
alphaProb = 0;
else
alphaProb = exp(acceptRatio);
end
acceptProb = min(1l, alphaProb);
u = unifrnd(0,1);
if u < acceptProb
currentState = proposedState;
logPYGivenBetaOld = logPYGivenBetaNew;
this.stateStore{it} = proposedState;
this.numAccepts = this.numAccepts+l;
else
this.stateStore{it} = currentState;
this.numRejects = this.numRejects+1;
end

if(it > this.startCovMeanEstimation)
if (this.truncate)
this.Mu(:,it) = this.Mu(:,it-1)+...
(currentState.GetBetaTruncatedVec-this.Mu(:,it-1))/(it+1);
this.Omega(:,:,it) = this.Omega(:,:,it-1)+...
((currentState.GetBetaTruncatedVec-this.Mu(:,it-1))*...
(currentState.GetBetaTruncatedVec-this.Mu(:,it-1))"'...
-this.Omega(:,:,it-1))/(it-1);
else
this.Mu(:,it) = this.Mu(:,it)+(currentState.GetBetaVec...
—this.Mu(:,it))/(it+1);
this.Omega(:,:,it) = this.Omega(:,:,it)+...
((currentState.GetBetaVec-this.Mu(:,it))*...
(currentState.GetBetaVec-this.Mu(:,it))'-this.Omega(:,:,it-1))/
(it-1);
end
end
if(rem(it,20)==0)
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it
this.Mu(:,it)"
this.Omega(:,:,it)
if (this.BCVARProbs.dimension==4 && this.BCVARProbs.rank==1)
disp(' |--Beta-| |-———————————————e Sigma-———————————— e [ | === B

end
disp(currentState.parametersCat)
end
it = it + 1;
end
outputStateStore = this.stateStore;
end

Function: betaStateProposal

o° 00 oe

Input: current state
Output: new state proposal
NOTES: This function uses the current value of Omega (Q proposal

o° 0@

covariance) to generate a new potential state of Beta:
function [proposedState] = betaStateProposal(this, currentState)
Omega = this.initialOmega;
currentIds = currentState.parameterNames;
if (this.truncate)
currentBetaVec = currentState.GetBetaTruncatedVec;
else
currentBetaVec = currentState.GetBetaVec;
end

% this is where we draw a proposed new state:
proposedBetaVec = mvnrnd(currentBetaVec, Omega)';
% now arrange into individual parameter matrices (stored as
% cells) to construct the new state:

currentParamsMat = reshape(currentState.GetParametersvec,...

currentState.dimensionality, []);

if (this.truncate)

newBetaMat = [eye(currentState.rank) ...
reshape (proposedBetaVec, currentState.rank,[])']';
else
newBetaMat = [reshape(proposedBetaVec, currentState.dimensionality,[])']1';

end

% Use the current state parameters to create a new State object:

currentParams = mat2cell(currentParamsMat, currentState.dimensionality, ...
GetParametersColumnDims (currentState))';

proposedState = ParameterState(currentIlds, currentParams, 'newParameterState');

proposedState.SetNamedParameter('Beta', newBetaMat);

end

% Function: betaStateProposalAdaptive

% Input: current state

% Output: new state proposal

% NOTES: This function uses an adaptive scheme to generate the
% proposed state:

function [proposedState] = betaStateProposalAdaptive(this, currentState, iter, star
tAdapt)
currentIds = currentState.parameterNames;
if (this.truncate)
currentBetaVec = currentState.GetBetaTruncatedVec;
else
currentBetaVec = currentState.GetBetaVec;
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% this is where we draw a proposed new state:
u = unifrnd(0,1);
if (iter > startAdapt)
wl = 0.95;
if u < wl
covariance = this.proposalCovScale *
this.Omega(:,:,iter-1)*(2.38)"2/this.d;
proposedBetaVec = mvnrnd(currentBetaVec, covariance)';
else
covariance = this.proposalCovScale *
eye(this.d) * (0.1)"2/this.d;
proposedBetaVec = mvnrnd(currentBetaVec, covariance)';
end
else
covariance = this.initialOmega;
proposedBetaVec = mvnrnd(currentBetaVec, covariance)';
end

currentParamsMat = reshape(currentState.GetParametersvec,...
currentState.dimensionality, [1);

if (this.truncate)

newBetaMat = [eye(currentState.rank)
reshape (proposedBetaVec, currentState.rank,[])]';
else
newBetaMat = [reshape(proposedBetaVec, ...

currentState.dimensionality,[])]';
end
% Use the current state parameters to create a new State object:
currentParams = mat2cell(currentParamsMat, currentState.dimensionality,
GetParametersColumnDims (currentState))';
proposedState = ParameterState(currentIds, currentParams, 'newParameterState');
proposedState.SetNamedParameter('Beta', newBetaMat);
end

Function: GetParameterSamples

%

% Input: ParameterName (string)

% Output: Individual Parameter Markov Chains

% NOTES: This function returns the MCs produced by the sampler

o0

in a matrix format: dim=(#params * chainLength)
Rowl: Paraml->
Row2: Param2->

etc

oe

o° 0@

function [parameterSamples] = GetParameterSamples(this, ParameterName)

paramIndex = this.stateStore{l}.GetNamedParameterIndex(ParameterName);

numSubParams = size(reshape(this.stateStore{l}.GetIndexedParameter (paramIndex),
[1,1),1);

parameterSamples = zeros(this.chainLength, numSubParams);

for i = l:this.chainLength

parameterSamples(i,:) = reshape(this.stateStore{i}.GetIndexedParameter (para

mIndex)',[]1, 1);

end

end

end
end

Remark In some senses this work continues where the work of GWP’s former student Shamin
Kinathil left off, and as such utilises some underlying code components that he developed: for
example methods to generate from the model equations, a basic Kalman filter implementation etc.
see [Kinathil, 2011]
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